organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tris(4-chloro­phen­yl) phosphate

crossmark logo

aNelson Mandela University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa
*Correspondence e-mail: Richard.Betz@mandela.ac.za

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 1 November 2024; accepted 2 November 2024; online 8 November 2024)

The title compound, C18H12Cl3O4P, is the symmetric phosphate derived from para-chloro­phenol and phospho­ric acid. Two of the three aromatic moieties adopt syn-orientation towards the P=O bond while the last chloro­phenol ring is pointing away from this bond. In the extended structure, C—H⋯O bonds connect the individual mol­ecules into sheets lying perpendicular to the crystallographic b axis.

Keywords: crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Penta­coordinate compounds of phospho­rus have been an intriguing field of research for many decades, owing to their assumed importance as transition states in biological systems that see the formation and decomposition of a multitude of compounds derived from phospho­ric acid encountered along the many metabolic pathways in eucaryontic cells (Stryer, 1988[Stryer, L. (1988). Biochemistry, 3rd ed. New York: W. H. Freeman and Co.]; Westheimer, 1968[Westheimer, F. H. (1968). Acc. Chem. Res. 1, 70-78.]; Gerlt et al., 1975[Gerlt, J. A., Westheimer, F. H. & Sturtevant, J. M. (1975). J. Biol. Chem. 250, 5059-5067.]; Holmes, 1998[Holmes, R. R. (1998). Acc. Chem. Res. 31, 535-542.], 2004[Holmes, R. R. (2004). Acc. Chem. Res. 37, 746-753.]). An easy inroad into such derivatives stems from exploiting ligand-exchange reactions starting from already penta­coordinate precursors of this element. At the onset of a study into the chemical reactivity of this class of compound, we sought to synthesize the symmetric oxyphospho­rane of para-chloro­phenol, which would result in the formation of a solid reaction product of which a crystalline specimen could be subjected to diffraction studies. The results of the latter showed the presence of a defined hydrolysis product whose formation was already confirmed by means of NMR studies on the crude reaction mixture. In our ongoing inter­est into structural aspects of the heavier pnictogen elements such as phospho­rus (Hosten et al., 2012[Hosten, E. C., Gerber, T. I. A. & Betz, R. (2012). Z. Kristallogr. New Cryst. Struct. 227, 331-332.]; Betz & Klüfers, 2008[Betz, R. & Klüfers, P. (2008). Phosphorus Sulfur Silicon, 183, 1615-1629.]; Betz, 2015[Betz, R. (2015). Polyhedron, 87, 163-169.]; Betz et al., 2011a[Betz, R., Gerber, T., Hosten, E. & Schalekamp, H. (2011a). Acta Cryst. E67, o1028-o1029.]), arsenic (Betz et al., 2007[Betz, R., Klüfers, P. & Walter, A. (2007). Acta Cryst. E63, m2483.], 2008[Betz, R., Klüfers, P., Reichvilser, M. M. & Roessner, F. W. (2008). Z. Anorg. Allg. Chem. 634, 696-700.], 2009a[Betz, R., Reichvilser, M. M., Schumi, E., Miller, C. & Klüfers, P. (2009a). Z. Anorg. Allg. Chem. 635, 1204-1208.],b[Betz, R., Lindner, C., Klüfers, P. & Mayer, P. (2009b). Acta Cryst. E65, m253-m254.], 2011b[Betz, R., McCleland, C. & Marchand, H. (2011b). Acta Cryst. E67, m1013.]; Betz & Klüfers, 2009[Betz, R. & Klüfers, P. (2009). Inorg. Chem. 48, 925-935.]) and anti­mony (Betz et al., 2009b[Betz, R., Lindner, C., Klüfers, P. & Mayer, P. (2009b). Acta Cryst. E65, m253-m254.], 2010[Betz, R., Junggeburth, S., Klüfers, P. & Mayer, P. (2010). Acta Cryst. E66, m28.]) and to spare future researchers the waste of valuable data-collection time on diffractometers, the outcome of our crystallographic studies is presented herein. Structural data for the thio­nated analogue of the title compound are apparent in the literature (Hernandez et al., 2006[Hernández, J., Goycoolea, F. M., Zepeda-Rivera, D., Juárez-Onofre, J., Martínez, K., Lizardi, J., Salas-Reyes, M., Gordillo, B., Velázquez-Contreras, C., García-Barradas, O., Cruz-Sánchez, S. & Domínguez, Z. (2006). Tetrahedron, 62, 2520-2528.]), as are data for a dinuclear diphos­phazene (Allcock et al., 1994[Allcock, H. R., Ngo, D. C., Parvez, M. & Visscher, K. B. (1994). Inorg. Chem. 33, 2090-2102.]). Furthermore, the crystal and mol­ecular structures of several ruthenium coordination compounds employing the trivalent phosphite ester as a ligand (Bidal et al., 2019[Bidal, Y. D., Urbina-Blanco, C. A., Poater, A., Cordes, D. N., Slawin, A. M. Z., Cavallo, L. & Cazin, C. S. J. (2019). Dalton Trans. 48, 11326-11337.]) as well as two related phospho­ranes in line with the actual intended oxyphospho­rane have been reported (Sarma et al., 1976[Sarma, R., Ramirez, F., McKeever, B., Marecek, J. F. & Lee, S. (1976). J. Am. Chem. Soc. 98, 581-587.]; Marczenko et al., 2019[Marczenko, K. M., Johnson, C.-L. & Chitnis, S. S. (2019). Chem. Eur. J. 25, 8865-8874.]).

The structure solution shows the presence of the title compound, C18H12Cl3O4P, a symmetric ester of phospho­ric acid derived from three equivalents of para-chloro­phenol (Fig. 1[link]). The P—O bond lengths to the three aromatic alcohol moieties cover the range 1.5678 (13)–1.5806 (14) Å while the (formal) P=O double bond is found at a value of 1.4513 (14) Å. The carbon–chlorine bonds lie between 1.7388 (18) and 1.7422 (19) Å and are, therefore, in good agreement with other aromatic C—Cl bonds whose metrical parameters have been deposited with the Cambridge Structural Database (Groom et al., 2002[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The O—P—O angles span the range 101.50 (7)–118.37 (8)° with the largest three angles all involving the lone oxygen atom. The least-squares planes as defined by the respective carbon atoms of the C11, C21 and C31 aromatic rings enclose angles of 49.42 (8) (C11/C21), 69.83 (8) (C11/C31) and 77.48 (9)° (C21/C31). In comparison to the thio­nated analogue of the title compound (Hernandez et al., 2006[Hernández, J., Goycoolea, F. M., Zepeda-Rivera, D., Juárez-Onofre, J., Martínez, K., Lizardi, J., Salas-Reyes, M., Gordillo, B., Velázquez-Contreras, C., García-Barradas, O., Cruz-Sánchez, S. & Domínguez, Z. (2006). Tetrahedron, 62, 2520-2528.]), the P—O bonds as well as the C—Cl bonds are all found at slightly larger values in the sulfur-derivative.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal of C18H12Cl3O4P, C—H⋯O contacts shorter than 0.1 Å less than the sum of the van der Waals radii are apparent. The latter are supported by one of the hydrogen atoms in the ortho-position to the chlorine atom on each of the aromatic rings and uniformly employ the (formally) double bonded oxygen atom O4 as acceptor (Table 1[link]). In terms of graph-set analysis (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), these contacts require a C11(7)  C11(7)  C11(7) descriptor on the unary level. In total, the mol­ecules are connected into sheets lying perpendicular to the crystallographic b axis (Fig. 2[link]). Two of the aromatic systems experience stabilization through π-stacking inter­actions with the shortest inter­centroid distance measured at 3.7544 (10) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O4i 0.95 2.42 3.324 (2) 159
C25—H25⋯O4ii 0.95 2.40 3.176 (2) 139
C33—H33⋯O4iii 0.95 2.59 3.423 (2) 147
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+1, y, z].
[Figure 2]
Figure 2
Inter­molecular contacts viewed approximately along [010].

Synthesis and crystallization

The title compound was isolated as an accidental hydrolysis by-product upon the synthesis of the symmetric para-chloro­phen­oxy­phospho­rane from PCl5 and para-chloro­phenol according to a published procedure (Ramirez et al., 1968[Ramirez, F., Bigler, A. J. & Smith, C. P. (1968). J. Am. Chem. Soc. 90, 3507-3511.]). A crystal suitable for the diffraction study was taken directly from the crystallized oily product.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H12Cl3O4P
Mr 429.60
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 7.5771 (5), 21.1280 (14), 11.2665 (7)
β (°) 95.835 (2)
V3) 1794.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.62
Crystal size (mm) 0.60 × 0.14 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.792, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 58447, 4427, 3920
Rint 0.036
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.12
No. of reflections 4427
No. of parameters 235
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Tris(4-chlorophenyl) phosphate top
Crystal data top
C18H12Cl3O4PF(000) = 872
Mr = 429.60Dx = 1.590 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.5771 (5) ÅCell parameters from 9220 reflections
b = 21.1280 (14) Åθ = 2.7–28.3°
c = 11.2665 (7) ŵ = 0.62 mm1
β = 95.835 (2)°T = 200 K
V = 1794.3 (2) Å3Rod, colourless
Z = 40.60 × 0.14 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
3920 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 2.1°
Tmin = 0.792, Tmax = 1.000h = 109
58447 measured reflectionsk = 2828
4427 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0344P)2 + 1.6089P]
where P = (Fo2 + 2Fc2)/3
4427 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.17450 (8)0.67130 (3)0.25722 (4)0.04555 (15)
Cl20.15619 (7)0.96171 (2)1.13729 (5)0.04071 (14)
Cl30.96260 (7)0.50899 (3)1.16357 (5)0.03942 (14)
P10.23268 (6)0.67194 (2)0.87255 (4)0.02265 (11)
O10.31794 (18)0.63308 (6)0.77432 (11)0.0272 (3)
O20.34438 (17)0.73521 (6)0.87549 (12)0.0277 (3)
O30.29349 (17)0.63395 (6)0.98911 (11)0.0269 (3)
O40.04172 (17)0.68072 (6)0.85985 (12)0.0298 (3)
C110.2781 (2)0.64485 (8)0.65109 (15)0.0227 (3)
C120.1892 (2)0.59829 (8)0.58403 (16)0.0262 (4)
H120.1509620.5609880.6209520.031*
C130.1561 (2)0.60655 (9)0.46160 (17)0.0280 (4)
H130.0948520.5750320.4134150.034*
C140.2138 (2)0.66143 (9)0.41085 (16)0.0276 (4)
C150.3042 (3)0.70793 (9)0.47845 (18)0.0298 (4)
H150.3432410.7451390.4416330.036*
C160.3373 (2)0.69956 (9)0.60092 (17)0.0273 (4)
H160.3993660.7308400.6492550.033*
C210.2917 (2)0.78820 (8)0.93942 (16)0.0237 (3)
C220.2113 (3)0.83806 (9)0.87600 (16)0.0288 (4)
H220.1862610.8356180.7917730.035*
C230.1678 (3)0.89184 (9)0.93736 (17)0.0292 (4)
H230.1124440.9268540.8957840.035*
C240.2060 (2)0.89370 (9)1.05993 (17)0.0269 (4)
C250.2854 (2)0.84366 (9)1.12328 (16)0.0279 (4)
H250.3093300.8457981.2076110.033*
C260.3298 (2)0.79007 (9)1.06137 (16)0.0264 (4)
H260.3857330.7551211.1027680.032*
C310.4588 (2)0.60700 (8)1.02654 (15)0.0229 (3)
C320.6164 (3)0.62701 (9)0.98716 (17)0.0300 (4)
H320.6174470.6608030.9316030.036*
C330.7737 (3)0.59701 (10)1.03000 (18)0.0315 (4)
H330.8835130.6101301.0042590.038*
C340.7679 (2)0.54797 (9)1.11032 (16)0.0260 (4)
C350.6100 (2)0.52804 (8)1.14972 (15)0.0256 (4)
H350.6087530.4940331.2048010.031*
C360.4536 (2)0.55828 (8)1.10788 (15)0.0244 (3)
H360.3441680.5456451.1348170.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0594 (4)0.0555 (3)0.0228 (2)0.0116 (3)0.0091 (2)0.0070 (2)
Cl20.0412 (3)0.0326 (2)0.0492 (3)0.0024 (2)0.0087 (2)0.0158 (2)
Cl30.0279 (2)0.0446 (3)0.0451 (3)0.0055 (2)0.0005 (2)0.0124 (2)
P10.0239 (2)0.0231 (2)0.0209 (2)0.00231 (16)0.00230 (16)0.00020 (16)
O10.0338 (7)0.0262 (6)0.0214 (6)0.0082 (5)0.0025 (5)0.0001 (5)
O20.0298 (7)0.0248 (6)0.0298 (6)0.0003 (5)0.0088 (5)0.0018 (5)
O30.0248 (6)0.0327 (7)0.0231 (6)0.0027 (5)0.0031 (5)0.0053 (5)
O40.0249 (6)0.0321 (7)0.0319 (7)0.0031 (5)0.0009 (5)0.0025 (5)
C110.0233 (8)0.0246 (8)0.0206 (8)0.0071 (6)0.0044 (6)0.0004 (6)
C120.0290 (9)0.0227 (8)0.0274 (9)0.0032 (7)0.0058 (7)0.0025 (7)
C130.0286 (9)0.0284 (9)0.0269 (9)0.0032 (7)0.0021 (7)0.0036 (7)
C140.0285 (9)0.0350 (9)0.0205 (8)0.0103 (7)0.0076 (7)0.0038 (7)
C150.0295 (9)0.0283 (9)0.0334 (9)0.0033 (7)0.0117 (8)0.0064 (7)
C160.0247 (8)0.0264 (9)0.0316 (9)0.0002 (7)0.0065 (7)0.0013 (7)
C210.0222 (8)0.0228 (8)0.0265 (8)0.0021 (6)0.0048 (6)0.0010 (6)
C220.0338 (10)0.0303 (9)0.0218 (8)0.0008 (7)0.0010 (7)0.0019 (7)
C230.0310 (9)0.0268 (9)0.0293 (9)0.0036 (7)0.0010 (7)0.0046 (7)
C240.0239 (8)0.0254 (8)0.0321 (9)0.0040 (7)0.0064 (7)0.0056 (7)
C250.0262 (9)0.0350 (10)0.0219 (8)0.0045 (7)0.0007 (7)0.0002 (7)
C260.0253 (8)0.0272 (8)0.0261 (8)0.0004 (7)0.0004 (7)0.0059 (7)
C310.0253 (8)0.0252 (8)0.0182 (7)0.0012 (6)0.0018 (6)0.0008 (6)
C320.0286 (9)0.0308 (9)0.0306 (9)0.0035 (7)0.0034 (7)0.0104 (7)
C330.0256 (9)0.0361 (10)0.0330 (10)0.0044 (7)0.0046 (7)0.0070 (8)
C340.0252 (8)0.0277 (9)0.0243 (8)0.0013 (7)0.0010 (7)0.0005 (7)
C350.0310 (9)0.0247 (8)0.0213 (8)0.0011 (7)0.0045 (7)0.0032 (6)
C360.0263 (8)0.0265 (8)0.0213 (8)0.0018 (7)0.0064 (6)0.0009 (6)
Geometric parameters (Å, º) top
Cl1—C141.7388 (18)C21—C261.376 (3)
Cl2—C241.7418 (19)C21—C221.379 (3)
Cl3—C341.7422 (19)C22—C231.387 (3)
P1—O41.4513 (14)C22—H220.9500
P1—O31.5678 (13)C23—C241.382 (3)
P1—O11.5690 (13)C23—H230.9500
P1—O21.5806 (14)C24—C251.379 (3)
O1—C111.413 (2)C25—C261.389 (3)
O2—C211.411 (2)C25—H250.9500
O3—C311.401 (2)C26—H260.9500
C11—C121.374 (3)C31—C361.381 (2)
C11—C161.381 (3)C31—C321.382 (3)
C12—C131.388 (3)C32—C331.392 (3)
C12—H120.9500C32—H320.9500
C13—C141.383 (3)C33—C341.379 (3)
C13—H130.9500C33—H330.9500
C14—C151.381 (3)C34—C351.383 (3)
C15—C161.388 (3)C35—C361.386 (3)
C15—H150.9500C35—H350.9500
C16—H160.9500C36—H360.9500
O4—P1—O3110.68 (8)C23—C22—H22120.6
O4—P1—O1118.37 (8)C24—C23—C22119.00 (17)
O3—P1—O1102.47 (7)C24—C23—H23120.5
O4—P1—O2114.86 (8)C22—C23—H23120.5
O3—P1—O2107.72 (7)C25—C24—C23122.09 (17)
O1—P1—O2101.50 (7)C25—C24—Cl2118.61 (15)
C11—O1—P1122.62 (11)C23—C24—Cl2119.29 (15)
C21—O2—P1120.20 (11)C24—C25—C26118.69 (17)
C31—O3—P1129.62 (11)C24—C25—H25120.7
C12—C11—C16122.37 (16)C26—C25—H25120.7
C12—C11—O1117.26 (15)C21—C26—C25119.23 (17)
C16—C11—O1120.24 (16)C21—C26—H26120.4
C11—C12—C13119.02 (17)C25—C26—H26120.4
C11—C12—H12120.5C36—C31—C32121.64 (17)
C13—C12—H12120.5C36—C31—O3114.70 (15)
C14—C13—C12118.92 (17)C32—C31—O3123.66 (16)
C14—C13—H13120.5C31—C32—C33119.12 (17)
C12—C13—H13120.5C31—C32—H32120.4
C15—C14—C13121.88 (17)C33—C32—H32120.4
C15—C14—Cl1119.26 (15)C34—C33—C32119.09 (17)
C13—C14—Cl1118.85 (15)C34—C33—H33120.5
C14—C15—C16119.12 (17)C32—C33—H33120.5
C14—C15—H15120.4C33—C34—C35121.70 (17)
C16—C15—H15120.4C33—C34—Cl3119.91 (15)
C11—C16—C15118.68 (17)C35—C34—Cl3118.38 (14)
C11—C16—H16120.7C34—C35—C36119.20 (16)
C15—C16—H16120.7C34—C35—H35120.4
C26—C21—C22122.15 (17)C36—C35—H35120.4
C26—C21—O2119.43 (16)C31—C36—C35119.24 (16)
C22—C21—O2118.33 (16)C31—C36—H36120.4
C21—C22—C23118.83 (17)C35—C36—H36120.4
C21—C22—H22120.6
O4—P1—O1—C1148.94 (16)C26—C21—C22—C230.1 (3)
O3—P1—O1—C11170.98 (13)O2—C21—C22—C23176.51 (16)
O2—P1—O1—C1177.74 (14)C21—C22—C23—C240.1 (3)
O4—P1—O2—C2140.80 (15)C22—C23—C24—C250.3 (3)
O3—P1—O2—C2183.02 (14)C22—C23—C24—Cl2178.60 (15)
O1—P1—O2—C21169.75 (13)C23—C24—C25—C260.7 (3)
O4—P1—O3—C31169.27 (14)Cl2—C24—C25—C26178.23 (14)
O1—P1—O3—C3142.15 (16)C22—C21—C26—C250.3 (3)
O2—P1—O3—C3164.41 (16)O2—C21—C26—C25176.86 (16)
P1—O1—C11—C12113.75 (16)C24—C25—C26—C210.7 (3)
P1—O1—C11—C1670.2 (2)P1—O3—C31—C36157.17 (13)
C16—C11—C12—C130.5 (3)P1—O3—C31—C3223.3 (3)
O1—C11—C12—C13176.52 (15)C36—C31—C32—C330.4 (3)
C11—C12—C13—C140.0 (3)O3—C31—C32—C33179.97 (17)
C12—C13—C14—C150.4 (3)C31—C32—C33—C340.2 (3)
C12—C13—C14—Cl1179.27 (14)C32—C33—C34—C350.3 (3)
C13—C14—C15—C160.4 (3)C32—C33—C34—Cl3179.11 (15)
Cl1—C14—C15—C16179.23 (14)C33—C34—C35—C360.3 (3)
C12—C11—C16—C150.6 (3)Cl3—C34—C35—C36179.68 (14)
O1—C11—C16—C15176.44 (15)C32—C31—C36—C351.0 (3)
C14—C15—C16—C110.1 (3)O3—C31—C36—C35179.43 (15)
P1—O2—C21—C2678.94 (19)C34—C35—C36—C310.9 (3)
P1—O2—C21—C22104.39 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O4i0.952.423.324 (2)159
C25—H25···O4ii0.952.403.176 (2)139
C33—H33···O4iii0.952.593.423 (2)147
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y, z.
 

References

First citationAllcock, H. R., Ngo, D. C., Parvez, M. & Visscher, K. B. (1994). Inorg. Chem. 33, 2090–2102.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetz, R. (2015). Polyhedron, 87, 163–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationBetz, R., Gerber, T., Hosten, E. & Schalekamp, H. (2011a). Acta Cryst. E67, o1028–o1029.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Junggeburth, S., Klüfers, P. & Mayer, P. (2010). Acta Cryst. E66, m28.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R. & Klüfers, P. (2008). Phosphorus Sulfur Silicon, 183, 1615–1629.  Web of Science CSD CrossRef CAS Google Scholar
First citationBetz, R. & Klüfers, P. (2009). Inorg. Chem. 48, 925–935.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBetz, R., Klüfers, P., Reichvilser, M. M. & Roessner, F. W. (2008). Z. Anorg. Allg. Chem. 634, 696–700.  Web of Science CSD CrossRef CAS Google Scholar
First citationBetz, R., Klüfers, P. & Walter, A. (2007). Acta Cryst. E63, m2483.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Lindner, C., Klüfers, P. & Mayer, P. (2009b). Acta Cryst. E65, m253–m254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., McCleland, C. & Marchand, H. (2011b). Acta Cryst. E67, m1013.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBetz, R., Reichvilser, M. M., Schumi, E., Miller, C. & Klüfers, P. (2009a). Z. Anorg. Allg. Chem. 635, 1204–1208.  Web of Science CSD CrossRef CAS Google Scholar
First citationBidal, Y. D., Urbina-Blanco, C. A., Poater, A., Cordes, D. N., Slawin, A. M. Z., Cavallo, L. & Cazin, C. S. J. (2019). Dalton Trans. 48, 11326–11337.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGerlt, J. A., Westheimer, F. H. & Sturtevant, J. M. (1975). J. Biol. Chem. 250, 5059–5067.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHernández, J., Goycoolea, F. M., Zepeda-Rivera, D., Juárez-Onofre, J., Martínez, K., Lizardi, J., Salas-Reyes, M., Gordillo, B., Velázquez-Contreras, C., García-Barradas, O., Cruz-Sánchez, S. & Domínguez, Z. (2006). Tetrahedron, 62, 2520–2528.  Google Scholar
First citationHolmes, R. R. (1998). Acc. Chem. Res. 31, 535–542.  Web of Science CrossRef CAS Google Scholar
First citationHolmes, R. R. (2004). Acc. Chem. Res. 37, 746–753.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHosten, E. C., Gerber, T. I. A. & Betz, R. (2012). Z. Kristallogr. New Cryst. Struct. 227, 331–332.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarczenko, K. M., Johnson, C.-L. & Chitnis, S. S. (2019). Chem. Eur. J. 25, 8865–8874.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRamirez, F., Bigler, A. J. & Smith, C. P. (1968). J. Am. Chem. Soc. 90, 3507–3511.  CrossRef CAS Web of Science Google Scholar
First citationSarma, R., Ramirez, F., McKeever, B., Marecek, J. F. & Lee, S. (1976). J. Am. Chem. Soc. 98, 581–587.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStryer, L. (1988). Biochemistry, 3rd ed. New York: W. H. Freeman and Co.  Google Scholar
First citationWestheimer, F. H. (1968). Acc. Chem. Res. 1, 70–78.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146