organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(2-Hy­dr­oxy­eth­yl)-1-(4-nitro­phen­yl)-1H-imidazol-3-ium bromide

crossmark logo

aDepartment of Chemistry, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa, and bSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
*Correspondence e-mail: Zamisas@ukzn.ac.za

(Received 13 November 2024; accepted 22 November 2024; online 28 November 2024)

The mol­ecular structure of the title salt, C11H12N3O3+·Br, reveals near co-planarity between the the imidazole and 4-nitro­benzene moieties with a dihedral angle of 8.99 (14)° between their planes. A prominent feature in the mol­ecular packing is the bromide anion acting as a double acceptor for O—H⋯Br and C—H⋯Br hydrogen-bonds, leading to a linear chain propagating along [110]. The crystal studied was refined as an inversion twin, with the minor component = 0.081 (8).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title crystal is an imidazolium bromide salt based on a 1-(4-nitro­phen­yl)-1H-imidazol-3-yl moiety (Ibrahim & Bala, 2016[Ibrahim, H. & Bala, M. D. (2016). New J. Chem. 40, 6986-6997.]; Illam et al., 2021[Illam, P. M., Singh, V. K. & Rit, A. (2021). J. Organomet. Chem. 951, 122008.]), which is functionalized at the 1,3-diazole wingtip with a 2-hy­droxy­ethyl group. Unlike analogues with a fused 1H-benzo[d] backbone (Kumar et al., 2015[Kumar, R., Sandhu, S., Hundal, G., Singh, P., Walia, A., Vanita, V. & Kumar, S. (2015). Org. Biomol. Chem. 2015, 1345, 11129-11139.]), derivatives of the title salt with the 1H-imidazol-3-yl moiety do not show any potential as chemodosimeters. The incorporation of oxygen-containing functionalities in the design of these imidazolium salts is motivated by the desire to increase the solubility of the ligand/precursor in common solvents (Garrison & Young, 2005[Garrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978-4008.]), and, upon coordination, to enhance the electron density around the metal, thereby stabilizing the metal center during a catalytic cycle (Simpson et al., 2015[Simpson, P. V., Brown, D. H., Skelton, B. W., White, A. H. & Baker, M. V. (2015). J. Incl Phenom. Macrocycl Chem. 82, 79-91.]). We recently explored the potential of such NO2-functionalized imidazolyl­idene–CoII/NiII complexes as viable green catalysts for aryl C—N coupling reactions of aryl amines with aryl bromides (Ibrahim & Bala, 2016[Ibrahim, H. & Bala, M. D. (2016). New J. Chem. 40, 6986-6997.]). In a continuation of this work designed to develop new derivatives with superior catalytic abilities, the title compound was synthesized and analyzed by X-ray crystallography.

The asymmetric unit of the title salt comprises an imidazolyl cation and a bromide anion (Fig. 1[link]). The conformation of the cationic species is such that the dihedral angle between the imidazole and 4-nitro­benzene planes is 8.99 (14)° while the orientation of the ethanolyl side is almost orthogonal with respect to the imidazole plane [C7—N3—C10—C11 torsion angle = 95.1 (4)°]. A prominent feature of the mol­ecular packing relates to the bromide anion acting as a double acceptorm with the hydroxyl-H1 atom and the H3 atom of a neighboring 4-nitro­phenyl moiety to form a linear supra­molecular chain propagatingalong [[\overline{1}]10] (Table 1[link]; Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Br1 0.84 2.42 3.2509 (19) 171
C3—H3⋯Br1i 0.95 2.71 3.572 (2) 151
Symmetry code: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 1]
Figure 1
The asymmetric unit of the title compound showing the atom-labeling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2]
Figure 2
Representation of inter­molecular O1—H1⋯Br1 and C3—H3⋯Br1 hydrogen bonds (brown dotted bonds) within the crystal of the title compound.

Synthesis and crystallization

The title compound was synthesized with a slight modification of the reported protocol (Ibrahim & Bala, 2016[Ibrahim, H. & Bala, M. D. (2016). New J. Chem. 40, 6986-6997.]). A mixture of N-p-nitro­phenyl imidazole (0.5 g, 0.003 mol) and 2-bromo­ethanol (0.56 g, 0.005 mol; 0.35 ml, ρ = 1.76 g cm−3, 95%) was refluxed overnight in aceto­nitrile under an inert di­nitro­gen atmosphere. Removal of the solvent followed by washing with ethyl acetate afforded a yellow precipitate, which yielded the title salt as an air-stable yellow solid after drying in vacuo. Slow diffusion of diethyl ether into a methano­lic solution of the isolated title salt afforded suitable single crystals for the X-ray diffraction analysis. Yield: 0.70 g, 0.002 mol, 85.7%. m.p. 475–477 K. 1H NMR (400 MHz, DMSO-d6): δ 10.03 (s, 1H, NCHN), 8.52 (d, J = 9.0 Hz, 2H, CH(phen­yl)), 8.47 (d, J = 1.6 Hz, 1H, CH(imidazol­yl)), 8.11 (d, J = 9.1 Hz, 2H, CH(benz­yl)), 8.06 (s, 1H, CH(imidazol­yl)), 4.33 (t, J = 10.0 Hz, 2H, CH2(ethano­yl)), 3.84 (t, J = 10.0 Hz, 2H, CH2(hy­droxy­ethy), 3.35 (s, b, 1H, OH(hy­droxy­eth­yl)). 13C NMR (100 MHz, DMSO-d6): δ 147.5 (NCN), 139.2, 136.4, 125.6, 124.1, 122.9, 120.9, 59.1 (CH2), 52.4 (CH2). FTIR (ν(O—H) 3243, ν(aryl C—H) 3090, ν(alkyl C—H) 2958, ν(C=N) 1552, ν(NO2) 1522 & 1341, ν(C—O) 1222, ν(phen­yl) 854 cm−1. LRMS-ES+: m/z (%) 234.0550 (100) [(M − Br)]+.

Refinement

Table 2[link] provides a summary of the crystal data, data collection and structure refinement details. The structure was refined as an inversion twin, with the minor component = 0.081 (8).

Table 2
Experimental details

Crystal data
Chemical formula C11H12N3O3+·Br
Mr 314.15
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 6.4352 (4), 12.2697 (11), 15.5936 (10)
β (°) 90.290 (3)
V3) 1231.22 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.34
Crystal size (mm) 0.38 × 0.21 × 0.14
 
Data collection
Diffractometer Bruker SMART APEXII area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.661, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9019, 3051, 2930
Rint 0.019
(sin θ/λ)max−1) 0.673
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.037, 1.03
No. of reflections 3051
No. of parameters 165
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.23
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.081 (8)
Computer programs: COSMO and SAINT (Bruker, 2010[Bruker (2010). COSMO and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2013 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

(I) top
Crystal data top
C11H12N3O3+·BrF(000) = 632
Mr = 314.15Dx = 1.695 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 6.4352 (4) ÅCell parameters from 6616 reflections
b = 12.2697 (11) Åθ = 3.3–28.5°
c = 15.5936 (10) ŵ = 3.34 mm1
β = 90.290 (3)°T = 100 K
V = 1231.22 (16) Å3Slab, light yellow
Z = 40.38 × 0.21 × 0.14 mm
Data collection top
Bruker SMART APEXII area detector
diffractometer
2930 reflections with I > 2σ(I)
Detector resolution: 7.9 pixels mm-1Rint = 0.019
ω and φ scansθmax = 28.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 88
Tmin = 0.661, Tmax = 0.746k = 1616
9019 measured reflectionsl = 2020
3051 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.017H-atom parameters constrained
wR(F2) = 0.037 w = 1/[σ2(Fo2) + (0.0076P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3051 reflectionsΔρmax = 0.36 e Å3
165 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.081 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.52235 (5)0.56771 (2)0.24805 (3)0.01782 (6)
C20.6133 (4)0.2573 (2)0.12029 (17)0.0170 (5)
H20.5882840.2364410.1779960.020*
O21.1242 (3)0.15187 (18)0.01212 (14)0.0336 (6)
O10.2180 (3)0.45365 (14)0.38751 (12)0.0204 (4)
H10.2981290.4758580.3489260.031*
C110.0084 (5)0.4666 (3)0.3601 (2)0.0178 (7)
H11A0.0075130.5388030.3325400.021*
H11B0.0834430.4647050.4107820.021*
C100.0603 (5)0.3781 (2)0.29685 (18)0.0165 (6)
H10A0.0352310.3054230.3223810.020*
H10B0.2111780.3852820.2853810.020*
N30.0538 (4)0.38742 (19)0.21627 (15)0.0140 (5)
C70.2242 (4)0.33242 (19)0.19668 (16)0.0160 (5)
H70.2879580.2785300.2317550.019*
N20.2926 (3)0.36462 (15)0.11964 (13)0.0141 (4)
C10.4742 (4)0.32634 (19)0.07739 (15)0.0145 (5)
C30.7879 (4)0.2196 (2)0.07779 (17)0.0185 (5)
H30.8831620.1719700.1055830.022*
C40.8207 (3)0.2526 (2)0.00536 (18)0.0164 (5)
N11.0073 (4)0.21336 (18)0.05093 (16)0.0229 (5)
O31.0345 (4)0.24477 (17)0.12456 (14)0.0306 (5)
C80.0106 (6)0.4587 (3)0.1501 (2)0.0178 (7)
H80.1023400.5084930.1477180.021*
C60.5101 (4)0.3571 (2)0.00708 (17)0.0182 (6)
H60.4141630.4032710.0359650.022*
C50.6850 (4)0.3206 (2)0.04886 (17)0.0193 (5)
H50.7118340.3416690.1063640.023*
C90.1575 (4)0.44526 (18)0.08943 (17)0.0168 (5)
H90.1669870.4832190.0364990.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01789 (10)0.01860 (10)0.01696 (10)0.00135 (15)0.00015 (7)0.00074 (15)
C20.0190 (14)0.0193 (12)0.0127 (12)0.0002 (11)0.0003 (11)0.0011 (9)
O20.0239 (12)0.0384 (13)0.0386 (14)0.0131 (10)0.0002 (10)0.0074 (10)
O10.0181 (9)0.0268 (9)0.0163 (9)0.0040 (7)0.0012 (7)0.0031 (7)
C110.0188 (16)0.0178 (14)0.0169 (15)0.0021 (12)0.0021 (12)0.0041 (12)
C100.0163 (14)0.0203 (14)0.0130 (13)0.0032 (11)0.0056 (11)0.0004 (11)
N30.0143 (12)0.0110 (10)0.0167 (11)0.0017 (9)0.0034 (9)0.0022 (8)
C70.0169 (13)0.0154 (11)0.0157 (12)0.0011 (9)0.0011 (9)0.0000 (9)
N20.0153 (10)0.0128 (9)0.0144 (10)0.0004 (8)0.0006 (8)0.0001 (7)
C10.0143 (12)0.0127 (11)0.0165 (13)0.0017 (9)0.0018 (10)0.0033 (9)
C30.0176 (13)0.0158 (12)0.0219 (13)0.0014 (10)0.0021 (10)0.0017 (10)
C40.0134 (15)0.0148 (10)0.0211 (12)0.0034 (12)0.0045 (12)0.0060 (9)
N10.0181 (12)0.0186 (11)0.0320 (14)0.0028 (9)0.0050 (10)0.0081 (10)
O30.0319 (13)0.0271 (11)0.0329 (12)0.0010 (9)0.0190 (10)0.0008 (9)
C80.0196 (16)0.0170 (14)0.0170 (15)0.0008 (12)0.0011 (12)0.0026 (11)
C60.0178 (14)0.0189 (13)0.0180 (14)0.0042 (11)0.0007 (11)0.0037 (10)
C50.0226 (14)0.0194 (12)0.0159 (12)0.0037 (10)0.0034 (10)0.0009 (10)
C90.0182 (12)0.0143 (11)0.0179 (13)0.0018 (9)0.0006 (10)0.0022 (9)
Geometric parameters (Å, º) top
C2—H20.9500C7—N21.341 (3)
C2—C11.400 (3)N2—C11.424 (3)
C2—C31.387 (4)N2—C91.398 (3)
O2—N11.224 (3)C1—C61.391 (3)
O1—H10.8400C3—H30.9500
O1—C111.421 (4)C3—C41.376 (4)
C11—H11A0.9900C4—N11.479 (3)
C11—H11B0.9900C4—C51.383 (4)
C11—C101.530 (4)N1—O31.225 (3)
C10—H10A0.9900C8—H80.9500
C10—H10B0.9900C8—C91.351 (5)
C10—N31.463 (3)C6—H60.9500
N3—C71.325 (3)C6—C51.378 (4)
N3—C81.379 (4)C5—H50.9500
C7—H70.9500C9—H90.9500
C1—C2—H2120.3C2—C1—N2120.2 (2)
C3—C2—H2120.3C6—C1—C2120.5 (2)
C3—C2—C1119.4 (2)C6—C1—N2119.3 (2)
C11—O1—H1109.5C2—C3—H3120.6
O1—C11—H11A109.1C4—C3—C2118.7 (2)
O1—C11—H11B109.1C4—C3—H3120.6
O1—C11—C10112.7 (3)C3—C4—N1119.1 (2)
H11A—C11—H11B107.8C3—C4—C5122.7 (2)
C10—C11—H11A109.1C5—C4—N1118.2 (2)
C10—C11—H11B109.1O2—N1—C4117.5 (2)
C11—C10—H10A109.5O2—N1—O3124.6 (3)
C11—C10—H10B109.5O3—N1—C4117.9 (2)
H10A—C10—H10B108.1N3—C8—H8126.0
N3—C10—C11110.7 (2)C9—C8—N3107.9 (3)
N3—C10—H10A109.5C9—C8—H8126.0
N3—C10—H10B109.5C1—C6—H6120.0
C7—N3—C10125.3 (2)C5—C6—C1120.0 (2)
C7—N3—C8108.3 (3)C5—C6—H6120.0
C8—N3—C10126.3 (3)C4—C5—H5120.7
N3—C7—H7125.3C6—C5—C4118.6 (2)
N3—C7—N2109.4 (2)C6—C5—H5120.7
N2—C7—H7125.3N2—C9—H9126.7
C7—N2—C1126.3 (2)C8—C9—N2106.7 (2)
C7—N2—C9107.7 (2)C8—C9—H9126.7
C9—N2—C1126.0 (2)
C2—C1—C6—C50.8 (4)N2—C1—C6—C5179.9 (2)
C2—C3—C4—N1179.6 (2)C1—C2—C3—C40.8 (4)
C2—C3—C4—C51.0 (4)C1—N2—C9—C8178.1 (2)
O1—C11—C10—N366.2 (3)C1—C6—C5—C40.6 (4)
C11—C10—N3—C795.1 (4)C3—C2—C1—N2179.2 (2)
C11—C10—N3—C880.8 (3)C3—C2—C1—C60.0 (4)
C10—N3—C7—N2177.1 (2)C3—C4—N1—O20.6 (3)
C10—N3—C8—C9177.1 (2)C3—C4—N1—O3179.2 (2)
N3—C7—N2—C1178.5 (2)C3—C4—C5—C60.2 (4)
N3—C7—N2—C90.4 (3)N1—C4—C5—C6179.7 (2)
N3—C8—C9—N20.3 (3)C8—N3—C7—N20.6 (3)
C7—N3—C8—C90.6 (3)C5—C4—N1—O2178.9 (2)
C7—N2—C1—C27.5 (3)C5—C4—N1—O31.4 (4)
C7—N2—C1—C6171.7 (2)C9—N2—C1—C2170.3 (2)
C7—N2—C9—C80.1 (3)C9—N2—C1—C610.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br10.842.423.2509 (19)171
C3—H3···Br1i0.952.713.572 (2)151
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

The authors would like to thank the University of KwaZulu-Natal for the research facilities. DUT/HANT is acknowledged for funding the postdoctoral fellowship of HI.

References

First citationBruker (2010). COSMO and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarrison, J. C. & Youngs, W. J. (2005). Chem. Rev. 105, 3978–4008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIbrahim, H. & Bala, M. D. (2016). New J. Chem. 40, 6986–6997.  CrossRef CAS Google Scholar
First citationIllam, P. M., Singh, V. K. & Rit, A. (2021). J. Organomet. Chem. 951, 122008.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, R., Sandhu, S., Hundal, G., Singh, P., Walia, A., Vanita, V. & Kumar, S. (2015). Org. Biomol. Chem. 2015, 1345, 11129–11139.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimpson, P. V., Brown, D. H., Skelton, B. W., White, A. H. & Baker, M. V. (2015). J. Incl Phenom. Macrocycl Chem. 82, 79–91.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146