organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,5,6-Tri­chloro­pyridin-2-ol

crossmark logo

aDepartment of Environmental Toxicology, Southern University and A&M College, Baton Rouge, Louisiana 70813, USA, bDepartment of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70810, USA, and cDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: rao_uppu@subr.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 13 November 2024; accepted 19 November 2024; online 22 November 2024)

The title compound, C5H2Cl3NO, is almost planar. In the crystal, the mol­ecules form centrosymmetric hydrogen-bonded dimers through pairwise O—H⋯N inter­actions to generate R22(8) loops.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

3,5,6-Tri­chloro-2-pyridinol (TCP, C5H2Cl3NO) is the primary degradation product of chlorpyrifos (CPP, C9H11Cl3NO3PS) and chlorpyrifos-methyl (CPFM, C7H7Cl3NO3PS), two of the most widely used organophosphate insecticides in agriculture (Bouchard et al., 2011[Bouchard, M. F., Chevrier, J., Harley, K. G., Kogut, K., Vedar, M., Calderon, N., Trujillo, C., Johnson, C., Bradman, A., Barr, D. B. & Eskenazi, B. (2011). Environ. Health Perspect. 119, 1189-1195.]). TCP has been shown to intensify the toxic effects of CPF(M), leading to endocrine disruption, cellular toxicity, and organ damage (Gao et al., 2021[Gao, H., Li, J., Zhao, G. & Li, Y. (2021). Toxicology, 460, 152883.]; Li et al., 2020[Li, J., Fang, B., Ren, F., Xing, H., Zhao, G., Yin, X., Pang, G. & Li, Y. (2020). Sci. Total Environ. 726, 138496.]). It enhances the impact of CPF(M) on testosterone synthesis and Sertoli cell function by inhibiting testosterone binding to androgen receptors, furthering hormonal disruption through pathways involving luteinizing hormone and signaling mol­ecules such as CREB and Star, essential for testosterone production. TCP also downregulates genes critical for spermatogenesis, posing potential risks to male fertility (Mansukhani et al., 2024[Mansukhani, M., Roy, P., Ganguli, N., Majumdar, S. S. & Sharma, S. S. (2024). Pestic. Biochem. Physiol. 204, 106065.]). Mol­ecular modeling indicates that TCP inter­acts with sex-hormone-binding globulin, potentially aggravating hormonal imbalances (Haza­rika et al., 2019[Hazarika, J., Ganguly, M. & Mahanta, R. (2019). J. Appl. Toxicol. 39, 1002-1011.]).

Beyond endocrine effects, TCP exhibits direct cytotoxicity (Gao et al., 2021[Gao, H., Li, J., Zhao, G. & Li, Y. (2021). Toxicology, 460, 152883.]) and may bind to DNA in a groove-binding manner similar to Hoechst, possibly favoring specific base-pair regions without significantly distorting the DNA structure (Bailly et al., 1993[Bailly, C., Colson, P., Hénichart, J. P. & Houssier, C. (1993). Nucleic Acids Res. 21, 3705-3709.]; Bucevičius et al., 2018[Bucevičius, J., Gražvydas Lukinavičius, G. & Rūta Gerasimaitė, R. (2018). Chemosensors 6, 18.]; Kashanian et al., 2012[Kashanian, S., Shariati, Z., Roshanfekr, H. & Ghobadi, S. (2012). DNA Cell Biol. 31, 1341-1348.]). Studies have demonstrated substantial cellular damage in human embryonic kidney cells (HEK 293) following TCP exposure, signaling a risk of kidney toxicity (Van Emon et al., 2018[Van Emon, J. M., Pan, P. & van Breukelen, F. (2018). Chemosphere, 191, 537-547.]). TCP is further linked to hepatotoxicity and nephrotoxicity in animal models, where it accumulates in vital organs and may cause structural and functional damage (Deng et al., 2016[Deng, Y., Zhang, Y., Lu, Y., Zhao, Y. & Ren, H. (2016). Sci. Total Environ. 544, 507-514.]). Additionally, age-dependent sensitivity to TCP has been observed, with pre-weanling rats displaying heightened vulnerability due to pharmacokinetic differences (Timchalk et al., 2002[Timchalk, C., Nolan, R. J., Mendrala, A. L., Dittenber, D. A., Brzak, K. A. & Mattsson, J. L. (2002). Toxicol. Sci. 66, 34-53.]).

TCP is notable for its long half-life in soil, ranging from 65 to 360 days depending on environmental conditions, and its high solubility in water (80.9 mg l−1), facilitating contamination of surface and groundwater (Zhao et al., 2017[Zhao, Y., Wendling, L. A., Wang, C., & Pei, Y. (2017). J. Soils Sediments, 17, 889--900.]; Timchalk et al., 2002[Timchalk, C., Nolan, R. J., Mendrala, A. L., Dittenber, D. A., Brzak, K. A. & Mattsson, J. L. (2002). Toxicol. Sci. 66, 34-53.]). This persistence raises substantial concerns about bioaccumulation, biomagnification, and ecosystem disruption, especially in aqua­tic environments where TCP has been found to be toxic to organisms (Echeverri-Jaramillo et al., 2020[Echeverri-Jaramillo, G., Jaramillo-Colorado, B., Sabater-Marco, C. & Castillo-López, M. (2020). Environ. Sci. Pollut. Res. 27, 32770-32778.]; Van Emon et al., 2018[Van Emon, J. M., Pan, P. & van Breukelen, F. (2018). Chemosphere, 191, 537-547.]). TCP levels in human urine serve as biomarkers for CPF(M) exposure, aiding in occupational and environmental exposure assessments (Bouchard et al., 2011[Bouchard, M. F., Chevrier, J., Harley, K. G., Kogut, K., Vedar, M., Calderon, N., Trujillo, C., Johnson, C., Bradman, A., Barr, D. B. & Eskenazi, B. (2011). Environ. Health Perspect. 119, 1189-1195.]).

In the United States, the EPA revoked all food-related uses of CPF(M) in 2021, effectively banning its use on crops intended for human consumption; however, a November 2023 court ruling temporarily reinstated CPF(M) tolerances while the EPA reconsiders its decision (EPA, 2023[EPA (2023). Environmental Protection Agency. Court ruling on CPF tolerances.]). In the European Union, both CPF and CPFM were banned in 2020, with strict limits on residue levels in food (EFSA, 2020[EFSA (2020). European Food Safety Authority. Chlorpyrifos and chlorpyrifos-methyl banned in the EU.]). As of 2024, CPF(M) remains restricted for non-food uses in some areas, with existing stocks allowed under controlled conditions, though further bans and stricter regulations are anti­cipated. While these restrictions are in place, it is important to note that TCP can also result from the soil and microbial degradation of triclopyr, triclopyr but­oxy­ethyl ester and triclopyr tri­ethyl­amine salt, three commonly used pyridine-based herbicides for managing woody plants, vines, and broadleaf weeds (Cessna et al., 2002[Cessna, A. J., Grover, R. & Waite, D. T. (2002). Rev. Environ. Contam. Toxicol. 174, 19-48.]; Deng et al., 2016[Deng, Y., Zhang, Y., Lu, Y., Zhao, Y. & Ren, H. (2016). Sci. Total Environ. 544, 507-514.]; Dias et al., 2017[Dias, J. L. C. S., Banu, A., Sperry, B. P., Enloe, S. F., Ferrell, J. A. & Sellers, B. A. (2017). Weed Technol. 31, 928-934.]). The primary concern with these herbicides is non-target toxicity.

Given its widespread relevance to human and animal health, and to support the identification of potential mol­ecular targets in biological systems, we have investigated the crystal structure of TCP: it crystallizes in the monoclinc space group P21/c with one mol­ecule in the asymmetric unit (Fig. 1[link]). The mol­ecule is close to planar, with the six atoms of the pyridine ring lying a mean of 0.007 Å from their best plane. The Cl atoms lie out of this plane by an average of 0.058 Å, and the O atom lies 0.0430 (14) Å out of plane. The C—N distances are 1.3343 (11) and 1.3347 (11) Å, the C—Cl distances fall in the range 1.7189 (8)–1.7202 (8) Å and the C—O distance is 1.3207 (11) Å. In the crystal, the mol­ecules form centrosymmetric hydrogen-bonded dimers through pairwise O—H⋯N inter­actions (Table 1[link]) to generate R22(8) loops. No other directional inter­actions could be identified. The hydrogen-bonded dimer is shown in Fig. 2[link], and the unit cell is illustrated in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.821 (19) 1.919 (19) 2.7371 (10) 174.3 (19)
Symmetry code: (i) [-x+1, -y+1, -z].
[Figure 1]
Figure 1
The asymmetric unit of TCP with 50% displacement ellipsoids.
[Figure 2]
Figure 2
The centrosymmetric hydrogen-bonded dimer.
[Figure 3]
Figure 3
The unit-cell packing.

Synthesis and crystallization

3,5,6-Tri­chloro-2-pyridinol, C5H2Cl3NO (CAS 6515–38-4) was obtained from AmBeed (Arlington Heights, Illinios, USA) and was used without further purification. Crystals in the form of colorless laths were prepared by slow cooling of a nearly saturated solution of the title compound in boiling deionized water (resistance ca. 18 MΏ cm−1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C5H2Cl3NO
Mr 198.43
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 6.1616 (3), 22.3074 (10), 5.0396 (2)
β (°) 99.356 (1)
V3) 683.47 (5)
Z 4
Radiation type Ag Kα, λ = 0.56086 Å
μ (mm−1) 0.64
Crystal size (mm) 0.47 × 0.23 × 0.14
 
Data collection
Diffractometer Bruker D8 Venture DUO with Photon III C14
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.840, 0.916
No. of measured, independent and observed [I > 2σ(I)] reflections 56728, 4816, 4626
Rint 0.035
(sin θ/λ)max−1) 0.944
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.073, 1.33
No. of reflections 4816
No. of parameters 94
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.78, −0.50
Computer programs: APEX4 and SAINT (Bruker, 2016[Bruker (2016). APEX4 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]a), SHELXL2019/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]b), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

3,5,6-Trichloropyridin-2-ol top
Crystal data top
C5H2Cl3NOF(000) = 392
Mr = 198.43Dx = 1.928 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56086 Å
a = 6.1616 (3) ÅCell parameters from 9745 reflections
b = 22.3074 (10) Åθ = 2.6–31.9°
c = 5.0396 (2) ŵ = 0.64 mm1
β = 99.356 (1)°T = 100 K
V = 683.47 (5) Å3Lath fragment, colourless
Z = 40.47 × 0.23 × 0.14 mm
Data collection top
Bruker D8 Venture DUO with Photon III C14
diffractometer
4626 reflections with I > 2σ(I)
Radiation source: IµS 3.0 microfocusRint = 0.035
φ and ω scansθmax = 32.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.840, Tmax = 0.916k = 4242
56728 measured reflectionsl = 99
4816 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0157P)2 + 0.4001P]
where P = (Fo2 + 2Fc2)/3
S = 1.33(Δ/σ)max = 0.001
4816 reflectionsΔρmax = 0.78 e Å3
94 parametersΔρmin = 0.50 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Both H atoms were located in difference maps and the one on C was treated as riding in a geometrically idealized position with C—H distance = 0.95 Å, while the coordinates for the one on O were refined. Hydrogen displacement parameters were assigned as Uiso(H) = 1.2Ueq for the attached C atom and 1.5Ueq for the attached O atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.93128 (4)0.66668 (2)0.00185 (5)0.01441 (4)
Cl20.32839 (4)0.69555 (2)0.65348 (4)0.01403 (4)
Cl30.17530 (4)0.56134 (2)0.51565 (5)0.01375 (4)
O10.72509 (13)0.54889 (3)0.08395 (16)0.01555 (12)
H10.661 (3)0.5167 (9)0.111 (4)0.023*
N10.47368 (12)0.55968 (3)0.20415 (15)0.01124 (10)
C10.63850 (14)0.58150 (4)0.09104 (17)0.01105 (11)
C20.72170 (14)0.63936 (4)0.15463 (17)0.01084 (11)
C30.62942 (14)0.67423 (4)0.33201 (17)0.01121 (12)
H30.6845730.7132750.3780540.013*
C40.45373 (14)0.65136 (4)0.44307 (17)0.01050 (11)
C50.38383 (13)0.59348 (4)0.37596 (17)0.01031 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01297 (8)0.01471 (8)0.01651 (9)0.00232 (6)0.00528 (6)0.00075 (6)
Cl20.01719 (9)0.01155 (7)0.01464 (8)0.00103 (6)0.00649 (6)0.00281 (6)
Cl30.01369 (8)0.01177 (7)0.01685 (8)0.00229 (6)0.00571 (6)0.00032 (6)
O10.0175 (3)0.0118 (2)0.0191 (3)0.0019 (2)0.0083 (2)0.0045 (2)
N10.0115 (2)0.0093 (2)0.0132 (3)0.00046 (19)0.0027 (2)0.0007 (2)
C10.0112 (3)0.0095 (3)0.0126 (3)0.0002 (2)0.0025 (2)0.0006 (2)
C20.0105 (3)0.0103 (3)0.0119 (3)0.0008 (2)0.0023 (2)0.0005 (2)
C30.0124 (3)0.0090 (3)0.0121 (3)0.0011 (2)0.0017 (2)0.0003 (2)
C40.0116 (3)0.0090 (3)0.0110 (3)0.0002 (2)0.0022 (2)0.0006 (2)
C50.0103 (3)0.0090 (3)0.0117 (3)0.0005 (2)0.0021 (2)0.0002 (2)
Geometric parameters (Å, º) top
Cl1—C21.7191 (8)N1—C11.3347 (11)
Cl2—C41.7202 (8)C1—C21.4063 (12)
Cl3—C51.7189 (8)C2—C31.3757 (12)
O1—C11.3207 (11)C3—C41.3937 (12)
O1—H10.821 (19)C3—H30.9500
N1—C51.3343 (11)C4—C51.3854 (11)
C1—O1—H1110.9 (13)C2—C3—H3120.5
C5—N1—C1119.73 (7)C4—C3—H3120.5
O1—C1—N1120.16 (8)C5—C4—C3118.30 (7)
O1—C1—C2119.06 (8)C5—C4—Cl2122.12 (6)
N1—C1—C2120.78 (8)C3—C4—Cl2119.58 (6)
C3—C2—C1119.55 (8)N1—C5—C4122.66 (8)
C3—C2—Cl1120.69 (6)N1—C5—Cl3116.53 (6)
C1—C2—Cl1119.73 (6)C4—C5—Cl3120.80 (6)
C2—C3—C4118.95 (7)
C5—N1—C1—O1178.44 (8)C2—C3—C4—C51.98 (12)
C5—N1—C1—C21.22 (13)C2—C3—C4—Cl2177.11 (7)
O1—C1—C2—C3178.53 (8)C1—N1—C5—C40.35 (13)
N1—C1—C2—C31.14 (13)C1—N1—C5—Cl3179.07 (7)
O1—C1—C2—Cl10.66 (12)C3—C4—C5—N11.97 (13)
N1—C1—C2—Cl1179.01 (7)Cl2—C4—C5—N1177.10 (7)
C1—C2—C3—C40.50 (13)C3—C4—C5—Cl3177.43 (6)
Cl1—C2—C3—C4177.35 (7)Cl2—C4—C5—Cl33.51 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821 (19)1.919 (19)2.7371 (10)174.3 (19)
Symmetry code: (i) x+1, y+1, z.
 

Funding information

The authors acknowledge the support from the National Institutes of Health (NIH) through the National Institute of General Medical Sciences (NIGMS) Institutional Development Award (IDeA) grant No. P20 GM103424–21, the US Department of Education (US DoE; Title III, HBGI Part B grant No. P031B040030), and the National Science Foundation (NSF) under grant No. 1736136, CREST Center for Next Generation Multifunctional Composites (NextGen Composites Phase II). The purchase of the diffractometer was made possible by National Science Foundation MRI award CHE–2215262. The contents of the manuscript are solely the responsibility of authors and do not represent the official views of NIH, NIGMS, NSF, or US DoE.

References

First citationBailly, C., Colson, P., Hénichart, J. P. & Houssier, C. (1993). Nucleic Acids Res. 21, 3705–3709.  CrossRef CAS PubMed Google Scholar
First citationBouchard, M. F., Chevrier, J., Harley, K. G., Kogut, K., Vedar, M., Calderon, N., Trujillo, C., Johnson, C., Bradman, A., Barr, D. B. & Eskenazi, B. (2011). Environ. Health Perspect. 119, 1189–1195.  CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX4 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBucevičius, J., Gražvydas Lukinavičius, G. & Rūta Gerasimaitė, R. (2018). Chemosensors 6, 18.  Google Scholar
First citationCessna, A. J., Grover, R. & Waite, D. T. (2002). Rev. Environ. Contam. Toxicol. 174, 19–48.  CrossRef PubMed CAS Google Scholar
First citationDeng, Y., Zhang, Y., Lu, Y., Zhao, Y. & Ren, H. (2016). Sci. Total Environ. 544, 507–514.  CrossRef CAS PubMed Google Scholar
First citationDias, J. L. C. S., Banu, A., Sperry, B. P., Enloe, S. F., Ferrell, J. A. & Sellers, B. A. (2017). Weed Technol. 31, 928–934.  CrossRef Google Scholar
First citationEcheverri-Jaramillo, G., Jaramillo-Colorado, B., Sabater-Marco, C. & Castillo-López, M. (2020). Environ. Sci. Pollut. Res. 27, 32770–32778.  CAS Google Scholar
First citationEFSA (2020). European Food Safety Authority. Chlorpyrifos and chlorpyrifos-methyl banned in the EU.  Google Scholar
First citationEPA (2023). Environmental Protection Agency. Court ruling on CPF tolerances.  Google Scholar
First citationGao, H., Li, J., Zhao, G. & Li, Y. (2021). Toxicology, 460, 152883.  CrossRef PubMed Google Scholar
First citationHazarika, J., Ganguly, M. & Mahanta, R. (2019). J. Appl. Toxicol. 39, 1002–1011.  CrossRef CAS PubMed Google Scholar
First citationKashanian, S., Shariati, Z., Roshanfekr, H. & Ghobadi, S. (2012). DNA Cell Biol. 31, 1341–1348.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, J., Fang, B., Ren, F., Xing, H., Zhao, G., Yin, X., Pang, G. & Li, Y. (2020). Sci. Total Environ. 726, 138496.  CrossRef PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMansukhani, M., Roy, P., Ganguli, N., Majumdar, S. S. & Sharma, S. S. (2024). Pestic. Biochem. Physiol. 204, 106065.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTimchalk, C., Nolan, R. J., Mendrala, A. L., Dittenber, D. A., Brzak, K. A. & Mattsson, J. L. (2002). Toxicol. Sci. 66, 34–53.  CrossRef PubMed CAS Google Scholar
First citationVan Emon, J. M., Pan, P. & van Breukelen, F. (2018). Chemosphere, 191, 537–547.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y., Wendling, L. A., Wang, C., & Pei, Y. (2017). J. Soils Sediments, 17, 889--900.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146