organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl (2RS,3SR,4RS)-1-ethyl-2-(furan-2-yl)-4-hy­dr­oxy-5-oxopyrrolidine-3-carboxyl­ate

crossmark logo

aFaculty of Applied Sciences, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus 26400, Bandar Tun Abdul Razak Jengka, Pahang, Malaysia, bCentre of Chemical Synthesis & Polymer Technology, Institute of Science, Universiti Teknologi MARA Puncak Alam, 42300 Puncak Alam, Selangor, Malaysia, cFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and dEaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
*Correspondence e-mail: abdfatah@uitm.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 6 November 2024; accepted 9 November 2024; online 19 November 2024)

The title racemic oxopyrrolidine compound, C13H17NO5, contains three stereogenic centres and crystallizes with two mol­ecules in the asymmetric unit. The five-membered pyrrolidine rings in both mol­ecules exhibit envelope conformations. The N-ethyl group of one of the mol­ecules is disordered over two sets of sites in a 0.836 (4):0.164 (4) ratio. In the crystal, both mol­ecules form inversion dimers through pairwise O—H⋯O hydrogen bonds, generating R22(10) loops, which are linked into a three-dimensional network by weak C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrrolidine compounds have sparked inter­est as a motif in drug candidate mol­ecules due to the non-planar ring structure and stereochemistry that allow for diverse spatial orientations of substituents, which can affect biological functions by altering binding affinity with the target protein (Petri et al., 2021[Petri, G. L., Raimondi, M. V., Spanò, V., Holl, R., Barraja, P. & Montalbano, A. (2021). Top. Curr. Chem. 379, 34. https://doi.org/10.1007/s41061-021-00347-5]). The versatility of these scaffolds is highlighted by their occurrences across a range of pharmacological uses, predominantly as anti­virals, anti­diabetics, and anti­cancer agents (Esposito et al., 2020[Esposito, A., Alonzo, D. D., De Fenza, M., De Gregorio, E., Tamanini, A., Lippi, G. & Guaragna, A. (2020). Int. J. Mol. Sci. 21, 1-34.]; Wang et al., 2022[Wang, H., Tang, S., Zhang, G., Pan, Y., Jiao, W. & Shao, H. (2022). Molecules, 27, 5517. https://doi.org/10.3390/molecules27175517]). Hence, various strategies have been employed to obtain stereoselective reactions by exploiting the versatility of the pyrrolidine ring. For instance, a domino reaction of enynal and amino ketone with ZnCl2 followed by an aldol reaction yielded functionalized 2-furyl-pyrrolidine derivatives with high diastereoselectivity (Ou et al., 2023[Ou, C., Ghosh, B. & Sharma, I. (2023). Org. Chem. Front. 10, 5933-5939.]). Herein, we report a facile synthesis approach and crystal structure of the title compound, C13H17NO5, as a continuation of our work to obtain pyrrolidine analogues with potential bioactivity.

The title compound, illustrated in Fig. 1[link], crystallizes in the monoclinic space group P21/n with two independent mol­ecules in the asymmetric unit, each consisting of the five-membered pyrrolidine ring with furan, ethyl ester, and hydroxyl substituents at the 2, 3, and 4 ring positions, respectively. The stereogenic centres of each heterocycle have the relative stereochemistries RS, SR, RS at C2, C3, and C4, respectively. The core pyrrolidine rings in both mol­ecules exhibit envelope conformations. Otherwise, the bond lengths and angles in the title compound agree well with similar pyrrolidine containing systems (e.g., Abdul Rashid et al., 2023[Abdul Rashid, F. N. A., Bacho, M. Z., Hamali, M. A., Slawin, A. M., Mohammat, M. F., Shamsujunaidi, R. & Abdul Manan, M. A. F. (2023). IUCrData, 8, x230075.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Only the major disorder component of the C22 mol­ecule is shown.

In the extended structure of the title compound, both independent mol­ecules form reciprocal O—H⋯O hydrogen bonded dimers with inversion-symmetry-related neighbours, in a R22(10) fashion, between the hy­droxy and carbonyl substituents of the pyrrolidine ring. (Table 1[link], Fig. 2[link]). These dimers then stack together, with independent mol­ecules alternating, along [100] through non-classical C—H⋯O hydrogen bonds between adjacent furan moieties, which then further assemble into a three-dimensional network with support from non-classical hydrogen bonds between furan moieties and adjacent ester carbonyl O atoms.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.913 (12) 1.869 (13) 2.7408 (10) 158.9 (14)
O24—H24⋯O25ii 0.925 (12) 1.852 (13) 2.7323 (10) 158.1 (14)
C9—H9⋯O32ii 0.95 2.53 3.4086 (13) 154
C11—H11⋯O13iii 0.95 2.35 3.2758 (13) 165
C29—H29⋯O12i 0.95 2.48 3.3717 (13) 156
C31—H31⋯O33iv 0.95 2.33 3.2525 (13) 164
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
View showing the two independent hydrogen-bonded dimers stacking together through non-classical C—H⋯O hydrogen bonds. The minor component of disorder is omitted and ethyl groups are shown in wireframe representation for clarity.

Synthesis and crystallization

The 2-furyl-pyrrole­carboxyl­ate precursor was synthesized using our published methods for related compounds (Mohammat et al., 2015[Mohammat, M. F., Mansor, N. S., Shaameri, Z. & Hamzah, A. S. (2015). J. Korean Chem. Soc. 59, 31-35.]) through the multiple-component reaction of sodium diethyl oxalacetate, furfural and ethyl­amine. The title compound was synthesized by adding acetic acid (0.28 ml, 3.83 mmol) followed by sodium borohydride (0.16 g, 4.21 mmol) to a stirred solution of 2-furyl-pyrrole­carboxyl­ate (1.02 g, 3.83 mmol) in 20 ml di­chloro­methane at 0°C. The mixture was allowed to stir for 1 h at 0°C and a further 8 h at room temperature. The solvent was removed in vacuo and the crude product was dissolved in ethyl acetate and was extracted with water. The combined organic layers were washed with NaHCO3, dried over anhydrous MgSO4, and concentrated under reduced pressure. The crude product was subjected to column chromatography using mixed eluents of ethyl acetate: hexane (1:1) (yield: 0.44 g, 43%). m.p. 259–260°C; FT—IR (ATR, ν, cm−1) 1733 (C=O), 1695 (C=O); 1H NMR (400 MHz, chloro­form-d1) δ 7.39 (d, J = 1.9 Hz, 1H, HC=C), 6.38 (d, J = 3.0 Hz, 1H, HC=C) 6.32 (dd, J = 3.2, 1.8 Hz, 1H, HC=C), 4.75 (d, J = 8.5 Hz, 1H, NCH), 4.52 (d, J = 8.7 Hz, 1H, HCOH), 4.13 (m, J = 7.8, 6.7 Hz, 2H, OCH2), 3.46 (m, J = 14.6, 7.3 Hz, 1H, NCH2), 3.32 (t, J = 8.6 Hz, 1H, HCC=O), 2.73 (m, J = 14.2, 7.2 Hz, 1H, NCH2), 1.17 (t, J = 7.1 Hz, 3H, CH3), 0.89 (t, J = 7.3 Hz, 3H, CH3); 13C NMR (101 MHz, chloro­form-d1) δ 171.73 (C=O), 171.08 (C=O), 149.17 (quat. C), 143.84 (HC=C), 110.83 (HC=C), 110.72 (HC=C), 72.29 (HCOH), 61.82 (CH2), 54.13 (NCH), 51.93 (HCC=O), 36.19 (NCH2), 14.18 (CH3), 12.43 (CH3); GC–MS: m/z [M+] = calculated for C13H17NO5: 267.11; found 267.1. Crystals suitable for X-ray diffraction studies were grown by slow evaporation of an ethyl acetate solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NEt group on one mol­ecule (N21—C26—C27) is disordered over two orientations and was modelled with geometric and displacement-factor restraints on the minor component.

Table 2
Experimental details

Crystal data
Chemical formula C13H17NO5
Mr 267.27
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 11.15335 (7), 17.41068 (9), 14.06240 (9)
β (°) 108.1547 (7)
V3) 2594.80 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.89
Crystal size (mm) 0.14 × 0.07 × 0.03
 
Data collection
Diffractometer Rigaku XtaLAB P200K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan])
Tmin, Tmax 0.790, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 95957, 5344, 4906
Rint 0.069
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.107, 1.08
No. of reflections 5344
No. of parameters 384
No. of restraints 22
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.20
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Ethyl (2RS,3SR,4RS)-1-ethyl-2-(furan-2-yl)-4-hydroxy-5-oxopyrrolidine-3-carboxylate top
Crystal data top
C13H17NO5F(000) = 1136
Mr = 267.27Dx = 1.368 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 11.15335 (7) ÅCell parameters from 50600 reflections
b = 17.41068 (9) Åθ = 4.1–75.1°
c = 14.06240 (9) ŵ = 0.89 mm1
β = 108.1547 (7)°T = 100 K
V = 2594.80 (3) Å3Prism, colourless
Z = 80.14 × 0.07 × 0.03 mm
Data collection top
Rigaku XtaLAB P200K
diffractometer
5344 independent reflections
Radiation source: Rotating Anode, Rigaku MM-007HF4906 reflections with I > 2σ(I)
Rigaku Osmic Confocal Optical System monochromatorRint = 0.069
Detector resolution: 5.8140 pixels mm-1θmax = 75.5°, θmin = 4.2°
shutterless scansh = 1313
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2024)
k = 2121
Tmin = 0.790, Tmax = 1.000l = 1717
95957 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0599P)2 + 0.6008P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5344 reflectionsΔρmax = 0.31 e Å3
384 parametersΔρmin = 0.20 e Å3
22 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The O-bound H atoms were located in a difference map and refined isotropically with a distance restraint. The C-bound H atoms were located geometrically (C—H = 0.95–1.00 Å) and refined as riding atoms. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) was applied in all cases. The NEt group on one molecule (N21—C26—C27) was disordered over two positions and modelled with geometric and thermal restraints on minor component due to instability from low (<20%) occupancy.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O40.92054 (7)0.53494 (4)0.34391 (6)0.02196 (18)
H40.9694 (13)0.5029 (8)0.3919 (10)0.036 (4)*
O50.89935 (7)0.56424 (5)0.54461 (6)0.02841 (19)
O120.74321 (7)0.78349 (4)0.32650 (6)0.02110 (17)
O130.62305 (7)0.50977 (4)0.17572 (6)0.02460 (18)
O140.57795 (7)0.63387 (4)0.13538 (5)0.02211 (17)
O240.57281 (7)0.46110 (4)0.65771 (6)0.02178 (17)
H240.5220 (13)0.4929 (8)0.6090 (10)0.037 (4)*
O250.62108 (7)0.45310 (5)0.46170 (6)0.02536 (18)
O320.75626 (7)0.22738 (4)0.67378 (6)0.02102 (17)
O330.86974 (7)0.49392 (4)0.83546 (6)0.02598 (18)
O340.92397 (7)0.37003 (4)0.86969 (5)0.02279 (18)
N10.74582 (8)0.64686 (5)0.45417 (6)0.01942 (19)
N21A0.7786 (3)0.37341 (15)0.5535 (2)0.0190 (5)0.836 (4)
N21B0.7542 (12)0.3575 (7)0.5456 (10)0.010 (2)0.164 (4)
C20.66128 (9)0.65746 (6)0.35129 (7)0.0165 (2)
H20.5783160.6326170.3449770.020*
C30.73003 (9)0.61026 (6)0.28976 (7)0.0170 (2)
H30.7902110.6449860.2707070.020*
C40.80571 (9)0.55040 (6)0.36278 (7)0.0177 (2)
H4A0.7554430.5020610.3566270.021*
C50.82458 (9)0.58678 (6)0.46509 (8)0.0199 (2)
C60.73069 (10)0.69195 (6)0.53755 (8)0.0236 (2)
H6A0.7424350.7470370.5254140.028*
H6B0.7969860.6769240.5999090.028*
C70.60199 (11)0.68079 (7)0.55144 (9)0.0272 (2)
H7A0.5360090.6968760.4905550.041*
H7B0.5966230.7118180.6081100.041*
H7C0.5903730.6264660.5645930.041*
C80.63972 (9)0.73994 (6)0.32359 (7)0.0171 (2)
C90.53472 (10)0.78358 (6)0.29576 (8)0.0235 (2)
H90.4511260.7671620.2885710.028*
C100.57344 (11)0.85940 (6)0.27913 (9)0.0275 (2)
H100.5206350.9030430.2583380.033*
C110.69883 (11)0.85672 (6)0.29865 (8)0.0241 (2)
H110.7500150.8992720.2939690.029*
C130.63899 (9)0.57705 (6)0.19511 (7)0.0180 (2)
C150.48291 (10)0.61143 (6)0.04229 (8)0.0240 (2)
H15A0.5150090.5679840.0117780.029*
H15B0.4660140.6549740.0053240.029*
C160.36226 (11)0.58807 (7)0.06123 (9)0.0299 (3)
H16A0.2980290.5762110.0025800.045*
H16B0.3325930.6302690.0942390.045*
H16C0.3776780.5425490.1043430.045*
C220.84715 (9)0.35231 (6)0.65609 (7)0.0187 (2)
H220.9331960.3757040.6738230.022*0.836 (4)
H22A0.9297080.3779140.6630580.022*0.164 (4)
C230.77142 (9)0.39493 (6)0.71602 (7)0.0175 (2)
H230.7126570.3574920.7322730.021*
C240.69331 (9)0.45539 (6)0.64507 (8)0.0183 (2)
H24A0.7370820.5062090.6589160.022*
C250.68947 (10)0.42710 (6)0.54179 (8)0.0206 (2)
C26A0.81388 (15)0.34238 (9)0.46906 (10)0.0226 (4)0.836 (4)
H26A0.9055780.3315400.4913610.027*0.836 (4)
H26B0.7970320.3816740.4156220.027*0.836 (4)
C27A0.74323 (14)0.26966 (10)0.42640 (11)0.0280 (4)0.836 (4)
H27A0.7695270.2520540.3697430.042*0.836 (4)
H27B0.6523440.2800250.4036500.042*0.836 (4)
H27C0.7620640.2298080.4781740.042*0.836 (4)
C26B0.7672 (7)0.3099 (5)0.4613 (5)0.0171 (16)0.164 (4)
H26C0.7009740.3245770.3986670.020*0.164 (4)
H26D0.7552230.2550710.4745790.020*0.164 (4)
C27B0.8968 (6)0.3210 (4)0.4482 (5)0.0252 (19)0.164 (4)
H27D0.9016560.2913920.3902570.038*0.164 (4)
H27E0.9621370.3030870.5084680.038*0.164 (4)
H27F0.9099980.3755520.4376400.038*0.164 (4)
C280.86200 (9)0.26813 (6)0.67484 (7)0.0180 (2)
C290.96131 (10)0.22029 (6)0.68922 (8)0.0221 (2)
H291.0449850.2342270.6928870.027*
C300.91611 (11)0.14452 (6)0.69787 (8)0.0265 (2)
H300.9637610.0983130.7083680.032*
C310.79324 (11)0.15164 (6)0.68823 (8)0.0251 (2)
H310.7390750.1101620.6909860.030*
C330.85854 (9)0.42696 (6)0.81275 (8)0.0191 (2)
C351.02196 (10)0.39294 (6)0.96107 (8)0.0231 (2)
H35A1.0476420.3480191.0059950.028*
H35B0.9881990.4325670.9963450.028*
C361.13534 (11)0.42451 (7)0.93702 (9)0.0298 (3)
H36A1.1115680.4717080.8976790.045*
H36B1.1654430.3864450.8984030.045*
H36C1.2025670.4358380.9993840.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0195 (4)0.0234 (4)0.0257 (4)0.0059 (3)0.0110 (3)0.0062 (3)
O50.0287 (4)0.0316 (4)0.0220 (4)0.0112 (3)0.0038 (3)0.0033 (3)
O120.0218 (4)0.0168 (4)0.0264 (4)0.0026 (3)0.0099 (3)0.0002 (3)
O130.0269 (4)0.0170 (4)0.0282 (4)0.0017 (3)0.0063 (3)0.0030 (3)
O140.0263 (4)0.0180 (4)0.0188 (4)0.0001 (3)0.0024 (3)0.0013 (3)
O240.0194 (4)0.0245 (4)0.0237 (4)0.0049 (3)0.0098 (3)0.0054 (3)
O250.0261 (4)0.0287 (4)0.0228 (4)0.0069 (3)0.0098 (3)0.0084 (3)
O320.0213 (4)0.0184 (4)0.0241 (4)0.0016 (3)0.0081 (3)0.0003 (3)
O330.0294 (4)0.0167 (4)0.0289 (4)0.0024 (3)0.0048 (3)0.0032 (3)
O340.0269 (4)0.0171 (4)0.0207 (4)0.0014 (3)0.0021 (3)0.0001 (3)
N10.0212 (4)0.0200 (4)0.0169 (4)0.0024 (3)0.0057 (3)0.0005 (3)
N21A0.0234 (12)0.0158 (11)0.0194 (9)0.0009 (7)0.0093 (8)0.0001 (7)
N21B0.012 (4)0.008 (4)0.005 (3)0.000 (3)0.002 (3)0.003 (3)
C20.0171 (5)0.0156 (5)0.0173 (5)0.0006 (3)0.0060 (4)0.0012 (4)
C30.0175 (5)0.0149 (5)0.0201 (5)0.0004 (4)0.0080 (4)0.0012 (4)
C40.0175 (5)0.0160 (5)0.0207 (5)0.0012 (4)0.0075 (4)0.0019 (4)
C50.0189 (5)0.0202 (5)0.0213 (5)0.0011 (4)0.0071 (4)0.0029 (4)
C60.0286 (6)0.0215 (5)0.0202 (5)0.0026 (4)0.0070 (4)0.0017 (4)
C70.0345 (6)0.0262 (6)0.0252 (5)0.0023 (4)0.0154 (5)0.0002 (4)
C80.0192 (5)0.0167 (5)0.0166 (4)0.0019 (4)0.0074 (4)0.0001 (4)
C90.0222 (5)0.0200 (5)0.0283 (5)0.0027 (4)0.0081 (4)0.0024 (4)
C100.0351 (6)0.0181 (5)0.0294 (6)0.0056 (4)0.0100 (5)0.0041 (4)
C110.0364 (6)0.0148 (5)0.0226 (5)0.0034 (4)0.0113 (4)0.0006 (4)
C130.0184 (5)0.0179 (5)0.0198 (5)0.0013 (4)0.0090 (4)0.0012 (4)
C150.0276 (6)0.0257 (5)0.0167 (5)0.0021 (4)0.0039 (4)0.0001 (4)
C160.0255 (6)0.0341 (6)0.0271 (6)0.0007 (5)0.0040 (5)0.0045 (5)
C220.0192 (5)0.0186 (5)0.0200 (5)0.0021 (4)0.0085 (4)0.0015 (4)
C230.0185 (5)0.0148 (5)0.0205 (5)0.0001 (4)0.0081 (4)0.0004 (4)
C240.0177 (5)0.0160 (5)0.0222 (5)0.0008 (4)0.0078 (4)0.0025 (4)
C250.0218 (5)0.0197 (5)0.0230 (5)0.0008 (4)0.0109 (4)0.0047 (4)
C26A0.0303 (8)0.0201 (7)0.0219 (7)0.0029 (6)0.0144 (6)0.0013 (6)
C27A0.0349 (8)0.0277 (9)0.0230 (7)0.0010 (6)0.0110 (6)0.0053 (6)
C26B0.023 (3)0.010 (3)0.017 (3)0.007 (3)0.005 (2)0.006 (3)
C27B0.026 (4)0.029 (4)0.022 (3)0.001 (3)0.010 (3)0.003 (3)
C280.0199 (5)0.0187 (5)0.0160 (4)0.0008 (4)0.0066 (4)0.0006 (4)
C290.0217 (5)0.0227 (5)0.0219 (5)0.0036 (4)0.0065 (4)0.0018 (4)
C300.0351 (6)0.0182 (5)0.0257 (5)0.0060 (4)0.0087 (5)0.0019 (4)
C310.0356 (6)0.0155 (5)0.0240 (5)0.0030 (4)0.0090 (5)0.0023 (4)
C330.0195 (5)0.0172 (5)0.0219 (5)0.0014 (4)0.0085 (4)0.0010 (4)
C350.0258 (5)0.0225 (5)0.0185 (5)0.0004 (4)0.0035 (4)0.0010 (4)
C360.0257 (6)0.0356 (6)0.0263 (6)0.0001 (5)0.0055 (5)0.0009 (5)
Geometric parameters (Å, º) top
O4—H40.913 (12)C10—H100.9500
O4—C41.4125 (12)C10—C111.3394 (17)
O5—C51.2324 (13)C11—H110.9500
O12—C81.3709 (12)C15—H15A0.9900
O12—C111.3796 (13)C15—H15B0.9900
O13—C131.2033 (13)C15—C161.5068 (15)
O14—C131.3384 (12)C16—H16A0.9800
O14—C151.4578 (12)C16—H16B0.9800
O24—H240.925 (12)C16—H16C0.9800
O24—C241.4130 (12)C22—H221.0000
O25—C251.2328 (13)C22—H22A1.0000
O32—C281.3725 (12)C22—C231.5549 (13)
O32—C311.3777 (13)C22—C281.4892 (14)
O33—C331.2048 (13)C23—H231.0000
O34—C331.3387 (12)C23—C241.5234 (13)
O34—C351.4594 (12)C23—C331.5107 (14)
N1—C21.4718 (12)C24—H24A1.0000
N1—C51.3437 (13)C24—C251.5215 (14)
N1—C61.4639 (13)C26A—H26A0.9900
N21A—C221.453 (3)C26A—H26B0.9900
N21A—C251.337 (3)C26A—C27A1.513 (2)
N21A—C26A1.466 (3)C27A—H27A0.9800
N21B—C221.579 (13)C27A—H27B0.9800
N21B—C251.403 (13)C27A—H27C0.9800
N21B—C26B1.491 (14)C26B—H26C0.9900
C2—H21.0000C26B—H26D0.9900
C2—C31.5574 (13)C26B—C27B1.525 (9)
C2—C81.4877 (13)C27B—H27D0.9800
C3—H31.0000C27B—H27E0.9800
C3—C41.5208 (13)C27B—H27F0.9800
C3—C131.5148 (14)C28—C291.3497 (14)
C4—H4A1.0000C29—H290.9500
C4—C51.5252 (14)C29—C301.4310 (15)
C6—H6A0.9900C30—H300.9500
C6—H6B0.9900C30—C311.3402 (17)
C6—C71.5202 (15)C31—H310.9500
C7—H7A0.9800C35—H35A0.9900
C7—H7B0.9800C35—H35B0.9900
C7—H7C0.9800C35—C361.5107 (15)
C8—C91.3477 (14)C36—H36A0.9800
C9—H90.9500C36—H36B0.9800
C9—C101.4306 (15)C36—H36C0.9800
C4—O4—H4110.1 (9)N21A—C22—C28114.80 (13)
C8—O12—C11106.17 (8)N21B—C22—H22A111.9
C13—O14—C15116.79 (8)C23—C22—N21B101.8 (5)
C24—O24—H24109.6 (9)C23—C22—H22108.2
C28—O32—C31106.05 (8)C23—C22—H22A111.9
C33—O34—C35116.32 (8)C28—C22—N21B103.5 (4)
C5—N1—C2113.94 (8)C28—C22—H22108.2
C5—N1—C6124.09 (9)C28—C22—H22A111.9
C6—N1—C2121.44 (8)C28—C22—C23115.02 (8)
C22—N21A—C26A121.3 (2)C22—C23—H23108.6
C25—N21A—C22116.1 (2)C24—C23—C22105.74 (8)
C25—N21A—C26A122.3 (2)C24—C23—H23108.6
C25—N21B—C22105.0 (7)C33—C23—C22111.02 (8)
C25—N21B—C26B128.8 (11)C33—C23—H23108.6
C26B—N21B—C22123.6 (10)C33—C23—C24114.25 (8)
N1—C2—H2108.9O24—C24—C23109.79 (8)
N1—C2—C3101.80 (7)O24—C24—H24A109.8
N1—C2—C8112.34 (8)O24—C24—C25113.44 (8)
C3—C2—H2108.9C23—C24—H24A109.8
C8—C2—H2108.9C25—C24—C23103.99 (8)
C8—C2—C3115.55 (8)C25—C24—H24A109.8
C2—C3—H3108.5O25—C25—N21A126.46 (16)
C4—C3—C2104.61 (8)O25—C25—N21B121.1 (6)
C4—C3—H3108.5O25—C25—C24125.35 (9)
C13—C3—C2112.23 (8)N21A—C25—C24108.04 (16)
C13—C3—H3108.5N21B—C25—C24112.5 (6)
C13—C3—C4114.26 (8)N21A—C26A—H26A109.0
O4—C4—C3110.41 (8)N21A—C26A—H26B109.0
O4—C4—H4A109.9N21A—C26A—C27A113.06 (14)
O4—C4—C5112.93 (8)H26A—C26A—H26B107.8
C3—C4—H4A109.9C27A—C26A—H26A109.0
C3—C4—C5103.70 (8)C27A—C26A—H26B109.0
C5—C4—H4A109.9C26A—C27A—H27A109.5
O5—C5—N1125.80 (10)C26A—C27A—H27B109.5
O5—C5—C4125.39 (9)C26A—C27A—H27C109.5
N1—C5—C4108.80 (8)H27A—C27A—H27B109.5
N1—C6—H6A109.1H27A—C27A—H27C109.5
N1—C6—H6B109.1H27B—C27A—H27C109.5
N1—C6—C7112.55 (9)N21B—C26B—H26C109.5
H6A—C6—H6B107.8N21B—C26B—H26D109.5
C7—C6—H6A109.1N21B—C26B—C27B110.9 (8)
C7—C6—H6B109.1H26C—C26B—H26D108.1
C6—C7—H7A109.5C27B—C26B—H26C109.5
C6—C7—H7B109.5C27B—C26B—H26D109.5
C6—C7—H7C109.5C26B—C27B—H27D109.5
H7A—C7—H7B109.5C26B—C27B—H27E109.5
H7A—C7—H7C109.5C26B—C27B—H27F109.5
H7B—C7—H7C109.5H27D—C27B—H27E109.5
O12—C8—C2117.40 (8)H27D—C27B—H27F109.5
C9—C8—O12110.13 (9)H27E—C27B—H27F109.5
C9—C8—C2132.46 (9)O32—C28—C22117.33 (8)
C8—C9—H9126.6C29—C28—O32110.18 (9)
C8—C9—C10106.76 (10)C29—C28—C22132.42 (9)
C10—C9—H9126.6C28—C29—H29126.7
C9—C10—H10126.8C28—C29—C30106.69 (10)
C11—C10—C9106.47 (10)C30—C29—H29126.7
C11—C10—H10126.8C29—C30—H30126.8
O12—C11—H11124.8C31—C30—C29106.40 (9)
C10—C11—O12110.47 (9)C31—C30—H30126.8
C10—C11—H11124.8O32—C31—H31124.7
O13—C13—O14124.54 (9)C30—C31—O32110.68 (9)
O13—C13—C3125.59 (9)C30—C31—H31124.7
O14—C13—C3109.87 (8)O33—C33—O34124.45 (10)
O14—C15—H15A109.5O33—C33—C23125.48 (9)
O14—C15—H15B109.5O34—C33—C23110.06 (8)
O14—C15—C16110.68 (9)O34—C35—H35A109.5
H15A—C15—H15B108.1O34—C35—H35B109.5
C16—C15—H15A109.5O34—C35—C36110.60 (9)
C16—C15—H15B109.5H35A—C35—H35B108.1
C15—C16—H16A109.5C36—C35—H35A109.5
C15—C16—H16B109.5C36—C35—H35B109.5
C15—C16—H16C109.5C35—C36—H36A109.5
H16A—C16—H16B109.5C35—C36—H36B109.5
H16A—C16—H16C109.5C35—C36—H36C109.5
H16B—C16—H16C109.5H36A—C36—H36B109.5
N21A—C22—H22108.2H36A—C36—H36C109.5
N21A—C22—C23102.16 (14)H36B—C36—H36C109.5
O4—C4—C5—O546.93 (14)C13—C3—C4—O491.18 (10)
O4—C4—C5—N1133.51 (9)C13—C3—C4—C5147.57 (8)
O12—C8—C9—C100.49 (12)C15—O14—C13—O132.18 (14)
O24—C24—C25—O2549.78 (14)C15—O14—C13—C3177.78 (8)
O24—C24—C25—N21A134.40 (14)C22—N21A—C25—O25179.90 (12)
O24—C24—C25—N21B118.3 (5)C22—N21A—C25—C244.1 (2)
O32—C28—C29—C300.01 (12)C22—N21A—C26A—C27A91.9 (2)
N1—C2—C3—C425.90 (9)C22—N21B—C25—O25170.5 (4)
N1—C2—C3—C13150.32 (8)C22—N21B—C25—C2420.8 (8)
N1—C2—C8—O1260.01 (11)C22—N21B—C26B—C27B56.6 (12)
N1—C2—C8—C9119.12 (12)C22—C23—C24—O24141.47 (8)
N21A—C22—C23—C2417.32 (13)C22—C23—C24—C2519.78 (10)
N21A—C22—C23—C33141.75 (12)C22—C23—C33—O33118.97 (11)
N21A—C22—C28—O3271.41 (16)C22—C23—C33—O3459.94 (10)
N21A—C22—C28—C29105.14 (18)C22—C28—C29—C30176.75 (11)
N21B—C22—C23—C2431.2 (4)C23—C22—C28—O3246.74 (12)
N21B—C22—C23—C33155.6 (4)C23—C22—C28—C29136.71 (11)
N21B—C22—C28—O3263.4 (5)C23—C24—C25—O25169.01 (10)
N21B—C22—C28—C29113.1 (5)C23—C24—C25—N21A15.17 (15)
C2—N1—C5—O5176.23 (10)C23—C24—C25—N21B0.9 (5)
C2—N1—C5—C43.34 (11)C24—C23—C33—O330.48 (14)
C2—N1—C6—C759.57 (12)C24—C23—C33—O34179.40 (8)
C2—C3—C4—O4145.71 (8)C25—N21A—C22—C238.5 (2)
C2—C3—C4—C524.46 (10)C25—N21A—C22—C28133.66 (16)
C2—C3—C13—O13118.21 (11)C25—N21A—C26A—C27A93.8 (2)
C2—C3—C13—O1461.74 (10)C25—N21B—C22—C2331.7 (8)
C2—C8—C9—C10179.67 (10)C25—N21B—C22—C28151.3 (6)
C3—C2—C8—O1256.19 (12)C25—N21B—C26B—C27B102.6 (11)
C3—C2—C8—C9124.68 (12)C26A—N21A—C22—C23176.88 (17)
C3—C4—C5—O5166.46 (10)C26A—N21A—C22—C2851.7 (2)
C3—C4—C5—N113.97 (10)C26A—N21A—C25—O255.3 (3)
C4—C3—C13—O130.67 (14)C26A—N21A—C25—C24170.44 (17)
C4—C3—C13—O14179.38 (8)C26B—N21B—C22—C23165.0 (9)
C5—N1—C2—C318.63 (10)C26B—N21B—C22—C2845.4 (11)
C5—N1—C2—C8142.84 (9)C26B—N21B—C25—O258.4 (14)
C5—N1—C6—C7111.54 (11)C26B—N21B—C25—C24177.1 (9)
C6—N1—C2—C3169.42 (9)C28—O32—C31—C300.07 (12)
C6—N1—C2—C845.21 (12)C28—C22—C23—C24142.36 (9)
C6—N1—C5—O54.52 (17)C28—C22—C23—C3393.21 (10)
C6—N1—C5—C4175.04 (9)C28—C29—C30—C310.03 (12)
C8—O12—C11—C100.04 (12)C29—C30—C31—O320.06 (12)
C8—C2—C3—C4147.93 (8)C31—O32—C28—C22177.33 (9)
C8—C2—C3—C1387.66 (10)C31—O32—C28—C290.05 (11)
C8—C9—C10—C110.45 (13)C33—O34—C35—C3674.74 (11)
C9—C10—C11—O120.25 (13)C33—C23—C24—O2496.14 (10)
C11—O12—C8—C2179.65 (8)C33—C23—C24—C25142.16 (8)
C11—O12—C8—C90.34 (11)C35—O34—C33—O335.23 (15)
C13—O14—C15—C1678.82 (11)C35—O34—C33—C23173.70 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.91 (1)1.87 (1)2.7408 (10)159 (1)
O24—H24···O25ii0.93 (1)1.85 (1)2.7323 (10)158 (1)
C9—H9···O32ii0.952.533.4086 (13)154
C11—H11···O13iii0.952.353.2758 (13)165
C29—H29···O12i0.952.483.3717 (13)156
C31—H31···O33iv0.952.333.2525 (13)164
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x+3/2, y1/2, z+3/2.
 

Acknowledgements

The authors acknowledge Universiti Teknologi MARA for financial support and the Centre of Chemical Synthesis & Polymer Technology (CCSPT), Institute of Science, Universiti Teknologi MARA Puncak Alam, Selangor, Malaysia for the provision of laboratory facilities.

References

First citationAbdul Rashid, F. N. A., Bacho, M. Z., Hamali, M. A., Slawin, A. M., Mohammat, M. F., Shamsujunaidi, R. & Abdul Manan, M. A. F. (2023). IUCrData, 8, x230075.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEsposito, A., Alonzo, D. D., De Fenza, M., De Gregorio, E., Tamanini, A., Lippi, G. & Guaragna, A. (2020). Int. J. Mol. Sci. 21, 1–34.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohammat, M. F., Mansor, N. S., Shaameri, Z. & Hamzah, A. S. (2015). J. Korean Chem. Soc. 59, 31–35.  CrossRef Google Scholar
First citationOu, C., Ghosh, B. & Sharma, I. (2023). Org. Chem. Front. 10, 5933–5939.  CrossRef Google Scholar
First citationPetri, G. L., Raimondi, M. V., Spanò, V., Holl, R., Barraja, P. & Montalbano, A. (2021). Top. Curr. Chem. 379, 34. https://doi.org/10.1007/s41061-021-00347-5  Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H., Tang, S., Zhang, G., Pan, Y., Jiao, W. & Shao, H. (2022). Molecules, 27, 5517. https://doi.org/10.3390/molecules27175517  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146