organic compounds
Tris(4-chlorophenyl) phosphate
aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: Richard.Betz@mandela.ac.za
The title compound, C18H12Cl3O4P, is the symmetric phosphate derived from para-chlorophenol and phosphoric acid. Two of the three aromatic moieties adopt syn-orientation towards the P=O bond while the last chlorophenol ring is pointing away from this bond. In the extended structure, C—H⋯O bonds connect the individual molecules into sheets lying perpendicular to the crystallographic b axis.
Keywords: crystal structure.
CCDC reference: 2396855
Structure description
Pentacoordinate compounds of phosphorus have been an intriguing field of research for many decades, owing to their assumed importance as transition states in biological systems that see the formation and decomposition of a multitude of compounds derived from phosphoric acid encountered along the many metabolic pathways in eucaryontic cells (Stryer, 1988; Westheimer, 1968; Gerlt et al., 1975; Holmes, 1998, 2004). An easy inroad into such derivatives stems from exploiting ligand-exchange reactions starting from already pentacoordinate precursors of this element. At the onset of a study into the chemical reactivity of this class of compound, we sought to synthesize the symmetric oxyphosphorane of para-chlorophenol, which would result in the formation of a solid reaction product of which a crystalline specimen could be subjected to diffraction studies. The results of the latter showed the presence of a defined hydrolysis product whose formation was already confirmed by means of NMR studies on the crude reaction mixture. In our ongoing interest into structural aspects of the heavier pnictogen elements such as phosphorus (Hosten et al., 2012; Betz & Klüfers, 2008; Betz, 2015; Betz et al., 2011a), arsenic (Betz et al., 2007, 2008, 2009a,b, 2011b; Betz & Klüfers, 2009) and antimony (Betz et al., 2009b, 2010) and to spare future researchers the waste of valuable data-collection time on diffractometers, the outcome of our crystallographic studies is presented herein. Structural data for the thionated analogue of the title compound are apparent in the literature (Hernandez et al., 2006), as are data for a dinuclear diphosphazene (Allcock et al., 1994). Furthermore, the crystal and molecular structures of several ruthenium coordination compounds employing the trivalent phosphite ester as a ligand (Bidal et al., 2019) as well as two related phosphoranes in line with the actual intended oxyphosphorane have been reported (Sarma et al., 1976; Marczenko et al., 2019).
The structure solution shows the presence of the title compound, C18H12Cl3O4P, a symmetric ester of phosphoric acid derived from three equivalents of para-chlorophenol (Fig. 1). The P—O bond lengths to the three aromatic alcohol moieties cover the range 1.5678 (13)–1.5806 (14) Å while the (formal) P=O double bond is found at a value of 1.4513 (14) Å. The carbon–chlorine bonds lie between 1.7388 (18) and 1.7422 (19) Å and are, therefore, in good agreement with other aromatic C—Cl bonds whose metrical parameters have been deposited with the Cambridge Structural Database (Groom et al., 2002). The O—P—O angles span the range 101.50 (7)–118.37 (8)° with the largest three angles all involving the lone oxygen atom. The least-squares planes as defined by the respective carbon atoms of the C11, C21 and C31 aromatic rings enclose angles of 49.42 (8) (C11/C21), 69.83 (8) (C11/C31) and 77.48 (9)° (C21/C31). In comparison to the thionated analogue of the title compound (Hernandez et al., 2006), the P—O bonds as well as the C—Cl bonds are all found at slightly larger values in the sulfur-derivative.
In the crystal of C18H12Cl3O4P, C—H⋯O contacts shorter than 0.1 Å less than the sum of the van der Waals radii are apparent. The latter are supported by one of the hydrogen atoms in the ortho-position to the chlorine atom on each of the aromatic rings and uniformly employ the (formally) double bonded oxygen atom O4 as acceptor (Table 1). In terms of graph-set analysis (Etter et al., 1990; Bernstein et al., 1995), these contacts require a C11(7) C11(7) C11(7) descriptor on the unary level. In total, the molecules are connected into sheets lying perpendicular to the crystallographic b axis (Fig. 2). Two of the aromatic systems experience stabilization through π-stacking interactions with the shortest intercentroid distance measured at 3.7544 (10) Å.
Synthesis and crystallization
The title compound was isolated as an accidental hydrolysis by-product upon the synthesis of the symmetric para-chlorophenoxyphosphorane from PCl5 and para-chlorophenol according to a published procedure (Ramirez et al., 1968). A crystal suitable for the diffraction study was taken directly from the crystallized oily product.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2396855
https://doi.org/10.1107/S2414314624010617/hb4490sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624010617/hb4490Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624010617/hb4490Isup3.cml
C18H12Cl3O4P | F(000) = 872 |
Mr = 429.60 | Dx = 1.590 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5771 (5) Å | Cell parameters from 9220 reflections |
b = 21.1280 (14) Å | θ = 2.7–28.3° |
c = 11.2665 (7) Å | µ = 0.62 mm−1 |
β = 95.835 (2)° | T = 200 K |
V = 1794.3 (2) Å3 | Rod, colourless |
Z = 4 | 0.60 × 0.14 × 0.13 mm |
Bruker APEXII CCD diffractometer | 3920 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.036 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.3°, θmin = 2.1° |
Tmin = 0.792, Tmax = 1.000 | h = −10→9 |
58447 measured reflections | k = −28→28 |
4427 independent reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0344P)2 + 1.6089P] where P = (Fo2 + 2Fc2)/3 |
4427 reflections | (Δ/σ)max = 0.001 |
235 parameters | Δρmax = 0.37 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.17450 (8) | 0.67130 (3) | 0.25722 (4) | 0.04555 (15) | |
Cl2 | 0.15619 (7) | 0.96171 (2) | 1.13729 (5) | 0.04071 (14) | |
Cl3 | 0.96260 (7) | 0.50899 (3) | 1.16357 (5) | 0.03942 (14) | |
P1 | 0.23268 (6) | 0.67194 (2) | 0.87255 (4) | 0.02265 (11) | |
O1 | 0.31794 (18) | 0.63308 (6) | 0.77432 (11) | 0.0272 (3) | |
O2 | 0.34438 (17) | 0.73521 (6) | 0.87549 (12) | 0.0277 (3) | |
O3 | 0.29349 (17) | 0.63395 (6) | 0.98911 (11) | 0.0269 (3) | |
O4 | 0.04172 (17) | 0.68072 (6) | 0.85985 (12) | 0.0298 (3) | |
C11 | 0.2781 (2) | 0.64485 (8) | 0.65109 (15) | 0.0227 (3) | |
C12 | 0.1892 (2) | 0.59829 (8) | 0.58403 (16) | 0.0262 (4) | |
H12 | 0.150962 | 0.560988 | 0.620952 | 0.031* | |
C13 | 0.1561 (2) | 0.60655 (9) | 0.46160 (17) | 0.0280 (4) | |
H13 | 0.094852 | 0.575032 | 0.413415 | 0.034* | |
C14 | 0.2138 (2) | 0.66143 (9) | 0.41085 (16) | 0.0276 (4) | |
C15 | 0.3042 (3) | 0.70793 (9) | 0.47845 (18) | 0.0298 (4) | |
H15 | 0.343241 | 0.745139 | 0.441633 | 0.036* | |
C16 | 0.3373 (2) | 0.69956 (9) | 0.60092 (17) | 0.0273 (4) | |
H16 | 0.399366 | 0.730840 | 0.649255 | 0.033* | |
C21 | 0.2917 (2) | 0.78820 (8) | 0.93942 (16) | 0.0237 (3) | |
C22 | 0.2113 (3) | 0.83806 (9) | 0.87600 (16) | 0.0288 (4) | |
H22 | 0.186261 | 0.835618 | 0.791773 | 0.035* | |
C23 | 0.1678 (3) | 0.89184 (9) | 0.93736 (17) | 0.0292 (4) | |
H23 | 0.112444 | 0.926854 | 0.895784 | 0.035* | |
C24 | 0.2060 (2) | 0.89370 (9) | 1.05993 (17) | 0.0269 (4) | |
C25 | 0.2854 (2) | 0.84366 (9) | 1.12328 (16) | 0.0279 (4) | |
H25 | 0.309330 | 0.845798 | 1.207611 | 0.033* | |
C26 | 0.3298 (2) | 0.79007 (9) | 1.06137 (16) | 0.0264 (4) | |
H26 | 0.385733 | 0.755121 | 1.102768 | 0.032* | |
C31 | 0.4588 (2) | 0.60700 (8) | 1.02654 (15) | 0.0229 (3) | |
C32 | 0.6164 (3) | 0.62701 (9) | 0.98716 (17) | 0.0300 (4) | |
H32 | 0.617447 | 0.660803 | 0.931603 | 0.036* | |
C33 | 0.7737 (3) | 0.59701 (10) | 1.03000 (18) | 0.0315 (4) | |
H33 | 0.883513 | 0.610130 | 1.004259 | 0.038* | |
C34 | 0.7679 (2) | 0.54797 (9) | 1.11032 (16) | 0.0260 (4) | |
C35 | 0.6100 (2) | 0.52804 (8) | 1.14972 (15) | 0.0256 (4) | |
H35 | 0.608753 | 0.494033 | 1.204801 | 0.031* | |
C36 | 0.4536 (2) | 0.55828 (8) | 1.10788 (15) | 0.0244 (3) | |
H36 | 0.344168 | 0.545645 | 1.134817 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0594 (4) | 0.0555 (3) | 0.0228 (2) | 0.0116 (3) | 0.0091 (2) | 0.0070 (2) |
Cl2 | 0.0412 (3) | 0.0326 (2) | 0.0492 (3) | −0.0024 (2) | 0.0087 (2) | −0.0158 (2) |
Cl3 | 0.0279 (2) | 0.0446 (3) | 0.0451 (3) | 0.0055 (2) | 0.0005 (2) | 0.0124 (2) |
P1 | 0.0239 (2) | 0.0231 (2) | 0.0209 (2) | 0.00231 (16) | 0.00230 (16) | −0.00020 (16) |
O1 | 0.0338 (7) | 0.0262 (6) | 0.0214 (6) | 0.0082 (5) | 0.0025 (5) | 0.0001 (5) |
O2 | 0.0298 (7) | 0.0248 (6) | 0.0298 (6) | −0.0003 (5) | 0.0088 (5) | −0.0018 (5) |
O3 | 0.0248 (6) | 0.0327 (7) | 0.0231 (6) | 0.0027 (5) | 0.0031 (5) | 0.0053 (5) |
O4 | 0.0249 (6) | 0.0321 (7) | 0.0319 (7) | 0.0031 (5) | 0.0009 (5) | −0.0025 (5) |
C11 | 0.0233 (8) | 0.0246 (8) | 0.0206 (8) | 0.0071 (6) | 0.0044 (6) | 0.0004 (6) |
C12 | 0.0290 (9) | 0.0227 (8) | 0.0274 (9) | 0.0032 (7) | 0.0058 (7) | 0.0025 (7) |
C13 | 0.0286 (9) | 0.0284 (9) | 0.0269 (9) | 0.0032 (7) | 0.0021 (7) | −0.0036 (7) |
C14 | 0.0285 (9) | 0.0350 (9) | 0.0205 (8) | 0.0103 (7) | 0.0076 (7) | 0.0038 (7) |
C15 | 0.0295 (9) | 0.0283 (9) | 0.0334 (9) | 0.0033 (7) | 0.0117 (8) | 0.0064 (7) |
C16 | 0.0247 (8) | 0.0264 (9) | 0.0316 (9) | −0.0002 (7) | 0.0065 (7) | −0.0013 (7) |
C21 | 0.0222 (8) | 0.0228 (8) | 0.0265 (8) | −0.0021 (6) | 0.0048 (6) | −0.0010 (6) |
C22 | 0.0338 (10) | 0.0303 (9) | 0.0218 (8) | 0.0008 (7) | 0.0010 (7) | 0.0019 (7) |
C23 | 0.0310 (9) | 0.0268 (9) | 0.0293 (9) | 0.0036 (7) | 0.0010 (7) | 0.0046 (7) |
C24 | 0.0239 (8) | 0.0254 (8) | 0.0321 (9) | −0.0040 (7) | 0.0064 (7) | −0.0056 (7) |
C25 | 0.0262 (9) | 0.0350 (10) | 0.0219 (8) | −0.0045 (7) | 0.0007 (7) | −0.0002 (7) |
C26 | 0.0253 (8) | 0.0272 (8) | 0.0261 (8) | 0.0004 (7) | 0.0004 (7) | 0.0059 (7) |
C31 | 0.0253 (8) | 0.0252 (8) | 0.0182 (7) | 0.0012 (6) | 0.0018 (6) | −0.0008 (6) |
C32 | 0.0286 (9) | 0.0308 (9) | 0.0306 (9) | −0.0035 (7) | 0.0034 (7) | 0.0104 (7) |
C33 | 0.0256 (9) | 0.0361 (10) | 0.0330 (10) | −0.0044 (7) | 0.0046 (7) | 0.0070 (8) |
C34 | 0.0252 (8) | 0.0277 (9) | 0.0243 (8) | 0.0013 (7) | −0.0010 (7) | 0.0005 (7) |
C35 | 0.0310 (9) | 0.0247 (8) | 0.0213 (8) | −0.0011 (7) | 0.0045 (7) | 0.0032 (6) |
C36 | 0.0263 (8) | 0.0265 (8) | 0.0213 (8) | −0.0018 (7) | 0.0064 (6) | 0.0009 (6) |
Cl1—C14 | 1.7388 (18) | C21—C26 | 1.376 (3) |
Cl2—C24 | 1.7418 (19) | C21—C22 | 1.379 (3) |
Cl3—C34 | 1.7422 (19) | C22—C23 | 1.387 (3) |
P1—O4 | 1.4513 (14) | C22—H22 | 0.9500 |
P1—O3 | 1.5678 (13) | C23—C24 | 1.382 (3) |
P1—O1 | 1.5690 (13) | C23—H23 | 0.9500 |
P1—O2 | 1.5806 (14) | C24—C25 | 1.379 (3) |
O1—C11 | 1.413 (2) | C25—C26 | 1.389 (3) |
O2—C21 | 1.411 (2) | C25—H25 | 0.9500 |
O3—C31 | 1.401 (2) | C26—H26 | 0.9500 |
C11—C12 | 1.374 (3) | C31—C36 | 1.381 (2) |
C11—C16 | 1.381 (3) | C31—C32 | 1.382 (3) |
C12—C13 | 1.388 (3) | C32—C33 | 1.392 (3) |
C12—H12 | 0.9500 | C32—H32 | 0.9500 |
C13—C14 | 1.383 (3) | C33—C34 | 1.379 (3) |
C13—H13 | 0.9500 | C33—H33 | 0.9500 |
C14—C15 | 1.381 (3) | C34—C35 | 1.383 (3) |
C15—C16 | 1.388 (3) | C35—C36 | 1.386 (3) |
C15—H15 | 0.9500 | C35—H35 | 0.9500 |
C16—H16 | 0.9500 | C36—H36 | 0.9500 |
O4—P1—O3 | 110.68 (8) | C23—C22—H22 | 120.6 |
O4—P1—O1 | 118.37 (8) | C24—C23—C22 | 119.00 (17) |
O3—P1—O1 | 102.47 (7) | C24—C23—H23 | 120.5 |
O4—P1—O2 | 114.86 (8) | C22—C23—H23 | 120.5 |
O3—P1—O2 | 107.72 (7) | C25—C24—C23 | 122.09 (17) |
O1—P1—O2 | 101.50 (7) | C25—C24—Cl2 | 118.61 (15) |
C11—O1—P1 | 122.62 (11) | C23—C24—Cl2 | 119.29 (15) |
C21—O2—P1 | 120.20 (11) | C24—C25—C26 | 118.69 (17) |
C31—O3—P1 | 129.62 (11) | C24—C25—H25 | 120.7 |
C12—C11—C16 | 122.37 (16) | C26—C25—H25 | 120.7 |
C12—C11—O1 | 117.26 (15) | C21—C26—C25 | 119.23 (17) |
C16—C11—O1 | 120.24 (16) | C21—C26—H26 | 120.4 |
C11—C12—C13 | 119.02 (17) | C25—C26—H26 | 120.4 |
C11—C12—H12 | 120.5 | C36—C31—C32 | 121.64 (17) |
C13—C12—H12 | 120.5 | C36—C31—O3 | 114.70 (15) |
C14—C13—C12 | 118.92 (17) | C32—C31—O3 | 123.66 (16) |
C14—C13—H13 | 120.5 | C31—C32—C33 | 119.12 (17) |
C12—C13—H13 | 120.5 | C31—C32—H32 | 120.4 |
C15—C14—C13 | 121.88 (17) | C33—C32—H32 | 120.4 |
C15—C14—Cl1 | 119.26 (15) | C34—C33—C32 | 119.09 (17) |
C13—C14—Cl1 | 118.85 (15) | C34—C33—H33 | 120.5 |
C14—C15—C16 | 119.12 (17) | C32—C33—H33 | 120.5 |
C14—C15—H15 | 120.4 | C33—C34—C35 | 121.70 (17) |
C16—C15—H15 | 120.4 | C33—C34—Cl3 | 119.91 (15) |
C11—C16—C15 | 118.68 (17) | C35—C34—Cl3 | 118.38 (14) |
C11—C16—H16 | 120.7 | C34—C35—C36 | 119.20 (16) |
C15—C16—H16 | 120.7 | C34—C35—H35 | 120.4 |
C26—C21—C22 | 122.15 (17) | C36—C35—H35 | 120.4 |
C26—C21—O2 | 119.43 (16) | C31—C36—C35 | 119.24 (16) |
C22—C21—O2 | 118.33 (16) | C31—C36—H36 | 120.4 |
C21—C22—C23 | 118.83 (17) | C35—C36—H36 | 120.4 |
C21—C22—H22 | 120.6 | ||
O4—P1—O1—C11 | 48.94 (16) | C26—C21—C22—C23 | 0.1 (3) |
O3—P1—O1—C11 | 170.98 (13) | O2—C21—C22—C23 | −176.51 (16) |
O2—P1—O1—C11 | −77.74 (14) | C21—C22—C23—C24 | −0.1 (3) |
O4—P1—O2—C21 | 40.80 (15) | C22—C23—C24—C25 | −0.3 (3) |
O3—P1—O2—C21 | −83.02 (14) | C22—C23—C24—Cl2 | 178.60 (15) |
O1—P1—O2—C21 | 169.75 (13) | C23—C24—C25—C26 | 0.7 (3) |
O4—P1—O3—C31 | 169.27 (14) | Cl2—C24—C25—C26 | −178.23 (14) |
O1—P1—O3—C31 | 42.15 (16) | C22—C21—C26—C25 | 0.3 (3) |
O2—P1—O3—C31 | −64.41 (16) | O2—C21—C26—C25 | 176.86 (16) |
P1—O1—C11—C12 | −113.75 (16) | C24—C25—C26—C21 | −0.7 (3) |
P1—O1—C11—C16 | 70.2 (2) | P1—O3—C31—C36 | −157.17 (13) |
C16—C11—C12—C13 | −0.5 (3) | P1—O3—C31—C32 | 23.3 (3) |
O1—C11—C12—C13 | −176.52 (15) | C36—C31—C32—C33 | 0.4 (3) |
C11—C12—C13—C14 | 0.0 (3) | O3—C31—C32—C33 | 179.97 (17) |
C12—C13—C14—C15 | 0.4 (3) | C31—C32—C33—C34 | 0.2 (3) |
C12—C13—C14—Cl1 | 179.27 (14) | C32—C33—C34—C35 | −0.3 (3) |
C13—C14—C15—C16 | −0.4 (3) | C32—C33—C34—Cl3 | 179.11 (15) |
Cl1—C14—C15—C16 | −179.23 (14) | C33—C34—C35—C36 | −0.3 (3) |
C12—C11—C16—C15 | 0.6 (3) | Cl3—C34—C35—C36 | −179.68 (14) |
O1—C11—C16—C15 | 176.44 (15) | C32—C31—C36—C35 | −1.0 (3) |
C14—C15—C16—C11 | −0.1 (3) | O3—C31—C36—C35 | 179.43 (15) |
P1—O2—C21—C26 | 78.94 (19) | C34—C35—C36—C31 | 0.9 (3) |
P1—O2—C21—C22 | −104.39 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15···O4i | 0.95 | 2.42 | 3.324 (2) | 159 |
C25—H25···O4ii | 0.95 | 2.40 | 3.176 (2) | 139 |
C33—H33···O4iii | 0.95 | 2.59 | 3.423 (2) | 147 |
Symmetry codes: (i) x+1/2, −y+3/2, z−1/2; (ii) x+1/2, −y+3/2, z+1/2; (iii) x+1, y, z. |
References
Allcock, H. R., Ngo, D. C., Parvez, M. & Visscher, K. B. (1994). Inorg. Chem. 33, 2090–2102. CSD CrossRef CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Betz, R. (2015). Polyhedron, 87, 163–169. CrossRef CAS Google Scholar
Betz, R., Gerber, T., Hosten, E. & Schalekamp, H. (2011a). Acta Cryst. E67, o1028–o1029. CrossRef IUCr Journals Google Scholar
Betz, R., Junggeburth, S., Klüfers, P. & Mayer, P. (2010). Acta Cryst. E66, m28. CrossRef IUCr Journals Google Scholar
Betz, R. & Klüfers, P. (2008). Phosphorus Sulfur Silicon, 183, 1615–1629. CrossRef CAS Google Scholar
Betz, R. & Klüfers, P. (2009). Inorg. Chem. 48, 925–935. CrossRef PubMed CAS Google Scholar
Betz, R., Klüfers, P., Reichvilser, M. M. & Roessner, F. W. (2008). Z. Anorg. Allg. Chem. 634, 696–700. CrossRef CAS Google Scholar
Betz, R., Klüfers, P. & Walter, A. (2007). Acta Cryst. E63, m2483. CrossRef IUCr Journals Google Scholar
Betz, R., Lindner, C., Klüfers, P. & Mayer, P. (2009b). Acta Cryst. E65, m253–m254. CrossRef IUCr Journals Google Scholar
Betz, R., McCleland, C. & Marchand, H. (2011b). Acta Cryst. E67, m1013. CrossRef IUCr Journals Google Scholar
Betz, R., Reichvilser, M. M., Schumi, E., Miller, C. & Klüfers, P. (2009a). Z. Anorg. Allg. Chem. 635, 1204–1208. CrossRef CAS Google Scholar
Bidal, Y. D., Urbina-Blanco, C. A., Poater, A., Cordes, D. N., Slawin, A. M. Z., Cavallo, L. & Cazin, C. S. J. (2019). Dalton Trans. 48, 11326–11337. CrossRef CAS PubMed Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gerlt, J. A., Westheimer, F. H. & Sturtevant, J. M. (1975). J. Biol. Chem. 250, 5059–5067. CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hernández, J., Goycoolea, F. M., Zepeda-Rivera, D., Juárez-Onofre, J., Martínez, K., Lizardi, J., Salas-Reyes, M., Gordillo, B., Velázquez-Contreras, C., García-Barradas, O., Cruz-Sánchez, S. & Domínguez, Z. (2006). Tetrahedron, 62, 2520–2528. Google Scholar
Holmes, R. R. (1998). Acc. Chem. Res. 31, 535–542. CrossRef CAS Google Scholar
Holmes, R. R. (2004). Acc. Chem. Res. 37, 746–753. CrossRef PubMed CAS Google Scholar
Hosten, E. C., Gerber, T. I. A. & Betz, R. (2012). Z. Kristallogr. New Cryst. Struct. 227, 331–332. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marczenko, K. M., Johnson, C.-L. & Chitnis, S. S. (2019). Chem. Eur. J. 25, 8865–8874. CrossRef CAS PubMed Google Scholar
Ramirez, F., Bigler, A. J. & Smith, C. P. (1968). J. Am. Chem. Soc. 90, 3507–3511. CrossRef CAS Google Scholar
Sarma, R., Ramirez, F., McKeever, B., Marecek, J. F. & Lee, S. (1976). J. Am. Chem. Soc. 98, 581–587. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stryer, L. (1988). Biochemistry, 3rd ed. New York: W. H. Freeman and Co. Google Scholar
Westheimer, F. H. (1968). Acc. Chem. Res. 1, 70–78. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.