metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[di­phenyl­tin(IV)]-di-μ-iso­thio­cyanato]: an unprecedented layered coordination polymer resulting from bridging κ2N:S thio­cyanato ligands

crossmark logo

aChemistry, Osnabrück University, Barabarstr. 7, 49069 Osnabrück, Germany
*Correspondence e-mail: hreuter@uos.de

(Received 11 November 2024; accepted 12 November 2024; online 19 November 2024)

In the title compound, di­phenyl­tin(IV) diiso­thio­cyanate, [Sn(NCS)2(C6H5)2]n or Ph2Sn(NCS)2, comparatively long tin–nitro­gen and short tin–sulfur bonds prove that the ambidentate iso­thio­cyanate ion acts as a bridge between two neighboring, octa­hedrally coordinated tin atoms. As a result, the mol­ecules lose their individuality in favor of a layered coordination polymer that represents a new type of mol­ecular inter­actions in the structural chemistry of diorganotin(IV) dihalides/pseudohalides. The tin atom is located on a center of inversion.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The thio­cyanate anion, NCS, behaves like a typical pseudohalide anion consisting of a linear arrangement of three atoms and closed valence electron shells at both terminal atoms. As a mono anion, it often can replace spherical halogen atoms, whereby its dumbbell shape inevitably leads to new structural motifs. In addition, the thio­cyanate ion may act – in according with the HSAB-principle – as an ambidentate ligand that can coordinate to hard metal atoms via the small and hard nitro­gen atom (designation: iso­thio­cyanate) as well as to soft metal atoms via the large and soft sulfur atom (designation: thio­cyanate). In this context, it may coordinate to metal atoms as a monodentate (κ1N) or a bridging (κ2NS) ligand.

As the tin atom in diorganotin(IV) diiso­thio­cyanates, R2Sn(NCS)2, belongs to the hard metal atoms the NCS ligands should bind via the nitro­gen atoms to the tin atom in this class of compound, an assumption that was confirmed by the single-crystal structure determinations of the methyl (R = Me, Chow, 1970[Chow, Y. M. (1970). Inorg. Chem. 9, 794-796.]; Forder & Sheldrick, 1970[Forder, R. A. & Sheldrick, G. M. (1970). J. Organomet. Chem. 22, 611-617.]; Britton, 2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.]) and ethyl (R = Et, Britton, 2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.]) compounds. These structure determinations reveal isolated R2Sn(NCS)2 mol­ecules with both R moieties being mutually trans, and small [86.09 (6)°/83.57 (4)°] angles between the thio­cyanate groups. Although the inter­molecular Sn⋯S inter­actions are weak [3.1465 (7)/3.0598 (7) Å; Britton, 2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.]], the mol­ecules tend to associate resulting in their chain-like arrangement with linear orientation of the dipole moments.

Here, we present the crystal structure determination of di­phenyl­tin(IV) di­thio­cyanate, Ph2Sn(NCS)2, revealing a new type of association resulting from strong Sn⋯S inter­actions and bridging thio­cyanate groups. The title compound has been known for a long time (Mullins & Curran, 1968[Mullins, A. M. & Curran, C. (1968). Inorg. Chem. 7, 2784-2588.]) and has been intensively studied by IR (Mullins & Curran, 1968[Mullins, A. M. & Curran, C. (1968). Inorg. Chem. 7, 2784-2588.]; Srivastava & Agarwal, 1970[Srivastava, T. N. & Agarwal, M. P. (1970). J. Inorg. Nucl. Chem. 32, 3416-3419.]), NMR (Srivastava & Srivastava, 1985[Srivastava, P. C. & Srivastava, S. K. (1985). Spectrochim. Acta A, 41, 687-690.]) and Mössbauer (Mullins & Curran, 1968[Mullins, A. M. & Curran, C. (1968). Inorg. Chem. 7, 2784-2588.]) spectroscopy, especially with respect to the functionality of the thio­cyanate group and the orientation of the phenyl groups.

The title compound crystallizes in the ortho­rhom­bic space group Pbca with four formula units in the unit cell. The asymmetric unit comprises half a formula unit with the tin atom on a center of inversion and a bridging thio­cyanato ligand, Fig. 1[link]. In the resulting, all-trans configured, octa­hedral tin coordination polyhedron all dipole moments cancel each other out so that the mol­ecules lose their individuality in favor of a two-dimensional coordination polymer.

[Figure 1]
Figure 1
Ball-and-stick model of the centrosymmetric, octa­hedral tin environment in the crystal of Ph2Sn(NCS)2 with atom numbering given for the asymmetric unit. With exception of the hydrogen atoms, which are shown as spheres of arbitrary radius, all other atoms are drawn as displacement ellipsoids at the 40% probability level. The strong dative, sulfur–tin bonds are represented as shortened, dashed sticks.

The inter­nal [d(C—C)mean = 1.394 (7) Å, 〈(C—C—C)mean = 120.0 (4)°] structural parameters of the almost [Δleast-squares plane = ±0.002 (2) Å] planar phenyl group are unspectacular. As usual (Domenicano et al., 1983[Domenicano, A., Murray-Rust, P. & Vaciago, A. (1983). Acta Cryst. B39, 457-468.]), the inter­nal C—C—C bond angle at the ipso carbon atom is the smallest angle [119.4 (2)°]. The tin–carbon distance of 2.128 (4) Å compares very well with the corresponding values in the methyl [2.099 (2) Å] and ethyl [2.126 (2) Å] structures as well as with those [2.128 (5), 2.147 (6) Å] of the two crystallographic independent mol­ecules in the octa­hedral, centrosymmetric Ph2Sn(NCS)2·2(Me2N)3PO complex (Onyszchuk et al., 1987[Onyszchuk, M., Wharf, I., Simard, M. & Beauchamp, A. L. (1987). J. Organomet. Chem. 326, 25-34.]) with the phenyl groups in trans positions. It is noteworthy that the corresponding values in the bi­pyridine complex Ph2Sn(NCS)2(bipy) (Gabe et al., 1982[Gabe, E. J., Prasad, L., Le Page, Y. & Smith, F. E. (1982). Acta Cryst. B38, 256-258.]), with the phenyl moieties in the cis position [〈(C—Sn—C) = 106.3°] are significantly longer [2.160 (1), 2.182 (1) Å]. A noteworthy feature in the structural chemistry of diorganotin(IV) di­thio­cyanates relates to the bond angle between the two ipso-carbon atoms that is exactly linear in contrast to the situation in the methy and ethyl compounds where the bond angles are 147.6 (1) and 153.0 (1)°, respectively (Britton, 2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.]).

Regarding the thio­cyanate group (Fig. 2[link]), the statements on its linearity, extensive rigidity of intra­molecular bond lengths, and bonding preferences were described in the recent review article on Inorganic Metal Thio­cyanates (Cliffe, 2024[Cliffe, M. J. (2024). Inorg. Chem. 63, 13137-13156.]) and can be accepted without reservation (Table 1[link]): the deviation from linearity [177.3 (2)°] is indeed more expressed than in the methyl [179.5 (2)°] and ethyl compound [179.8 (2)°] (Britton, 2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.]). On the other hand, the carbon–nitro­gen bond is experimentally equivalent [1.154 (2) Å] but the carbon–sulfur bond [1.647 (2)] significantly longer than in the methyl [1.159 (2)/1.615 (2) Å] and ethyl structures [1.158 (2)/1.619 (2) Å] (Britton, 2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.]). These values correspond very well with a carbon–nitro­gen triple [d(Csp≡N) = 1.155 (12) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.])] and a carbon–sulfur single [d(Csp—S) = 1.630 (14) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.])] bond.

Table 1
Selected geometric parameters (Å, °)

Sn1—N1 2.284 (2) N1—C1 1.154 (2)
Sn1—S1i 2.7224 (5) C1—S1 1.647 (2)
       
C1—N1—Sn1 163.5 (2) N1—C1—S1 177.3 (2)
C1—S1—Sn1ii 100.31 (6)    
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Ball-and-stick model of the thio­cyanate group in the crystal structure of Ph2Sn(NCS)2 with bond lengths (Å), bond and dihedral angles (°). All atoms are drawn as displacement ellipsoids at the 40% probability level. Nitro­gen–tin and sulfur–tin bonds are indicated by shortened sticks, planes defining the dihedral angle are shown in gray.

The extent of inter­actions with the tin atom is unique: the tin–nitro­gen bonds [d(Sn—N) = 2.284 (2) Å] are considerable longer [+0.155/+0.132 Å] and the tin-sulfur inter­actions [d(Sn—S) = 2.7224 (5) Å] significant shorter [−0.425/−0.338 Å] than in the methyl and ethyl structures (Britton, 2006[Britton, D. (2006). Acta Cryst. C62, m93-m94.]). Since the tin atom lies on a center of symmetry, it is surrounded by two sulfur atoms that are exactly trans to each other while they are cis with bonding angles of 86.09 (6)° [R = Me] and 83.57 (4)° [R = Et]. The orientation of the bridging thio­cyanate ion in the coordination sphere of the tin atom is characterized by a Sn—N—C bond angle of 163.45 (15)° [164.2 (1)°/164.5 (1)°, Me/Et] and a Sn—S—C bond angle of 100.31 (6)° [91.83 (6)°/91.92 (6)°, Me/Et], while the torsion angle Sn—N(C)S—Sn′ amounts to 89.6 (2)°, but 0° and 15.9 (2)°, respectively, in the methyl and ethyl structures. In summary, this strong bridging function of the thio­cyanate ions leads to a layer structure of {SnR2N2S2}-octa­hedra corner-linked via the thio­cyanate groups as spacers (Fig. 3[link]). Their orientation in relation to the plane of the tin atoms is given by a distance of ±0.331 (2) Å of the nitro­gen and ±1.3679 (4) Å of the sulfur atom. The angle between the plane and the NCS-dumbbells is 22.74 (4)° (Fig. 4[link]). The layers are stacked in the direction of the c axis in such a way that the tips of the phenyl residues of one layer fall into the bulges of the other.

[Figure 3]
Figure 3
Combined ball-and-stick and polyhedron model visualizing the spacer function of the thio­cyanate groups in the layers of Ph2Sn(NCS)2 in detail. For the sake of clarity, the phenyl groups are only indicated by the ipso-carbon atoms and their bonds. Unit cell in red, atom color codes: S = yellow, N = blue, carbon = dark gray.
[Figure 4]
Figure 4
Space-filling model (top view looking down the c axis = above, side view looking down the b axis = below) of the layers in Ph2Sn(NCS)2. Atom color codes: S = yellow, N = blue, C = dark gray, H = white, tin = bronze; unit cell in red.

In the structure chemistry of the diorganotin(IV) dihalides, R2SnHal2, a similar type of (001) layer structure is only known from di­methyl­tin(IV) difluoride, Me2SnF2, for which a tetra­gonal unit cell is reported in the literature (Schlemper & Hamilton, 1966[Schlemper, E. O. & Hamilton, W. C. (1966). Inorg. Chem. 5, 995-998.]), in which {Me2SnF4/2} octa­hedra are linked via the fluorine atoms to planar Sn—F layers.

Synthesis and crystallization

For the synthesis from sodium thio­cyanate and di­phenyl­tin(IV) dichloride in ethanol (mole ratio 1:2), elemental analysis, and melting point see Mullins & Curran (1968[Mullins, A. M. & Curran, C. (1968). Inorg. Chem. 7, 2784-2588.]), Srivastava & Agarwal (1970[Srivastava, T. N. & Agarwal, M. P. (1970). J. Inorg. Nucl. Chem. 32, 3416-3419.]). Colorless, plate-like single crystals were obtained by recrystallization from ethanol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Sn(NCS)2(C6H5)2]
Mr 389.05
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 9.4438 (4), 7.9296 (3), 18.6153 (8)
V3) 1394.02 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.12
Crystal size (mm) 0.25 × 0.14 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.454, 0.712
No. of measured, independent and observed [I > 2σ(I)] reflections 32393, 1689, 1453
Rint 0.078
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.08
No. of reflections 1689
No. of parameters 90
H-atom treatment Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.42, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2019).]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

catena-Poly[[diphenyltin(IV)]-di-µ-isothiocyanato] top
Crystal data top
[Sn(NCS)2(C6H5)2]Dx = 1.854 Mg m3
Mr = 389.05Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 8887 reflections
a = 9.4438 (4) Åθ = 4.0–29.5°
b = 7.9296 (3) ŵ = 2.12 mm1
c = 18.6153 (8) ÅT = 100 K
V = 1394.02 (10) Å3Plate, colourless
Z = 40.25 × 0.14 × 0.09 mm
F(000) = 760
Data collection top
Bruker APEXII CCD
diffractometer
1453 reflections with I > 2σ(I)
φ and ω scansRint = 0.078
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.0°, θmin = 3.1°
Tmin = 0.454, Tmax = 0.712h = 1212
32393 measured reflectionsk = 1010
1689 independent reflectionsl = 2424
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullOnly H-atom displacement parameters refined
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0174P)2 + 1.1927P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.42 e Å3
1689 reflectionsΔρmin = 0.37 e Å3
90 parametersExtinction correction: SHELXL2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0036 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.00000.50000.01193 (9)
C110.55455 (19)0.1194 (2)0.59859 (9)0.0141 (3)
C120.4693 (2)0.2473 (2)0.62674 (10)0.0196 (4)
H120.38900.28550.60070.026 (3)*
C130.5021 (2)0.3190 (3)0.69315 (11)0.0224 (5)
H130.44290.40430.71270.026 (3)*
C140.6209 (2)0.2660 (2)0.73066 (10)0.0231 (4)
H140.64290.31460.77590.026 (3)*
C150.7072 (2)0.1425 (2)0.70216 (10)0.0215 (4)
H150.78970.10800.72750.026 (3)*
C160.6741 (2)0.0678 (2)0.63639 (10)0.0178 (4)
H160.73320.01820.61740.026 (3)*
N10.26755 (17)0.0675 (2)0.51778 (9)0.0187 (3)
C10.16417 (19)0.1262 (2)0.53937 (9)0.0145 (3)
S10.01711 (5)0.20384 (6)0.57348 (2)0.01715 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.00918 (14)0.01226 (12)0.01434 (12)0.00020 (5)0.00024 (6)0.00147 (5)
C110.0133 (9)0.0142 (7)0.0147 (7)0.0028 (7)0.0004 (7)0.0003 (6)
C120.0177 (9)0.0187 (9)0.0223 (9)0.0003 (8)0.0012 (8)0.0037 (7)
C130.0251 (12)0.0182 (9)0.0238 (9)0.0031 (7)0.0092 (8)0.0059 (8)
C140.0345 (12)0.0208 (9)0.0141 (8)0.0086 (8)0.0036 (8)0.0001 (7)
C150.0262 (11)0.0199 (9)0.0184 (9)0.0035 (8)0.0052 (8)0.0034 (7)
C160.0187 (10)0.0155 (8)0.0192 (9)0.0009 (7)0.0014 (7)0.0005 (7)
N10.0128 (9)0.0200 (8)0.0233 (7)0.0014 (7)0.0003 (7)0.0021 (7)
C10.0158 (9)0.0128 (8)0.0150 (8)0.0020 (7)0.0028 (7)0.0002 (6)
S10.0156 (2)0.0168 (2)0.0191 (2)0.00447 (17)0.00561 (17)0.00345 (17)
Geometric parameters (Å, º) top
Sn1—C11i2.128 (2)C12—C131.395 (3)
Sn1—C112.128 (2)C13—C141.387 (3)
Sn1—N1i2.284 (2)C14—C151.380 (3)
Sn1—N12.284 (2)C15—C161.395 (2)
Sn1—S1ii2.7224 (5)N1—C11.154 (2)
Sn1—S1iii2.7224 (5)C1—S11.647 (2)
C11—C161.392 (3)S1—Sn1iv2.7225 (5)
C11—C121.397 (3)
C11i—Sn1—C11180.00 (8)N1—Sn1—S1iii85.85 (4)
C11i—Sn1—N1i90.19 (6)S1ii—Sn1—S1iii180.0
C11—Sn1—N1i89.81 (6)C16—C11—C12119.4 (2)
C11i—Sn1—N189.81 (6)C16—C11—Sn1120.1 (1)
C11—Sn1—N190.19 (6)C12—C11—Sn1120.5 (1)
N1i—Sn1—N1180.00 (2)C13—C12—C11120.1 (2)
C11i—Sn1—S1ii92.02 (5)C14—C13—C12120.1 (2)
C11—Sn1—S1ii87.98 (5)C15—C14—C13120.0 (2)
N1i—Sn1—S1ii85.85 (4)C14—C15—C16120.4 (2)
N1—Sn1—S1ii94.15 (4)C11—C16—C15120.1 (2)
C11i—Sn1—S1iii87.98 (5)C1—N1—Sn1163.5 (2)
C11—Sn1—S1iii92.02 (5)C1—S1—Sn1iv100.31 (6)
N1i—Sn1—S1iii94.15 (4)N1—C1—S1177.3 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z+1.
 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony for funding the diffractometer and acknowledge support by the Deutsche Forschungsgemeinschaft (DFG).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2019).  Google Scholar
First citationBritton, D. (2006). Acta Cryst. C62, m93–m94.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChow, Y. M. (1970). Inorg. Chem. 9, 794–796.  CSD CrossRef CAS Web of Science Google Scholar
First citationCliffe, M. J. (2024). Inorg. Chem. 63, 13137–13156.  CrossRef PubMed Google Scholar
First citationDomenicano, A., Murray-Rust, P. & Vaciago, A. (1983). Acta Cryst. B39, 457–468.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationForder, R. A. & Sheldrick, G. M. (1970). J. Organomet. Chem. 22, 611–617.  CSD CrossRef CAS Web of Science Google Scholar
First citationGabe, E. J., Prasad, L., Le Page, Y. & Smith, F. E. (1982). Acta Cryst. B38, 256–258.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMullins, A. M. & Curran, C. (1968). Inorg. Chem. 7, 2784–2588.  Google Scholar
First citationOnyszchuk, M., Wharf, I., Simard, M. & Beauchamp, A. L. (1987). J. Organomet. Chem. 326, 25–34.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchlemper, E. O. & Hamilton, W. C. (1966). Inorg. Chem. 5, 995–998.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSrivastava, P. C. & Srivastava, S. K. (1985). Spectrochim. Acta A, 41, 687–690.  CrossRef Google Scholar
First citationSrivastava, T. N. & Agarwal, M. P. (1970). J. Inorg. Nucl. Chem. 32, 3416–3419.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146