organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,4-Di­chloro-6-{N-[2-(tri­fluoro­meth­yl)phen­yl]carboximido­yl}phenol

crossmark logo

aDepartment of Chemical Sciences, University of Johannesburg, 2006, South Africa
*Correspondence e-mail: xantini.z@gmail.com

Edited by S. Parkin, University of Kentucky, USA (Received 23 September 2024; accepted 6 November 2024; online 14 November 2024)

The title compound, C14H8Cl2F3NO, was synthesized by the condensation between tri­fluoro­methyl­aniline and di­chloro­salicyl­aldehyde by nucleophilic addition, forming a hemiaminal, followed by a dehydration to generate an imine. The compound crystallizes in an ortho­rhom­bic Pbca (Z = 8) space group with a dihedral angle of 44.70 (5)° between the two aromatic rings. In the crystal, the mol­ecules pack together to form a zigzag pattern along the c axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff base compounds have been synthesized since their discovery in 1864 (Tidwell, 2008[Tidwell, T. T. (2008). Angew. Chem. Int. Ed. 47, 1016-1020.]), and have shown good viability as ligands in Schiff base–metal complexes (Ngan et al., 2011[Ngan, N. K., Lo, K. M. & Wong, C. S. R. (2011). Polyhedron, 30, 2922-2932.]). Their versatility is attributed to the extensive range of potential ligand structures, which are dependent on the selection of aldehydes and amines (More et al., 2019[More, M. S., Joshi, P. G., Mishra, Y. K. & Khanna, P. K. (2019). Mater. Today Chem., 14, 100195.]) as starting reagents, with possibilities including bidentate, tridentate and tetra­dentate ligands. The synthesis typically involves condensation of primary amines and carbonyl compounds by nucleophilic addition, forming a hemiaminal, followed by a dehydration to generate an imine (Tovrog et al., 1976[Tovrog, B. S., Kitko, D. J. & Drago, R. S. (1976). J. Am. Chem. Soc. 98, 5144-5153.]; Maihub et al., 2013[Maihub, A. A., El-ajaily, M. M., Abou-Krisha, M. M., Etorki, M. A. & Alassbaly, F. S. (2013). J. Chem. Pharm. Res. 12, 933-938.]; da Silva et al., 2011[Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A. & Martins, C. V. B. de Fátima (2011). J. Adv. Res. 2, 1-8.]). The generated azomethine (C=N) dominates the properties of Schiff bases as the most important part in the Schiff base body (Maihub et al., 2013[Maihub, A. A., El-ajaily, M. M., Abou-Krisha, M. M., Etorki, M. A. & Alassbaly, F. S. (2013). J. Chem. Pharm. Res. 12, 933-938.]), and these have shown to be important for a wide range of applications in biological applications such as anti- bacterial and anti-fungal activities (Tovrog et al., 1976[Tovrog, B. S., Kitko, D. J. & Drago, R. S. (1976). J. Am. Chem. Soc. 98, 5144-5153.]; Dhar & Taploo, 1982[Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Res. 41, 501-506.]). As part of ongoing research in our group, we report here the synthesis and a crystal structure of a Schiff base ligand derived from di­chloro­salicyl­aldehyde and 2-tri­fluoro­methyl­aniline.

The title compound (Fig. 1[link]) crystallizes in the Pbca (Z = 8) space group with mol­ecules on general positions. The bond length for the azomethine group [N1—C8 = 1.274 (2) Å] suggest the presence of double-bond character as anti­cipated. The dihedral angle of 44.70 (5)° between the aromatic rings is predominantly attributed to the intra­molecular O—H⋯N and inter­molecular C—H⋯O hydrogen bonding (see Table 1[link]). The mol­ecules pack together to form a zigzag pattern along the c axis (see Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 (2) 1.86 (2) 2.6111 (18) 152 (2)
C14—H14⋯O1i 0.93 2.67 3.515 (2) 151
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
An ellipsoid plot of the title compound with the atom-labelling scheme and displacement ellipsoids drawn at 50% probability level. H atoms are shown as small circles of arbitrary radius.
[Figure 2]
Figure 2
The crystal packing of the title compound, showing the layered packing arrangement, viewed along the c axis.

Synthesis and crystallization

2-Tri­fluoro­methyl­aniline (1.0740 g, 20 mmol) and di­chloro­salicyl­aldehyde (1.2662 g, 20 mmol) were refluxed in 10 ml of methanol overnight to give an orange solution. The volume of methanol was reduced, which resulted in an orange precipitate. Orange crystals were obtained by slow evaporation of a methanol solution. Yield 70.16%, 1.5578 g, 4.679 mmol; m.p. 140–143°C; IR (KBr, cm−1): ν (Ar—OH) 3086; ν (C=N) 1612; ν (C—O) 1273. 1H NMR (DMSO-d6 in p.p.m, J in Hz): δ = 13.49 [1H (s), OH], 9.05 [1H (s), H5], 7.85 [2H (d, J = 10), H1, H2,], 7.81 [2H (s), H1,H8], 7.67 [1H, (d, J = 10), H7], 7.57 [1H, (t, J = 5)].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C14H8Cl2F3NO
Mr 334.11
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 7.8436 (3), 13.8612 (4), 25.8433 (7)
V3) 2809.73 (15)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.38 × 0.22 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.680, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 27956, 3353, 2679
Rint 0.040
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.111, 1.06
No. of reflections 3353
No. of parameters 194
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

2,4-Dichloro-6-{N-[2-(trifluoromethyl)phenyl]carboximidoyl}phenol top
Crystal data top
C14H8Cl2F3NODx = 1.580 Mg m3
Mr = 334.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9920 reflections
a = 7.8436 (3) Åθ = 3.0–27.7°
b = 13.8612 (4) ŵ = 0.49 mm1
c = 25.8433 (7) ÅT = 293 K
V = 2809.73 (15) Å3Block, yellow
Z = 80.38 × 0.22 × 0.14 mm
F(000) = 1344
Data collection top
Bruker APEXII CCD
diffractometer
2679 reflections with I > 2σ(I)
φ and ω scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.9°, θmin = 1.6°
Tmin = 0.680, Tmax = 0.746h = 910
27956 measured reflectionsk = 1814
3353 independent reflectionsl = 3333
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.6574P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3353 reflectionsΔρmax = 0.20 e Å3
194 parametersΔρmin = 0.36 e Å3
Special details top

Experimental. Crystallographic data was collected on a Bruker DUO APEX II diffractometer (Bruker, 2010). The intensity data were obtained and adjusted using the SAINT software (Bruker, 2010). The correction of the collected intensities for absorption was done using SADABS (Krause et al., 2015). The structure was solved using SHELXT (Sheldrick, 2015a). The refinement of the structure was done using SHELXL (Sheldrick, 2015b) with the X-SEED (Barbour, 2020) software interface using anisotropic models for non-hydrogen atoms. Mercury (Macrae et al., 2020) was used to prepare the figures for publication.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.22744 (7)0.45151 (3)0.52669 (2)0.07023 (17)
Cl20.51694 (7)0.71474 (4)0.65169 (2)0.07656 (18)
O10.30841 (17)0.58814 (9)0.44463 (5)0.0565 (3)
N10.43077 (18)0.75064 (9)0.40953 (5)0.0490 (3)
F10.6420 (3)0.65886 (12)0.27056 (5)0.1294 (7)
C10.5703 (3)0.67847 (16)0.31575 (7)0.0737 (6)
C20.5393 (3)0.78362 (13)0.32338 (7)0.0587 (4)
C30.4678 (2)0.81737 (11)0.36918 (6)0.0508 (4)
C40.4317 (3)0.91504 (13)0.37471 (8)0.0655 (5)
H40.3804920.9376410.4048230.079*
C50.4722 (3)0.97866 (16)0.33510 (10)0.0846 (7)
H50.4470981.0439080.3386000.101*
C60.5491 (4)0.94580 (17)0.29087 (9)0.0917 (8)
H60.5785510.9890100.2648380.110*
C70.5829 (3)0.84888 (17)0.28488 (8)0.0796 (6)
H70.6353110.8270580.2547960.096*
C80.4679 (2)0.77357 (11)0.45590 (6)0.0476 (3)
H80.5186620.8330440.4622090.057*
C90.43343 (19)0.70977 (10)0.49926 (6)0.0448 (3)
C100.35574 (19)0.61936 (10)0.49151 (6)0.0459 (3)
C110.3277 (2)0.56153 (11)0.53473 (7)0.0509 (4)
C120.3767 (2)0.58980 (12)0.58379 (7)0.0556 (4)
H120.3576360.5497120.6120620.067*
F20.4265 (2)0.62654 (10)0.31795 (6)0.1064 (5)
F30.6717 (2)0.63993 (9)0.35177 (5)0.0902 (4)
C140.4823 (2)0.73832 (12)0.54898 (6)0.0494 (4)
H140.5337280.7980150.5540500.059*
C130.4542 (2)0.67828 (13)0.59027 (6)0.0535 (4)
H10.340 (3)0.6303 (17)0.4244 (9)0.076 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0718 (3)0.0469 (2)0.0920 (4)0.00955 (19)0.0038 (2)0.0095 (2)
Cl20.0816 (4)0.1008 (4)0.0473 (3)0.0027 (3)0.0062 (2)0.0007 (2)
O10.0660 (7)0.0459 (6)0.0575 (7)0.0080 (6)0.0031 (6)0.0028 (5)
N10.0545 (8)0.0446 (6)0.0480 (7)0.0019 (6)0.0011 (6)0.0014 (5)
F10.211 (2)0.1037 (11)0.0738 (9)0.0138 (13)0.0464 (11)0.0189 (8)
C10.0995 (16)0.0697 (12)0.0520 (10)0.0034 (12)0.0069 (10)0.0094 (9)
C20.0709 (11)0.0610 (10)0.0441 (9)0.0053 (9)0.0093 (8)0.0030 (7)
C30.0542 (9)0.0494 (8)0.0488 (9)0.0043 (7)0.0089 (7)0.0042 (7)
C40.0782 (12)0.0506 (9)0.0677 (11)0.0024 (9)0.0076 (9)0.0051 (8)
C50.1106 (18)0.0551 (10)0.0880 (16)0.0004 (12)0.0164 (14)0.0210 (10)
C60.125 (2)0.0807 (15)0.0689 (13)0.0138 (14)0.0142 (14)0.0330 (12)
C70.1047 (17)0.0875 (15)0.0466 (10)0.0091 (13)0.0052 (10)0.0140 (9)
C80.0481 (8)0.0420 (7)0.0527 (9)0.0033 (6)0.0003 (7)0.0001 (6)
C90.0433 (7)0.0433 (7)0.0479 (8)0.0015 (6)0.0012 (6)0.0009 (6)
C100.0429 (8)0.0419 (7)0.0529 (8)0.0041 (6)0.0009 (6)0.0009 (6)
C110.0454 (8)0.0411 (7)0.0661 (10)0.0025 (6)0.0051 (7)0.0070 (7)
C120.0518 (9)0.0575 (9)0.0574 (9)0.0073 (7)0.0062 (7)0.0145 (7)
F20.1260 (13)0.0786 (8)0.1145 (12)0.0282 (8)0.0055 (9)0.0313 (8)
F30.1110 (11)0.0675 (7)0.0922 (9)0.0197 (7)0.0019 (8)0.0058 (6)
C140.0476 (8)0.0490 (8)0.0514 (9)0.0005 (7)0.0007 (7)0.0004 (7)
C130.0509 (9)0.0639 (10)0.0457 (8)0.0070 (7)0.0002 (7)0.0011 (7)
Geometric parameters (Å, º) top
Cl1—C111.7286 (16)C5—C61.370 (4)
Cl2—C131.7369 (18)C5—H50.9300
O1—C101.3389 (19)C6—C71.378 (3)
O1—H10.82 (2)C6—H60.9300
N1—C81.274 (2)C7—H70.9300
N1—C31.424 (2)C8—C91.453 (2)
F1—C11.324 (2)C8—H80.9300
C1—F31.336 (3)C9—C141.398 (2)
C1—F21.339 (3)C9—C101.408 (2)
C1—C21.491 (3)C10—C111.392 (2)
C2—C71.388 (3)C11—C121.382 (3)
C2—C31.391 (3)C12—C131.379 (3)
C3—C41.391 (2)C12—H120.9300
C4—C51.388 (3)C14—C131.371 (2)
C4—H40.9300C14—H140.9300
C10—O1—H1105.2 (16)C6—C7—H7119.7
C8—N1—C3118.70 (14)C2—C7—H7119.7
F1—C1—F3106.3 (2)N1—C8—C9122.10 (14)
F1—C1—F2106.53 (19)N1—C8—H8119.0
F3—C1—F2104.88 (18)C9—C8—H8119.0
F1—C1—C2112.73 (18)C14—C9—C10120.08 (14)
F3—C1—C2113.33 (17)C14—C9—C8119.06 (14)
F2—C1—C2112.5 (2)C10—C9—C8120.84 (14)
C7—C2—C3119.36 (18)O1—C10—C11119.74 (14)
C7—C2—C1120.17 (18)O1—C10—C9122.44 (14)
C3—C2—C1120.47 (16)C11—C10—C9117.82 (14)
C4—C3—C2119.81 (16)C12—C11—C10121.95 (15)
C4—C3—N1121.04 (16)C12—C11—Cl1119.14 (13)
C2—C3—N1119.14 (15)C10—C11—Cl1118.90 (13)
C5—C4—C3119.7 (2)C13—C12—C11119.09 (15)
C5—C4—H4120.1C13—C12—H12120.5
C3—C4—H4120.1C11—C12—H12120.5
C6—C5—C4120.3 (2)C13—C14—C9119.98 (15)
C6—C5—H5119.8C13—C14—H14120.0
C4—C5—H5119.8C9—C14—H14120.0
C5—C6—C7120.2 (2)C14—C13—C12121.07 (16)
C5—C6—H6119.9C14—C13—Cl2119.29 (14)
C7—C6—H6119.9C12—C13—Cl2119.64 (13)
C6—C7—C2120.5 (2)
F1—C1—C2—C70.8 (3)C3—N1—C8—C9179.68 (14)
F3—C1—C2—C7121.5 (2)N1—C8—C9—C14178.07 (15)
F2—C1—C2—C7119.7 (2)N1—C8—C9—C100.4 (2)
F1—C1—C2—C3178.7 (2)C14—C9—C10—O1179.21 (14)
F3—C1—C2—C358.0 (3)C8—C9—C10—O10.7 (2)
F2—C1—C2—C360.8 (2)C14—C9—C10—C111.0 (2)
C7—C2—C3—C43.8 (3)C8—C9—C10—C11179.47 (14)
C1—C2—C3—C4176.72 (19)O1—C10—C11—C12178.95 (15)
C7—C2—C3—N1177.07 (18)C9—C10—C11—C121.3 (2)
C1—C2—C3—N12.5 (3)O1—C10—C11—Cl11.5 (2)
C8—N1—C3—C444.0 (2)C9—C10—C11—Cl1178.29 (12)
C8—N1—C3—C2136.83 (17)C10—C11—C12—C130.6 (2)
C2—C3—C4—C52.1 (3)Cl1—C11—C12—C13178.95 (13)
N1—C3—C4—C5178.77 (18)C10—C9—C14—C130.1 (2)
C3—C4—C5—C60.6 (4)C8—C9—C14—C13178.60 (15)
C4—C5—C6—C71.6 (4)C9—C14—C13—C120.6 (3)
C5—C6—C7—C20.1 (4)C9—C14—C13—Cl2179.61 (12)
C3—C2—C7—C62.8 (3)C11—C12—C13—C140.4 (3)
C1—C2—C7—C6177.7 (2)C11—C12—C13—Cl2179.85 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.82 (2)1.86 (2)2.6111 (18)152 (2)
C14—H14···O1i0.932.673.515 (2)151
Symmetry code: (i) x+1/2, y+3/2, z+1.
 

Acknowledgements

Special thanks to Dr B. Vatsha at the Department of Chemical Sciences, University of Johannesburg, South Africa, for collecting the data.

Funding information

Funding for this research was provided by: South African National Research Foundation. (grant No. 120842).

References

First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhar, D. N. & Taploo, C. L. (1982). J. Sci. Res. 41, 501–506.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaihub, A. A., El-ajaily, M. M., Abou-Krisha, M. M., Etorki, M. A. & Alassbaly, F. S. (2013). J. Chem. Pharm. Res. 12, 933–938.  Google Scholar
First citationMore, M. S., Joshi, P. G., Mishra, Y. K. & Khanna, P. K. (2019). Mater. Today Chem., 14, 100195.  CrossRef PubMed Google Scholar
First citationNgan, N. K., Lo, K. M. & Wong, C. S. R. (2011). Polyhedron, 30, 2922–2932.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A. & Martins, C. V. B. de Fátima (2011). J. Adv. Res. 2, 1–8.  Google Scholar
First citationTidwell, T. T. (2008). Angew. Chem. Int. Ed. 47, 1016–1020.  Web of Science CrossRef CAS Google Scholar
First citationTovrog, B. S., Kitko, D. J. & Drago, R. S. (1976). J. Am. Chem. Soc. 98, 5144–5153.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146