organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-Amino-3,5-di­chloro­pyridine

crossmark logo

aDepartment of Chemistry, Periyar Maniammai Institute of Science & Technology, Thanjavur, Tamilnadu-613403, India, bDepartment of Chemistry, Bishop Heber College, Tiruchirappalli, Tamilnadu-620017, India, and cX-ray Crystallography Unit, School of Physics, University Sains Malaysia, 11800, USM, Penang, Malaysia
*Correspondence e-mail: gomathichemist@pmu.edu

Edited by R. J. Butcher, Howard University, USA (Received 25 September 2024; accepted 18 November 2024; online 22 November 2024)

The title compound, C5H4Cl2N2, crystallizes with one mol­ecule in the asymmetric unit. In the crystal, the mol­ecular entities are assembled through strong N—H⋯N hydrogen bonding, forming supra­molecular chains extending along the b-axis direction. These chains are inter­connected by offset ππ stacking inter­actions and consolidated by halogen–π inter­actions. The mol­ecular inter­actions were qu­anti­fied by Hirshfeld surface analysis, showing the significant contributions of Cl⋯H/H⋯Cl (40.1%), H⋯H (15.7%) and N⋯H / H⋯N (13.1%) inter­actions. Energy framework analysis using the CE-B3LYP/6–31 G(d,p) basis set revealed that Coulombic inter­actions make a considerable contribution to the total energy and crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

4-Amino-3,5-di­chloro­pyridine (ADCP) is of inter­est in organic synthesis and medicinal chemistry due to its versatile reactivity and potential properties including anti­microbial (Singaram et al., 2016[Singaram, K., Marimuthu, D., Baskaran, S. & Chinaga, S. (2016). J. Chin. Chem. Soc. 63, 758-769.]) and anti-cancer (Onnis et al., 2009[Onnis, V., Cocco, M. T., Fadda, R. & Congiu, C. (2009). Bioorg. Med. Chem. 17, 6158-6165.]) activity. Its derivatives are employed in the development of drugs targeting various biological inflammatory diseases (Boland et al., 2014[Boland, S., Alen, J., Bourin, A., Castermans, K., Boumans, N., Panitti, L., Vanormelingen, J., Leysen, D. & Defert, O. (2014). Bioorg. Med. Chem. Lett. 24, 4594-4597.]), bacterial infections (Chung et al., 1999[Chung, I. H., Kim, C. S., Seo, J. H. & Chung, B. Y. (1999). Arch. Pharm. Res. 22, 391-397.]) and hyperthyroidism. Structural studies of chloro and di­chloro­pyridine derivatives, namely 2-amino-3-chloro­pyridine (Hu et al., 2011[Hu, Z.-N., Yang, H.-B., Luo, H. & Li, B. (2011). Acta Cryst. E67, o1138.]), 2-amino-5-chloro­pyridine-fumaric acid (Hemamalini & Fun, 2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1416-o1417.]), 2-amino-3,5-di­chloro­pyridinium chloride monohydrate (Anagnostis & Turnbull, 1998[Anagnostis, J. & Turnbull, M. M. (1998). Acta Cryst. C54, 681-683.]) and 4-amino-3,5-di­chloro­pyridinium 3-hy­droxy­pico­linate monohydrate (Ashokan et al., 2023[Ashokan, A., Nehru, J., Chakkarapani, N., Khamrang, T., Kavitha, S. J., Rajakannan, V. & Hemamalini, M. (2023). IUCrData, 8, x230821.]) have been reported in the literature. The crystal structure of ADCP will be helpful in identifying the structural and supra­molecular patterns that play a significant role in its functional properties.

The asymmetric unit of ADCP (Fig. 1[link]) consists of one mol­ecule. The C1—N1—C5 bond angle is 116.4 (5)°, indicating that the ring nitro­gen atom of ADCP is sp2 hybridized (Newell et al., 2022[Newell, B. D., McMillen, C. D. & Lee, J. P. (2022). IUCrData, 7, x220804-x220804.]). The deviation from the ideal angle of 120° is due to the strain exerted by the presence of a lone pair on the nitro­gen atom and contributes to the weak basicity of ADCP. In the crystal, the mol­ecular entities are assembled through N—H⋯N hydrogen bonding between the amino N2 atom and ring N1 atom of a symmetry-related mol­ecule (Table 1[link]), forming supra­molecular chains along the b-axis direction. Neighbouring chains are inter­linked by offset aromatic ππ stacking inter­actions (Malenov & Zarić, 2023[Malenov, D. P. & Zarić, S. D. (2023). Chemistry, 5, 2513-2541.]) between the pyridine π clouds [Cg1⋯Cg1(x, y, 1 + z) = 3.8638 (19) Å, perpendicular distance = 3.4954 (12) Å and slip angle = 25.2° where Cg1 is the centroid of the N1/C1–C5 ring; symmetry code: x, y, 1 + z], as shown in Fig. 2[link]. The cohesion of the crystal structure is enhanced by the presence of halogen–π inter­actions (Rahman et al., 2003[Rahman, A. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2003). CrystEngComm, 5, 422-428.]) with a Cl⋯π distance of = 3.9375 (17) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1A⋯Cl1i 0.84 (4) 2.81 (4) 3.625 (3) 164 (3)
N2—H2A⋯N1ii 0.85 (2) 2.16 (3) 2.931 (3) 149 (3)
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
ORTEP view of ADCP with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Supra­molecular chains formed through N—H⋯N hydrogen bonds and inter­linked via offset aromatic ππ stacking and halogen–π inter­actions. [Symmetry codes: (i) [{1\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] + z; (ii) x, y, 1 + z.]

Hirshfeld surface (HS) (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) analysis was used to visualize and qu­antify the inter­molecular inter­actions in the crystal. The isovalue of w(r)= 1/2, mapped over dnorm on the HS to the inside (di) and exterior (de) atoms between the arbitrary units (−0.46 to 1.21) specifies the HS of ADCP. The intensity of the hydrogen-bonded contacts in the HS of ADCP are represented as red, blue, and white in Fig. 3[link]. The strongest inter­actions are indicated by red, weaker inter­actions are represented by white, and inter­actions larger than the total of the van der Waals radii of neighbouring atoms are indicated by blue. The acceptor regions of hydrogen bonds are highlighted in red on the dnorm surface. The HS plotted over dnorm shows the atoms within 3.8 Å of the HS, showing the strong N—H⋯N inter­molecular hydrogen-bonding inter­actions linking 4-amino N2 and ring N1 atoms of adjacent ADCP mol­ecules.

[Figure 3]
Figure 3
Hirshfeld surface mapped over dnorm for ADCP.

The presence of ππ stacking inter­actions is indicated and confirmed by the contiguous red and blue triangular regions around the pyridine rings on the HS mapped over the shape index (see Fig. 4[link]). The stacking inter­action is also supported by the large, flat green regions around the pyridine ring on the corresponding curvedness surface. Colour patches on the Hirshfeld surface depend on their closeness to the adjacent mol­ecules and provide information regarding the nearest coordination environment of a mol­ecule. The atoms within 3.8 Å from the HS of ADCP with their respective mol­ecules, involving non-covalent inter­actions at various levels are displayed in different colour codes in Fig. 4[link].

[Figure 4]
Figure 4
Shape-index, curvedness and colour patches of the mol­ecule within 3.8. Å.

The total inter­molecular inter­actions between the promolecule and the exterior mol­ecules were qu­anti­fied by two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) in terms di and de and are represented as blue regions with dots of varied intensities in Fig. 5[link]. In the fingerprint plots, among all the non-covalent inter­actions, Cl⋯H/H⋯Cl (40.1%) followed by H⋯H (15.7%) contacts contribute the maximum in the crystal packing of ADCP. The N⋯H/H⋯N contacts provide a significant contribution (13.1%) through the strong hydrogen bonding involving N and H atoms. The C⋯H / H⋯C (7.3%), Cl⋯Cl (7.1%),C⋯C (6.8%), N⋯C/C⋯N (4.9%) and Cl⋯C/C⋯Cl (3.8%) inter­actions also contribute to the cohesion of the crystal structure.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots of the mol­ecule with percentage contributions.

The stability of the crystal packing arrangement is achieved by the systematic balance between the mol­ecules by which the mol­ecules are aligned to increase the attractive inter­actions and decrease the repulsive forces to yield the stable and energetically favoured crystalline structure. The total inter­action energy (kJ mol−1) is the sum of electrostatic energy, polarization energy, dispersion energy and repulsion energy. The total energy was calculated using the CE-B3LYP/6–31 G(d,p) basis set implemented in Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]) by computing the individual components using the monomer wavefunctions that have been appropriately scaled (kele= 1.057, kpol= 0.740, kdis= 0.871 and krep= 0.618) to reproduce the counterpoise-corrected energies B3LYP/6–31 G(d,p) with a small mean absolute deviation of 2.4 kJ mol−1 (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). The various colour codes in Table 2[link] indicate the exterior inter­acting mol­ecules around the distance between mol­ecular centroids (R) and the summation of the scaled values of the individual energy components of exterior mol­ecule is given as Etot.

Table 2
The inter­action energies (kJ mol−1) of the promolecule with the surrounding mol­ecules within 3.8 Å

N = number of pairs with that energy; symmetry operation relates that particular colour-coded mol­ecule with the central mol­ecule; R is the distance (in Å) between mol­ecular centroids (mean atomic position). B3LYP/6–31G(d,p) electron density was used with scale factors 1.057 (kele), 0.740 (kpol), 0.871 (kdis) and 0.618 (krep).

Colour N Symmetry operation R Eele Epol Edis Erep Etot
Red 2 x + [{1\over 2}], −y + [{1\over 2}], z 8.30 −2.4 −0.1 −4.4 3.9 −4.0
Yellow 2 -x, −y, z + [{1\over 2}] 8.88 −1.2 −0.1 −2.9 2.2 −2.5
Fluoro­green 2 x + [{1\over 2}], −y + [{1\over 2}], z 7.34 −2.2 −0.1 −8.1 5.8 −5.9
Green 2 -x + [{1\over 2}], y + [{1\over 2}], z + [{1\over 2}] 6.87 −33.8 −8.3 −11.4 37.6 −28.6
Blue 2 -x + [{1\over 2}], y + [{1\over 2}], z + [{1\over 2}] 6.87 −0.4 −0.4 −5.7 2.1 −4.3
Dark blue 2 x, y, z 3.86 −0.7 −0.8 −33.5 19.6 −18.3
Pink 2 -x, −y, z + [{1\over 2}] 6.57 −8.7 −1.5 −10.7 12.9 −11.6

The energy framework analysis reveals the strength of the inter­molecular inter­actions contributing to the crystal packing of the promolecule and its 13 exterior inter­acting mol­ecules, forming a mol­ecular assembly of 14 mol­ecules. The total and individual energy components of these mol­ecular assemblies were calculated using CE-B3LYP/6–31 G(d,p), resulting in energy frameworks for Coulombic energy, dispersion energy and total energy. These are represented by scaled cylinders with a reference scale of 100. The dimensions of these cylinders reflect the magnitude of the vectorial inter­action energy. Fig. 6[link] shows that electrostatic (Coulombic) inter­actions make a more significant contribution to the total energy and crystal packing than dispersion inter­actions among neighbouring mol­ecules.

[Figure 6]
Figure 6
Energy frameworks for ADCP.

Synthesis and crystallization

4-Amino-3,5-di­chloro­pyridine (0.04075 mg) was dissolved in 20 ml of water and warmed over a water bath for 20 min at 353 K. The solution was then allowed to cool slowly at room temperature. After a few days, colourless crystals were separated out from the mother liquor.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C5H4Cl2N2
Mr 163.00
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 296
a, b, c (Å) 13.304 (2), 12.911 (2), 3.8636 (7)
V3) 663.64 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.88
Crystal size (mm) 0.33 × 0.23 × 0.22
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 5840, 1969, 1729
Rint 0.017
(sin θ/λ)max−1) 0.709
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.116, 0.88
No. of reflections 1969
No. of parameters 90
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.22
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter −0.02 (3)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), POVRay (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pvt. Ltd, Victoria, Australia. http://www.povray.org.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

3,5-Dichloropyridin-4-amine top
Crystal data top
C5H4Cl2N2F(000) = 328
Mr = 163.00Dx = 1.631 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1969 reflections
a = 13.304 (2) Åθ = 2.2–30.3°
b = 12.911 (2) ŵ = 0.88 mm1
c = 3.8636 (7) ÅT = 296 K
V = 663.64 (19) Å3Block, colourless
Z = 40.33 × 0.23 × 0.22 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.017
φ and ω scansθmax = 30.3°, θmin = 2.2°
5840 measured reflectionsh = 1718
1969 independent reflectionsk = 1618
1729 reflections with I > 2σ(I)l = 55
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 W = 1/[Σ2(FO2) + (0.1P)2] WHERE P = (FO2 + 2FC2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 0.88Δρmax = 0.26 e Å3
1969 reflectionsΔρmin = 0.22 e Å3
90 parametersAbsolute structure: Flack (1983)
4 restraintsAbsolute structure parameter: 0.02 (3)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49802 (4)0.35972 (5)0.7165 (4)0.0500 (2)
Cl20.11701 (5)0.46637 (7)0.3776 (3)0.0665 (3)
N10.2719 (2)0.20589 (16)0.2911 (8)0.0568 (8)
N20.32466 (18)0.50542 (15)0.6648 (8)0.0466 (7)
C10.3604 (2)0.23315 (19)0.4280 (10)0.0508 (8)
C20.37987 (16)0.33067 (18)0.5504 (7)0.0368 (6)
C30.30703 (16)0.40870 (15)0.5454 (6)0.0337 (6)
C40.21489 (18)0.37787 (18)0.4008 (7)0.0398 (6)
C50.2015 (2)0.2790 (2)0.2801 (8)0.0516 (8)
H10.411050.183630.440480.0610*
H1A0.373 (2)0.525 (3)0.788 (12)0.081 (16)*
H2A0.2797 (17)0.5525 (19)0.653 (10)0.060 (11)*
H50.139510.262010.184780.0620*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0377 (3)0.0565 (4)0.0559 (4)0.0016 (2)0.0031 (3)0.0049 (3)
Cl20.0437 (4)0.0687 (5)0.0870 (6)0.0093 (3)0.0093 (4)0.0003 (5)
N10.0671 (14)0.0350 (9)0.0683 (17)0.0125 (10)0.0056 (14)0.0128 (10)
N20.0431 (12)0.0317 (9)0.0651 (16)0.0004 (8)0.0017 (11)0.0128 (10)
C10.0611 (16)0.0315 (10)0.0598 (16)0.0001 (10)0.0102 (15)0.0035 (11)
C20.0369 (11)0.0323 (9)0.0412 (11)0.0019 (8)0.0045 (10)0.0006 (9)
C30.0357 (10)0.0287 (9)0.0366 (10)0.0035 (8)0.0047 (9)0.0012 (8)
C40.0372 (11)0.0420 (10)0.0401 (12)0.0045 (8)0.0016 (10)0.0007 (10)
C50.0512 (14)0.0517 (13)0.0518 (15)0.0208 (12)0.0009 (12)0.0060 (12)
Geometric parameters (Å, º) top
Cl1—C21.739 (2)N2—H2A0.85 (2)
Cl2—C41.735 (3)N2—H1A0.84 (4)
N1—C11.338 (4)C3—C41.405 (3)
N1—C51.330 (4)C4—C51.371 (4)
N2—C31.352 (3)C1—H10.9300
C1—C21.370 (4)C5—H50.9300
C2—C31.398 (3)
C1—N1—C5116.5 (2)N2—C3—C4123.3 (2)
N1—C1—C2123.0 (2)Cl2—C4—C3119.27 (17)
Cl1—C2—C1119.78 (18)Cl2—C4—C5119.9 (2)
Cl1—C2—C3118.44 (17)C3—C4—C5120.8 (2)
C1—C2—C3121.8 (2)N1—C5—C4124.0 (3)
C3—N2—H1A127 (3)N1—C1—H1119.00
C3—N2—H2A121.2 (18)C2—C1—H1118.00
H1A—N2—H2A111 (3)N1—C5—H5118.00
C2—C3—C4113.97 (19)C4—C5—H5118.00
N2—C3—C2122.7 (2)
C5—N1—C1—C20.4 (5)C1—C2—C3—C40.9 (4)
C1—N1—C5—C40.4 (5)N2—C3—C4—Cl21.1 (4)
N1—C1—C2—Cl1178.8 (3)N2—C3—C4—C5179.3 (3)
N1—C1—C2—C31.1 (5)C2—C3—C4—Cl2179.87 (19)
Cl1—C2—C3—N20.1 (4)C2—C3—C4—C50.2 (4)
Cl1—C2—C3—C4178.94 (19)Cl2—C4—C5—N1179.2 (2)
C1—C2—C3—N2180.0 (3)C3—C4—C5—N10.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1A···Cl10.84 (4)2.72 (3)2.983 (2)100 (3)
N2—H1A···Cl1i0.84 (4)2.81 (4)3.625 (3)164 (3)
N2—H2A···Cl20.85 (2)2.66 (3)3.020 (3)107 (2)
N2—H2A···N1ii0.85 (2)2.16 (3)2.931 (3)149 (3)
Symmetry codes: (i) x+1, y+1, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
The interaction energies (kJ mol-1) of the promolecule with the surrounding molecules within 3.8 Å top
N = number of pairs with that energy; symmetry operation relates that particular colour-coded molecule with the central molecule; R is the distance (in Å) between molecular centroids (mean atomic position). B3LYP/6-31G(d,p) electron density was used with scale factors 1.057 (kele), 0.740 (kpol), 0.871 (kdis) and 0.618 (krep).
ColourNSymmetry operationREeleEpolEdisErepEtot
Red2x + 1/2, -y + 1/2, z8.30-2.4-0.1-4.43.9-4.0
Yellow2-x, -y, z + 1/28.88-1.2-0.1-2.92.2-2.5
Fluorogreen2x + 1/2, -y + 1/2, z7.34-2.2-0.1-8.15.8-5.9
Green2-x + 1/2, y + 1/2, z + 1/26.87-33.8-8.3-11.437.6-28.6
Blue2-x + 1/2, y + 1/2, z + 1/26.87-0.4-0.4-5.72.1-4.3
Dark blue2x, y, z3.86-0.7-0.8-33.519.6-18.3
Pink2-x, -y, z + 1/26.57-8.7-1.5-10.712.9-11.6
 

References

First citationAnagnostis, J. & Turnbull, M. M. (1998). Acta Cryst. C54, 681–683.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAshokan, A., Nehru, J., Chakkarapani, N., Khamrang, T., Kavitha, S. J., Rajakannan, V. & Hemamalini, M. (2023). IUCrData, 8, x230821.  Google Scholar
First citationBoland, S., Alen, J., Bourin, A., Castermans, K., Boumans, N., Panitti, L., Vanormelingen, J., Leysen, D. & Defert, O. (2014). Bioorg. Med. Chem. Lett. 24, 4594–4597.  CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pvt. Ltd, Victoria, Australia. http://www.povray.org.  Google Scholar
First citationChung, I. H., Kim, C. S., Seo, J. H. & Chung, B. Y. (1999). Arch. Pharm. Res. 22, 391–397.  CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1416–o1417.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, Z.-N., Yang, H.-B., Luo, H. & Li, B. (2011). Acta Cryst. E67, o1138.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMalenov, D. P. & Zarić, S. D. (2023). Chemistry, 5, 2513–2541.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNewell, B. D., McMillen, C. D. & Lee, J. P. (2022). IUCrData, 7, x220804–x220804.  Google Scholar
First citationOnnis, V., Cocco, M. T., Fadda, R. & Congiu, C. (2009). Bioorg. Med. Chem. 17, 6158–6165.  CrossRef PubMed CAS Google Scholar
First citationRahman, A. M., Bishop, R., Craig, D. C. & Scudder, M. L. (2003). CrystEngComm, 5, 422–428.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingaram, K., Marimuthu, D., Baskaran, S. & Chinaga, S. (2016). J. Chin. Chem. Soc. 63, 758–769.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146