organic compounds
3-(2-Hydroxyethyl)-1-(4-nitrophenyl)-1H-imidazol-3-ium bromide
aDepartment of Chemistry, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa, and bSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
*Correspondence e-mail: Zamisas@ukzn.ac.za
The molecular structure of the title salt, C11H12N3O3+·Br−, reveals near co-planarity between the the imidazole and 4-nitrobenzene moieties with a dihedral angle of 8.99 (14)° between their planes. A prominent feature in the molecular packing is the bromide anion acting as a double acceptor for O—H⋯Br and C—H⋯Br hydrogen-bonds, leading to a linear chain propagating along [110]. The crystal studied was refined as an with the minor component = 0.081 (8).
Keywords: crystal structure; imidazolium salt; hydrogen-bonding.
CCDC reference: 2404555
Structure description
The title crystal is an imidazolium bromide salt based on a 1-(4-nitrophenyl)-1H-imidazol-3-yl moiety (Ibrahim & Bala, 2016; Illam et al., 2021), which is functionalized at the 1,3-diazole wingtip with a 2-hydroxyethyl group. Unlike analogues with a fused 1H-benzo[d] backbone (Kumar et al., 2015), derivatives of the title salt with the 1H-imidazol-3-yl moiety do not show any potential as chemodosimeters. The incorporation of oxygen-containing functionalities in the design of these imidazolium salts is motivated by the desire to increase the solubility of the ligand/precursor in common solvents (Garrison & Young, 2005), and, upon coordination, to enhance the electron density around the metal, thereby stabilizing the metal center during a catalytic cycle (Simpson et al., 2015). We recently explored the potential of such NO2-functionalized imidazolylidene–CoII/NiII complexes as viable green catalysts for aryl C—N coupling reactions of aryl with aryl bromides (Ibrahim & Bala, 2016). In a continuation of this work designed to develop new derivatives with superior catalytic abilities, the title compound was synthesized and analyzed by X-ray crystallography.
The ). The conformation of the cationic species is such that the dihedral angle between the imidazole and 4-nitrobenzene planes is 8.99 (14)° while the orientation of the ethanolyl side is almost orthogonal with respect to the imidazole plane [C7—N3—C10—C11 torsion angle = 95.1 (4)°]. A prominent feature of the molecular packing relates to the bromide anion acting as a double acceptorm with the hydroxyl-H1 atom and the H3 atom of a neighboring 4-nitrophenyl moiety to form a linear supramolecular chain propagatingalong [10] (Table 1; Fig. 2).
of the title salt comprises an imidazolyl cation and a bromide anion (Fig. 1Synthesis and crystallization
The title compound was synthesized with a slight modification of the reported protocol (Ibrahim & Bala, 2016). A mixture of N-p-nitrophenyl imidazole (0.5 g, 0.003 mol) and 2-bromoethanol (0.56 g, 0.005 mol; 0.35 ml, ρ = 1.76 g cm−3, 95%) was refluxed overnight in acetonitrile under an inert dinitrogen atmosphere. Removal of the solvent followed by washing with ethyl acetate afforded a yellow precipitate, which yielded the title salt as an air-stable yellow solid after drying in vacuo. Slow diffusion of diethyl ether into a methanolic solution of the isolated title salt afforded suitable single crystals for the X-ray Yield: 0.70 g, 0.002 mol, 85.7%. m.p. 475–477 K. 1H NMR (400 MHz, DMSO-d6): δ 10.03 (s, 1H, NCHN), 8.52 (d, J = 9.0 Hz, 2H, CH(phenyl)), 8.47 (d, J = 1.6 Hz, 1H, CH(imidazolyl)), 8.11 (d, J = 9.1 Hz, 2H, CH(benzyl)), 8.06 (s, 1H, CH(imidazolyl)), 4.33 (t, J = 10.0 Hz, 2H, CH2(ethanoyl)), 3.84 (t, J = 10.0 Hz, 2H, CH2(hydroxyethy), 3.35 (s, b, 1H, OH(hydroxyethyl)). 13C NMR (100 MHz, DMSO-d6): δ 147.5 (NCN), 139.2, 136.4, 125.6, 124.1, 122.9, 120.9, 59.1 (CH2), 52.4 (CH2). FTIR (ν(O—H) 3243, ν(aryl C—H) 3090, ν(alkyl C—H) 2958, ν(C=N) 1552, ν(NO2) 1522 & 1341, ν(C—O) 1222, ν(phenyl) 854 cm−1. LRMS-ES+: m/z (%) 234.0550 (100) [(M − Br)]+.
Refinement
Table 2 provides a summary of the crystal data, data collection and structure details. The structure was refined as an with the minor component = 0.081 (8).
Structural data
CCDC reference: 2404555
https://doi.org/10.1107/S2414314624011386/tk4113sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624011386/tk4113Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624011386/tk4113Isup3.cml
C11H12N3O3+·Br− | F(000) = 632 |
Mr = 314.15 | Dx = 1.695 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 6.4352 (4) Å | Cell parameters from 6616 reflections |
b = 12.2697 (11) Å | θ = 3.3–28.5° |
c = 15.5936 (10) Å | µ = 3.34 mm−1 |
β = 90.290 (3)° | T = 100 K |
V = 1231.22 (16) Å3 | Slab, light yellow |
Z = 4 | 0.38 × 0.21 × 0.14 mm |
Bruker SMART APEXII area detector diffractometer | 2930 reflections with I > 2σ(I) |
Detector resolution: 7.9 pixels mm-1 | Rint = 0.019 |
ω and φ scans | θmax = 28.6°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −8→8 |
Tmin = 0.661, Tmax = 0.746 | k = −16→16 |
9019 measured reflections | l = −20→20 |
3051 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.017 | H-atom parameters constrained |
wR(F2) = 0.037 | w = 1/[σ2(Fo2) + (0.0076P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3051 reflections | Δρmax = 0.36 e Å−3 |
165 parameters | Δρmin = −0.22 e Å−3 |
2 restraints | Absolute structure: Refined as an inversion twin |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.081 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.52235 (5) | 0.56771 (2) | 0.24805 (3) | 0.01782 (6) | |
C2 | 0.6133 (4) | 0.2573 (2) | 0.12029 (17) | 0.0170 (5) | |
H2 | 0.588284 | 0.236441 | 0.177996 | 0.020* | |
O2 | 1.1242 (3) | 0.15187 (18) | −0.01212 (14) | 0.0336 (6) | |
O1 | 0.2180 (3) | 0.45365 (14) | 0.38751 (12) | 0.0204 (4) | |
H1 | 0.298129 | 0.475858 | 0.348926 | 0.031* | |
C11 | 0.0084 (5) | 0.4666 (3) | 0.3601 (2) | 0.0178 (7) | |
H11A | −0.007513 | 0.538803 | 0.332540 | 0.021* | |
H11B | −0.083443 | 0.464705 | 0.410782 | 0.021* | |
C10 | −0.0603 (5) | 0.3781 (2) | 0.29685 (18) | 0.0165 (6) | |
H10A | −0.035231 | 0.305423 | 0.322381 | 0.020* | |
H10B | −0.211178 | 0.385282 | 0.285381 | 0.020* | |
N3 | 0.0538 (4) | 0.38742 (19) | 0.21627 (15) | 0.0140 (5) | |
C7 | 0.2242 (4) | 0.33242 (19) | 0.19668 (16) | 0.0160 (5) | |
H7 | 0.287958 | 0.278530 | 0.231755 | 0.019* | |
N2 | 0.2926 (3) | 0.36462 (15) | 0.11964 (13) | 0.0141 (4) | |
C1 | 0.4742 (4) | 0.32634 (19) | 0.07739 (15) | 0.0145 (5) | |
C3 | 0.7879 (4) | 0.2196 (2) | 0.07779 (17) | 0.0185 (5) | |
H3 | 0.883162 | 0.171970 | 0.105583 | 0.022* | |
C4 | 0.8207 (3) | 0.2526 (2) | −0.00536 (18) | 0.0164 (5) | |
N1 | 1.0073 (4) | 0.21336 (18) | −0.05093 (16) | 0.0229 (5) | |
O3 | 1.0345 (4) | 0.24477 (17) | −0.12456 (14) | 0.0306 (5) | |
C8 | 0.0106 (6) | 0.4587 (3) | 0.1501 (2) | 0.0178 (7) | |
H8 | −0.102340 | 0.508493 | 0.147718 | 0.021* | |
C6 | 0.5101 (4) | 0.3571 (2) | −0.00708 (17) | 0.0182 (6) | |
H6 | 0.414163 | 0.403271 | −0.035965 | 0.022* | |
C5 | 0.6850 (4) | 0.3206 (2) | −0.04886 (17) | 0.0193 (5) | |
H5 | 0.711834 | 0.341669 | −0.106364 | 0.023* | |
C9 | 0.1575 (4) | 0.44526 (18) | 0.08943 (17) | 0.0168 (5) | |
H9 | 0.166987 | 0.483219 | 0.036499 | 0.020* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01789 (10) | 0.01860 (10) | 0.01696 (10) | −0.00135 (15) | −0.00015 (7) | 0.00074 (15) |
C2 | 0.0190 (14) | 0.0193 (12) | 0.0127 (12) | 0.0002 (11) | −0.0003 (11) | 0.0011 (9) |
O2 | 0.0239 (12) | 0.0384 (13) | 0.0386 (14) | 0.0131 (10) | 0.0002 (10) | −0.0074 (10) |
O1 | 0.0181 (9) | 0.0268 (9) | 0.0163 (9) | −0.0040 (7) | 0.0012 (7) | 0.0031 (7) |
C11 | 0.0188 (16) | 0.0178 (14) | 0.0169 (15) | −0.0021 (12) | 0.0021 (12) | −0.0041 (12) |
C10 | 0.0163 (14) | 0.0203 (14) | 0.0130 (13) | −0.0032 (11) | 0.0056 (11) | −0.0004 (11) |
N3 | 0.0143 (12) | 0.0110 (10) | 0.0167 (11) | −0.0017 (9) | 0.0034 (9) | −0.0022 (8) |
C7 | 0.0169 (13) | 0.0154 (11) | 0.0157 (12) | −0.0011 (9) | 0.0011 (9) | 0.0000 (9) |
N2 | 0.0153 (10) | 0.0128 (9) | 0.0144 (10) | −0.0004 (8) | 0.0006 (8) | −0.0001 (7) |
C1 | 0.0143 (12) | 0.0127 (11) | 0.0165 (13) | −0.0017 (9) | 0.0018 (10) | −0.0033 (9) |
C3 | 0.0176 (13) | 0.0158 (12) | 0.0219 (13) | 0.0014 (10) | −0.0021 (10) | −0.0017 (10) |
C4 | 0.0134 (15) | 0.0148 (10) | 0.0211 (12) | −0.0034 (12) | 0.0045 (12) | −0.0060 (9) |
N1 | 0.0181 (12) | 0.0186 (11) | 0.0320 (14) | −0.0028 (9) | 0.0050 (10) | −0.0081 (10) |
O3 | 0.0319 (13) | 0.0271 (11) | 0.0329 (12) | 0.0010 (9) | 0.0190 (10) | 0.0008 (9) |
C8 | 0.0196 (16) | 0.0170 (14) | 0.0170 (15) | −0.0008 (12) | 0.0011 (12) | −0.0026 (11) |
C6 | 0.0178 (14) | 0.0189 (13) | 0.0180 (14) | 0.0042 (11) | 0.0007 (11) | 0.0037 (10) |
C5 | 0.0226 (14) | 0.0194 (12) | 0.0159 (12) | −0.0037 (10) | 0.0034 (10) | 0.0009 (10) |
C9 | 0.0182 (12) | 0.0143 (11) | 0.0179 (13) | 0.0018 (9) | −0.0006 (10) | 0.0022 (9) |
C2—H2 | 0.9500 | C7—N2 | 1.341 (3) |
C2—C1 | 1.400 (3) | N2—C1 | 1.424 (3) |
C2—C3 | 1.387 (4) | N2—C9 | 1.398 (3) |
O2—N1 | 1.224 (3) | C1—C6 | 1.391 (3) |
O1—H1 | 0.8400 | C3—H3 | 0.9500 |
O1—C11 | 1.421 (4) | C3—C4 | 1.376 (4) |
C11—H11A | 0.9900 | C4—N1 | 1.479 (3) |
C11—H11B | 0.9900 | C4—C5 | 1.383 (4) |
C11—C10 | 1.530 (4) | N1—O3 | 1.225 (3) |
C10—H10A | 0.9900 | C8—H8 | 0.9500 |
C10—H10B | 0.9900 | C8—C9 | 1.351 (5) |
C10—N3 | 1.463 (3) | C6—H6 | 0.9500 |
N3—C7 | 1.325 (3) | C6—C5 | 1.378 (4) |
N3—C8 | 1.379 (4) | C5—H5 | 0.9500 |
C7—H7 | 0.9500 | C9—H9 | 0.9500 |
C1—C2—H2 | 120.3 | C2—C1—N2 | 120.2 (2) |
C3—C2—H2 | 120.3 | C6—C1—C2 | 120.5 (2) |
C3—C2—C1 | 119.4 (2) | C6—C1—N2 | 119.3 (2) |
C11—O1—H1 | 109.5 | C2—C3—H3 | 120.6 |
O1—C11—H11A | 109.1 | C4—C3—C2 | 118.7 (2) |
O1—C11—H11B | 109.1 | C4—C3—H3 | 120.6 |
O1—C11—C10 | 112.7 (3) | C3—C4—N1 | 119.1 (2) |
H11A—C11—H11B | 107.8 | C3—C4—C5 | 122.7 (2) |
C10—C11—H11A | 109.1 | C5—C4—N1 | 118.2 (2) |
C10—C11—H11B | 109.1 | O2—N1—C4 | 117.5 (2) |
C11—C10—H10A | 109.5 | O2—N1—O3 | 124.6 (3) |
C11—C10—H10B | 109.5 | O3—N1—C4 | 117.9 (2) |
H10A—C10—H10B | 108.1 | N3—C8—H8 | 126.0 |
N3—C10—C11 | 110.7 (2) | C9—C8—N3 | 107.9 (3) |
N3—C10—H10A | 109.5 | C9—C8—H8 | 126.0 |
N3—C10—H10B | 109.5 | C1—C6—H6 | 120.0 |
C7—N3—C10 | 125.3 (2) | C5—C6—C1 | 120.0 (2) |
C7—N3—C8 | 108.3 (3) | C5—C6—H6 | 120.0 |
C8—N3—C10 | 126.3 (3) | C4—C5—H5 | 120.7 |
N3—C7—H7 | 125.3 | C6—C5—C4 | 118.6 (2) |
N3—C7—N2 | 109.4 (2) | C6—C5—H5 | 120.7 |
N2—C7—H7 | 125.3 | N2—C9—H9 | 126.7 |
C7—N2—C1 | 126.3 (2) | C8—C9—N2 | 106.7 (2) |
C7—N2—C9 | 107.7 (2) | C8—C9—H9 | 126.7 |
C9—N2—C1 | 126.0 (2) | ||
C2—C1—C6—C5 | −0.8 (4) | N2—C1—C6—C5 | −179.9 (2) |
C2—C3—C4—N1 | 179.6 (2) | C1—C2—C3—C4 | 0.8 (4) |
C2—C3—C4—C5 | −1.0 (4) | C1—N2—C9—C8 | −178.1 (2) |
O1—C11—C10—N3 | −66.2 (3) | C1—C6—C5—C4 | 0.6 (4) |
C11—C10—N3—C7 | 95.1 (4) | C3—C2—C1—N2 | 179.2 (2) |
C11—C10—N3—C8 | −80.8 (3) | C3—C2—C1—C6 | 0.0 (4) |
C10—N3—C7—N2 | −177.1 (2) | C3—C4—N1—O2 | 0.6 (3) |
C10—N3—C8—C9 | 177.1 (2) | C3—C4—N1—O3 | −179.2 (2) |
N3—C7—N2—C1 | 178.5 (2) | C3—C4—C5—C6 | 0.2 (4) |
N3—C7—N2—C9 | 0.4 (3) | N1—C4—C5—C6 | 179.7 (2) |
N3—C8—C9—N2 | −0.3 (3) | C8—N3—C7—N2 | −0.6 (3) |
C7—N3—C8—C9 | 0.6 (3) | C5—C4—N1—O2 | −178.9 (2) |
C7—N2—C1—C2 | −7.5 (3) | C5—C4—N1—O3 | 1.4 (4) |
C7—N2—C1—C6 | 171.7 (2) | C9—N2—C1—C2 | 170.3 (2) |
C7—N2—C9—C8 | −0.1 (3) | C9—N2—C1—C6 | −10.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Br1 | 0.84 | 2.42 | 3.2509 (19) | 171 |
C3—H3···Br1i | 0.95 | 2.71 | 3.572 (2) | 151 |
Symmetry code: (i) x+1/2, y−1/2, z. |
Acknowledgements
The authors would like to thank the University of KwaZulu-Natal for the research facilities. DUT/HANT is acknowledged for funding the postdoctoral fellowship of HI.
References
Bruker (2010). COSMO and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978–4008. Web of Science CrossRef PubMed CAS Google Scholar
Ibrahim, H. & Bala, M. D. (2016). New J. Chem. 40, 6986–6997. CrossRef CAS Google Scholar
Illam, P. M., Singh, V. K. & Rit, A. (2021). J. Organomet. Chem. 951, 122008. CrossRef Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kumar, R., Sandhu, S., Hundal, G., Singh, P., Walia, A., Vanita, V. & Kumar, S. (2015). Org. Biomol. Chem. 2015, 1345, 11129–11139. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Simpson, P. V., Brown, D. H., Skelton, B. W., White, A. H. & Baker, M. V. (2015). J. Incl Phenom. Macrocycl Chem. 82, 79–91. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.