organic compounds
2,4-Dichloro-6-{N-[2-(trifluoromethyl)phenyl]carboximidoyl}phenol
aDepartment of Chemical Sciences, University of Johannesburg, 2006, South Africa
*Correspondence e-mail: xantini.z@gmail.com
The title compound, C14H8Cl2F3NO, was synthesized by the condensation between trifluoromethylaniline and dichlorosalicylaldehyde by nucleophilic addition, forming a hemiaminal, followed by a dehydration to generate an imine. The compound crystallizes in an orthorhombic Pbca (Z = 8) with a dihedral angle of 44.70 (5)° between the two aromatic rings. In the crystal, the molecules pack together to form a zigzag pattern along the c axis.
Keywords: crystal structure; Schiff base; trifluoromethylaniline; dichlorosalicylaldehyde; orthorhombic.
CCDC reference: 2400964
Structure description
Schiff base compounds have been synthesized since their discovery in 1864 (Tidwell, 2008), and have shown good viability as ligands in Schiff base–metal complexes (Ngan et al., 2011). Their versatility is attributed to the extensive range of potential ligand structures, which are dependent on the selection of and (More et al., 2019) as starting reagents, with possibilities including bidentate, tridentate and tetradentate ligands. The synthesis typically involves condensation of primary and by nucleophilic addition, forming a hemiaminal, followed by a dehydration to generate an imine (Tovrog et al., 1976; Maihub et al., 2013; da Silva et al., 2011). The generated azomethine (C=N) dominates the properties of as the most important part in the Schiff base body (Maihub et al., 2013), and these have shown to be important for a wide range of applications in biological applications such as anti- bacterial and anti-fungal activities (Tovrog et al., 1976; Dhar & Taploo, 1982). As part of ongoing research in our group, we report here the synthesis and a of a Schiff base ligand derived from dichlorosalicylaldehyde and 2-trifluoromethylaniline.
The title compound (Fig. 1) crystallizes in the Pbca (Z = 8) with molecules on general positions. The bond length for the azomethine group [N1—C8 = 1.274 (2) Å] suggest the presence of double-bond character as anticipated. The dihedral angle of 44.70 (5)° between the aromatic rings is predominantly attributed to the intramolecular O—H⋯N and intermolecular C—H⋯O hydrogen bonding (see Table 1). The molecules pack together to form a zigzag pattern along the c axis (see Fig. 2).
Synthesis and crystallization
2-Trifluoromethylaniline (1.0740 g, 20 mmol) and dichlorosalicylaldehyde (1.2662 g, 20 mmol) were refluxed in 10 ml of methanol overnight to give an orange solution. The volume of methanol was reduced, which resulted in an orange precipitate. Orange crystals were obtained by slow evaporation of a methanol solution. Yield 70.16%, 1.5578 g, 4.679 mmol; m.p. 140–143°C; IR (KBr, cm−1): ν (Ar—OH) 3086; ν (C=N) 1612; ν (C—O) 1273. 1H NMR (DMSO-d6 in p.p.m, J in Hz): δ = 13.49 [1H (s), OH], 9.05 [1H (s), H5], 7.85 [2H (d, J = 10), H1, H2,], 7.81 [2H (s), H1,H8], 7.67 [1H, (d, J = 10), H7], 7.57 [1H, (t, J = 5)].
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2400964
https://doi.org/10.1107/S2414314624010745/pk4045sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624010745/pk4045Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624010745/pk4045Isup3.cml
C14H8Cl2F3NO | Dx = 1.580 Mg m−3 |
Mr = 334.11 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9920 reflections |
a = 7.8436 (3) Å | θ = 3.0–27.7° |
b = 13.8612 (4) Å | µ = 0.49 mm−1 |
c = 25.8433 (7) Å | T = 293 K |
V = 2809.73 (15) Å3 | Block, yellow |
Z = 8 | 0.38 × 0.22 × 0.14 mm |
F(000) = 1344 |
Bruker APEXII CCD diffractometer | 2679 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.040 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.9°, θmin = 1.6° |
Tmin = 0.680, Tmax = 0.746 | h = −9→10 |
27956 measured reflections | k = −18→14 |
3353 independent reflections | l = −33→33 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0542P)2 + 0.6574P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
3353 reflections | Δρmax = 0.20 e Å−3 |
194 parameters | Δρmin = −0.36 e Å−3 |
Experimental. Crystallographic data was collected on a Bruker DUO APEX II diffractometer (Bruker, 2010). The intensity data were obtained and adjusted using the SAINT software (Bruker, 2010). The correction of the collected intensities for absorption was done using SADABS (Krause et al., 2015). The structure was solved using SHELXT (Sheldrick, 2015a). The refinement of the structure was done using SHELXL (Sheldrick, 2015b) with the X-SEED (Barbour, 2020) software interface using anisotropic models for non-hydrogen atoms. Mercury (Macrae et al., 2020) was used to prepare the figures for publication. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.22744 (7) | 0.45151 (3) | 0.52669 (2) | 0.07023 (17) | |
Cl2 | 0.51694 (7) | 0.71474 (4) | 0.65169 (2) | 0.07656 (18) | |
O1 | 0.30841 (17) | 0.58814 (9) | 0.44463 (5) | 0.0565 (3) | |
N1 | 0.43077 (18) | 0.75064 (9) | 0.40953 (5) | 0.0490 (3) | |
F1 | 0.6420 (3) | 0.65886 (12) | 0.27056 (5) | 0.1294 (7) | |
C1 | 0.5703 (3) | 0.67847 (16) | 0.31575 (7) | 0.0737 (6) | |
C2 | 0.5393 (3) | 0.78362 (13) | 0.32338 (7) | 0.0587 (4) | |
C3 | 0.4678 (2) | 0.81737 (11) | 0.36918 (6) | 0.0508 (4) | |
C4 | 0.4317 (3) | 0.91504 (13) | 0.37471 (8) | 0.0655 (5) | |
H4 | 0.380492 | 0.937641 | 0.404823 | 0.079* | |
C5 | 0.4722 (3) | 0.97866 (16) | 0.33510 (10) | 0.0846 (7) | |
H5 | 0.447098 | 1.043908 | 0.338600 | 0.101* | |
C6 | 0.5491 (4) | 0.94580 (17) | 0.29087 (9) | 0.0917 (8) | |
H6 | 0.578551 | 0.989010 | 0.264838 | 0.110* | |
C7 | 0.5829 (3) | 0.84888 (17) | 0.28488 (8) | 0.0796 (6) | |
H7 | 0.635311 | 0.827058 | 0.254796 | 0.096* | |
C8 | 0.4679 (2) | 0.77357 (11) | 0.45590 (6) | 0.0476 (3) | |
H8 | 0.518662 | 0.833044 | 0.462209 | 0.057* | |
C9 | 0.43343 (19) | 0.70977 (10) | 0.49926 (6) | 0.0448 (3) | |
C10 | 0.35574 (19) | 0.61936 (10) | 0.49151 (6) | 0.0459 (3) | |
C11 | 0.3277 (2) | 0.56153 (11) | 0.53473 (7) | 0.0509 (4) | |
C12 | 0.3767 (2) | 0.58980 (12) | 0.58379 (7) | 0.0556 (4) | |
H12 | 0.357636 | 0.549712 | 0.612062 | 0.067* | |
F2 | 0.4265 (2) | 0.62654 (10) | 0.31795 (6) | 0.1064 (5) | |
F3 | 0.6717 (2) | 0.63993 (9) | 0.35177 (5) | 0.0902 (4) | |
C14 | 0.4823 (2) | 0.73832 (12) | 0.54898 (6) | 0.0494 (4) | |
H14 | 0.533728 | 0.798015 | 0.554050 | 0.059* | |
C13 | 0.4542 (2) | 0.67828 (13) | 0.59027 (6) | 0.0535 (4) | |
H1 | 0.340 (3) | 0.6303 (17) | 0.4244 (9) | 0.076 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0718 (3) | 0.0469 (2) | 0.0920 (4) | −0.00955 (19) | 0.0038 (2) | 0.0095 (2) |
Cl2 | 0.0816 (4) | 0.1008 (4) | 0.0473 (3) | 0.0027 (3) | −0.0062 (2) | −0.0007 (2) |
O1 | 0.0660 (7) | 0.0459 (6) | 0.0575 (7) | −0.0080 (6) | −0.0031 (6) | −0.0028 (5) |
N1 | 0.0545 (8) | 0.0446 (6) | 0.0480 (7) | −0.0019 (6) | −0.0011 (6) | 0.0014 (5) |
F1 | 0.211 (2) | 0.1037 (11) | 0.0738 (9) | 0.0138 (13) | 0.0464 (11) | −0.0189 (8) |
C1 | 0.0995 (16) | 0.0697 (12) | 0.0520 (10) | −0.0034 (12) | 0.0069 (10) | −0.0094 (9) |
C2 | 0.0709 (11) | 0.0610 (10) | 0.0441 (9) | −0.0053 (9) | −0.0093 (8) | 0.0030 (7) |
C3 | 0.0542 (9) | 0.0494 (8) | 0.0488 (9) | −0.0043 (7) | −0.0089 (7) | 0.0042 (7) |
C4 | 0.0782 (12) | 0.0506 (9) | 0.0677 (11) | 0.0024 (9) | −0.0076 (9) | 0.0051 (8) |
C5 | 0.1106 (18) | 0.0551 (10) | 0.0880 (16) | 0.0004 (12) | −0.0164 (14) | 0.0210 (10) |
C6 | 0.125 (2) | 0.0807 (15) | 0.0689 (13) | −0.0138 (14) | −0.0142 (14) | 0.0330 (12) |
C7 | 0.1047 (17) | 0.0875 (15) | 0.0466 (10) | −0.0091 (13) | −0.0052 (10) | 0.0140 (9) |
C8 | 0.0481 (8) | 0.0420 (7) | 0.0527 (9) | −0.0033 (6) | −0.0003 (7) | −0.0001 (6) |
C9 | 0.0433 (7) | 0.0433 (7) | 0.0479 (8) | 0.0015 (6) | 0.0012 (6) | 0.0009 (6) |
C10 | 0.0429 (8) | 0.0419 (7) | 0.0529 (8) | 0.0041 (6) | 0.0009 (6) | −0.0009 (6) |
C11 | 0.0454 (8) | 0.0411 (7) | 0.0661 (10) | 0.0025 (6) | 0.0051 (7) | 0.0070 (7) |
C12 | 0.0518 (9) | 0.0575 (9) | 0.0574 (9) | 0.0073 (7) | 0.0062 (7) | 0.0145 (7) |
F2 | 0.1260 (13) | 0.0786 (8) | 0.1145 (12) | −0.0282 (8) | −0.0055 (9) | −0.0313 (8) |
F3 | 0.1110 (11) | 0.0675 (7) | 0.0922 (9) | 0.0197 (7) | 0.0019 (8) | 0.0058 (6) |
C14 | 0.0476 (8) | 0.0490 (8) | 0.0514 (9) | 0.0005 (7) | −0.0007 (7) | −0.0004 (7) |
C13 | 0.0509 (9) | 0.0639 (10) | 0.0457 (8) | 0.0070 (7) | −0.0002 (7) | 0.0011 (7) |
Cl1—C11 | 1.7286 (16) | C5—C6 | 1.370 (4) |
Cl2—C13 | 1.7369 (18) | C5—H5 | 0.9300 |
O1—C10 | 1.3389 (19) | C6—C7 | 1.378 (3) |
O1—H1 | 0.82 (2) | C6—H6 | 0.9300 |
N1—C8 | 1.274 (2) | C7—H7 | 0.9300 |
N1—C3 | 1.424 (2) | C8—C9 | 1.453 (2) |
F1—C1 | 1.324 (2) | C8—H8 | 0.9300 |
C1—F3 | 1.336 (3) | C9—C14 | 1.398 (2) |
C1—F2 | 1.339 (3) | C9—C10 | 1.408 (2) |
C1—C2 | 1.491 (3) | C10—C11 | 1.392 (2) |
C2—C7 | 1.388 (3) | C11—C12 | 1.382 (3) |
C2—C3 | 1.391 (3) | C12—C13 | 1.379 (3) |
C3—C4 | 1.391 (2) | C12—H12 | 0.9300 |
C4—C5 | 1.388 (3) | C14—C13 | 1.371 (2) |
C4—H4 | 0.9300 | C14—H14 | 0.9300 |
C10—O1—H1 | 105.2 (16) | C6—C7—H7 | 119.7 |
C8—N1—C3 | 118.70 (14) | C2—C7—H7 | 119.7 |
F1—C1—F3 | 106.3 (2) | N1—C8—C9 | 122.10 (14) |
F1—C1—F2 | 106.53 (19) | N1—C8—H8 | 119.0 |
F3—C1—F2 | 104.88 (18) | C9—C8—H8 | 119.0 |
F1—C1—C2 | 112.73 (18) | C14—C9—C10 | 120.08 (14) |
F3—C1—C2 | 113.33 (17) | C14—C9—C8 | 119.06 (14) |
F2—C1—C2 | 112.5 (2) | C10—C9—C8 | 120.84 (14) |
C7—C2—C3 | 119.36 (18) | O1—C10—C11 | 119.74 (14) |
C7—C2—C1 | 120.17 (18) | O1—C10—C9 | 122.44 (14) |
C3—C2—C1 | 120.47 (16) | C11—C10—C9 | 117.82 (14) |
C4—C3—C2 | 119.81 (16) | C12—C11—C10 | 121.95 (15) |
C4—C3—N1 | 121.04 (16) | C12—C11—Cl1 | 119.14 (13) |
C2—C3—N1 | 119.14 (15) | C10—C11—Cl1 | 118.90 (13) |
C5—C4—C3 | 119.7 (2) | C13—C12—C11 | 119.09 (15) |
C5—C4—H4 | 120.1 | C13—C12—H12 | 120.5 |
C3—C4—H4 | 120.1 | C11—C12—H12 | 120.5 |
C6—C5—C4 | 120.3 (2) | C13—C14—C9 | 119.98 (15) |
C6—C5—H5 | 119.8 | C13—C14—H14 | 120.0 |
C4—C5—H5 | 119.8 | C9—C14—H14 | 120.0 |
C5—C6—C7 | 120.2 (2) | C14—C13—C12 | 121.07 (16) |
C5—C6—H6 | 119.9 | C14—C13—Cl2 | 119.29 (14) |
C7—C6—H6 | 119.9 | C12—C13—Cl2 | 119.64 (13) |
C6—C7—C2 | 120.5 (2) | ||
F1—C1—C2—C7 | 0.8 (3) | C3—N1—C8—C9 | 179.68 (14) |
F3—C1—C2—C7 | 121.5 (2) | N1—C8—C9—C14 | 178.07 (15) |
F2—C1—C2—C7 | −119.7 (2) | N1—C8—C9—C10 | −0.4 (2) |
F1—C1—C2—C3 | −178.7 (2) | C14—C9—C10—O1 | −179.21 (14) |
F3—C1—C2—C3 | −58.0 (3) | C8—C9—C10—O1 | −0.7 (2) |
F2—C1—C2—C3 | 60.8 (2) | C14—C9—C10—C11 | 1.0 (2) |
C7—C2—C3—C4 | 3.8 (3) | C8—C9—C10—C11 | 179.47 (14) |
C1—C2—C3—C4 | −176.72 (19) | O1—C10—C11—C12 | 178.95 (15) |
C7—C2—C3—N1 | −177.07 (18) | C9—C10—C11—C12 | −1.3 (2) |
C1—C2—C3—N1 | 2.5 (3) | O1—C10—C11—Cl1 | −1.5 (2) |
C8—N1—C3—C4 | −44.0 (2) | C9—C10—C11—Cl1 | 178.29 (12) |
C8—N1—C3—C2 | 136.83 (17) | C10—C11—C12—C13 | 0.6 (2) |
C2—C3—C4—C5 | −2.1 (3) | Cl1—C11—C12—C13 | −178.95 (13) |
N1—C3—C4—C5 | 178.77 (18) | C10—C9—C14—C13 | −0.1 (2) |
C3—C4—C5—C6 | −0.6 (4) | C8—C9—C14—C13 | −178.60 (15) |
C4—C5—C6—C7 | 1.6 (4) | C9—C14—C13—C12 | −0.6 (3) |
C5—C6—C7—C2 | 0.1 (4) | C9—C14—C13—Cl2 | 179.61 (12) |
C3—C2—C7—C6 | −2.8 (3) | C11—C12—C13—C14 | 0.4 (3) |
C1—C2—C7—C6 | 177.7 (2) | C11—C12—C13—Cl2 | −179.85 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.82 (2) | 1.86 (2) | 2.6111 (18) | 152 (2) |
C14—H14···O1i | 0.93 | 2.67 | 3.515 (2) | 151 |
Symmetry code: (i) x+1/2, −y+3/2, −z+1. |
Acknowledgements
Special thanks to Dr B. Vatsha at the Department of Chemical Sciences, University of Johannesburg, South Africa, for collecting the data.
Funding information
Funding for this research was provided by: South African National Research Foundation. (grant No. 120842).
References
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Res. 41, 501–506. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maihub, A. A., El-ajaily, M. M., Abou-Krisha, M. M., Etorki, M. A. & Alassbaly, F. S. (2013). J. Chem. Pharm. Res. 12, 933–938. Google Scholar
More, M. S., Joshi, P. G., Mishra, Y. K. & Khanna, P. K. (2019). Mater. Today Chem., 14, 100195. CrossRef PubMed Google Scholar
Ngan, N. K., Lo, K. M. & Wong, C. S. R. (2011). Polyhedron, 30, 2922–2932. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, C. M. da, da Silva, D. L., Modolo, L. V., Alves, R. B., de Resende, M. A. & Martins, C. V. B. de Fátima (2011). J. Adv. Res. 2, 1–8. Google Scholar
Tidwell, T. T. (2008). Angew. Chem. Int. Ed. 47, 1016–1020. Web of Science CrossRef CAS Google Scholar
Tovrog, B. S., Kitko, D. J. & Drago, R. S. (1976). J. Am. Chem. Soc. 98, 5144–5153. CrossRef CAS Web of Science Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.