organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(10Z)-4H,5H,6H,7H,8H,9H-Cyclo­deca­[d][1,2,3]selena­diazole

crossmark logo

aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 13 November 2024; accepted 14 November 2024; online 19 November 2024)

The title compound, C10H14N2Se, was prepared from a semicarbazone and selenium dioxide. The planes of the heterocycle and the cis double bond are almost mutually orthogonal and the hexa­methyl­ene tether is nearly strain-free.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C10H14N2Se (Fig. 1[link]), was prepared as part of a project focusing on medium-sized cyclo­alkynes (Bissinger et al., 1988[Bissinger, H.-J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221-224.]; Detert & Meier, 1997[Detert, H. & Meier, H. (1997). Liebigs Ann. Recl, pp. 1557-1563.]). Thermolysis of 1,2,3-selena­diazo­les is an advantageous route to strained cyclo­alkynes. They are prepared by oxidation of semicarbazones with selenium dioxide (Lalezari et al., 1972[Lalezari, I., Shafiee, A. & Yalpani, M. (1972). J. Heterocycl. Chem. 9, 1411-1412.]). Selenious acid oxidized Z-cyclo­dec-3-enone semicarbazone to a mixture of the title compound (63%) and the homoconjugated (5Z)-isomer. In the crystal, the mol­ecules are arranged in layers parallel to the ac plane. Within a layer, all mol­ecules adopt the same orientation, while in the neighbouring layers, the orientation of the mol­ecules is inverted. The selena­diazole ring is essentially planar with an r.m.s. deviation of 0.002 (2) Å. In addition, the connecting atoms of the aliphatic tether are coplanar, C4 lies only 0.044 (2) Å above and C11 − 0.012 (2) Å below the selena­diazole plane. A negligible torsion angle [0.02 (4)°] twists the double bond (C10=C11) but the dihedral angle of 88.56 (15)° between the heterocycle and cis-olefin disrupts the π-conjugation. The hexa­methyl­ene chain shows a strain-free staggered arrangement. The packing is shown in Fig. 2[link].

[Figure 1]
Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the packing diagram. View along the a axis.

Synthesis and crystallization

The title compound was prepared in 63% yield from the semicarbazone of (3Z)-cyclo­decenone. The required ketone appeared in 10% yield upon selenious acid catalyzed hydrolysis/isomerization of (2Z)-cyclo­decenone semicarbazone (Whitham & Zaidlewicz, 1972[Whitham, G. H. & Zaidlewicz, M. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 1509-1513.]; Hirano et al., 1974[Hirano, S., Hiyama, T., Fujita, S., Kawaguti, T., Hayashi, Y. & Nozaki, H. (1974). Tetrahedron, 30, 2633-2640.]). Selenium dioxide (2 mmol) was added to 0.5 mmol of the semicarbazone in 10 ml of 1,4-dioxane. After 3 days stirring, the solvent was evaporated, the slurry was mixed with toluene, washed with water, dried (MgSO4) and the compound isolated via chromatography with toluene/ethyl acetate on silica gel. Yield: 63% of yellowish crystals with the typical fetid odor of selena­diazo­les. NMR analysis at 298 K gave clear signals for the olefinic subunit but broad signals for the methyl­ene chain, indicating constricted conformational inter­conversions on the NMR time scale. Only at very low temperatures did the diastereotopic protons e.g. at C-4 gave separate signals of good resolution. M.p. = 315 K. 1H NMR (400 MHz, CDCl3, 293 K): 6.27 (d, 1 H, J = 11 Hz, H—C-11), 5.88 (ddd, 1 H, J = J′ = 11 Hz, J′′ = 5.5 Hz, H—C-10), 3.05 (bs, 2 H), 2.96 (bs, 2 H), 1.74 (bs, 2 H), 1.48 (m, 4 H), 0.99 (bs, 2 H); (400 MHz, CDCl3, 228 K): ; (400 MHz, CDCl3, 228 K): 6.25 (d, 1 H, J = 11 Hz, H—C-11), 5.85 (ddd, 1 H, J = J′ = 11 Hz, J′′ = 5.5 Hz, HC-10), 3.18 (pseudo-d, 1 H, J = 14 Hz, H—CH-4), 2.78 (ddd, J = J′ = 14 Hz, J′′ = 4 Hz, HC—H-4), 1.95 (m, 3 H), 1.56 (t, J = 13 Hz), 1.42 (m, 1 H), 1.25 (m, 4 H), 0.58 (m, 3 H). 13C NMR (CDCl3): 159.5 (2JC—Se = 32 Hz, C-3a), 155.1 (1JC—Se = 130 Hz, C-11a), 138.9 (2JC—Se = 37 Hz, C-11), 119.9 (C-10), 26.8, 25.6, 24.9, 24.7, 20.9, 20.5 (C4 - C9). 77Se NMR (CDCl3): 221.2 UV–Vis (EtOH): 224 (2.93), 239 (3.49), 294 (3.41) nm (logɛ) IR (CDCl3): 3005, 2920, 2840, 1495, 1430, 1310, 1255, 1210 cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C10H14N2Se
Mr 241.19
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 7.9646 (6), 17.0830 (15), 8.0572 (6)
β (°) 111.425 (6)
V3) 1020.50 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.64
Crystal size (mm) 0.29 × 0.21 × 0.11
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration [X-RED32 (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), absorption correction by Gaussian integration (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 255-270. Munksgaard, Copenhagen.])]
Tmin, Tmax 0.381, 0.697
No. of measured, independent and observed [I > 2σ(I)] reflections 5508, 2430, 2093
Rint 0.020
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.067, 1.12
No. of reflections 2430
No. of parameters 118
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.40
Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

(10Z)-4H,5H,6H,7H,8H,9H-Cyclodeca[d][1,2,3]selenadiazole top
Crystal data top
C10H14N2SeDx = 1.570 Mg m3
Mr = 241.19Melting point: 315 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.9646 (6) ÅCell parameters from 10316 reflections
b = 17.0830 (15) Åθ = 2.4–28.4°
c = 8.0572 (6) ŵ = 3.64 mm1
β = 111.425 (6)°T = 120 K
V = 1020.50 (15) Å3Block, colorless
Z = 40.29 × 0.21 × 0.11 mm
F(000) = 488
Data collection top
Stoe IPDS 2T
diffractometer
2430 independent reflections
Radiation source: sealed X-ray tube, 12x0.4mm long-fine focus2093 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.020
rotation method, ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: integration
[X-Red32 (Stoe & Cie, 2020), absorption correction by Gaussian integration (Coppens, 1970)]
h = 710
Tmin = 0.381, Tmax = 0.697k = 2122
5508 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0224P)2 + 1.2555P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2430 reflectionsΔρmax = 0.41 e Å3
118 parametersΔρmin = 0.40 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms were placed at calculated positions and were refined in the riding-model approximation with Caromatic–H = 0.95 Å or Cmethylene–H = 0.99 Å and with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.22155 (3)0.41792 (2)0.00291 (3)0.02588 (8)
N20.0679 (3)0.42034 (14)0.1321 (3)0.0287 (5)
N30.1303 (3)0.37734 (13)0.2705 (3)0.0242 (4)
C3A0.2906 (3)0.33871 (13)0.3010 (3)0.0200 (4)
C40.3665 (3)0.29010 (14)0.4674 (3)0.0223 (5)
H4A0.4672610.2579770.4606150.027*
H4B0.2719540.2540340.4742130.027*
C50.4350 (3)0.34033 (14)0.6375 (3)0.0227 (5)
H5A0.3314820.3681480.6504430.027*
H5B0.4869110.3054380.7419130.027*
C60.5776 (3)0.40050 (14)0.6379 (3)0.0223 (5)
H6A0.5255510.4349690.5327270.027*
H6B0.6064100.4335620.7456660.027*
C70.7529 (3)0.36533 (14)0.6347 (3)0.0231 (5)
H7A0.8362670.3565840.7589320.028*
H7B0.7259660.3136980.5749530.028*
C80.8476 (3)0.41614 (15)0.5396 (3)0.0235 (5)
H8A0.9659340.3924250.5557080.028*
H8B0.8703260.4684710.5962230.028*
C90.7400 (3)0.42610 (13)0.3392 (3)0.0217 (5)
H9A0.6262210.4541800.3226310.026*
H9B0.8106020.4585480.2863720.026*
C100.6965 (3)0.34927 (15)0.2428 (3)0.0233 (5)
H100.7947610.3213030.2313650.028*
C110.5350 (3)0.31628 (15)0.1718 (3)0.0235 (5)
H110.5272270.2670700.1145130.028*
C11A0.3666 (3)0.35080 (14)0.1757 (3)0.0200 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01898 (12)0.03822 (15)0.01753 (12)0.00109 (10)0.00322 (8)0.00338 (10)
N20.0176 (9)0.0410 (13)0.0244 (10)0.0014 (9)0.0042 (8)0.0008 (9)
N30.0153 (9)0.0351 (12)0.0216 (10)0.0003 (8)0.0059 (8)0.0011 (8)
C3A0.0165 (10)0.0235 (12)0.0198 (10)0.0040 (8)0.0063 (8)0.0041 (9)
C40.0195 (11)0.0246 (11)0.0217 (11)0.0025 (9)0.0061 (9)0.0008 (9)
C50.0205 (11)0.0279 (12)0.0190 (11)0.0006 (9)0.0063 (9)0.0010 (9)
C60.0211 (11)0.0243 (12)0.0198 (11)0.0008 (9)0.0054 (9)0.0015 (9)
C70.0169 (10)0.0248 (12)0.0232 (11)0.0006 (9)0.0021 (9)0.0037 (9)
C80.0163 (10)0.0250 (11)0.0257 (11)0.0027 (9)0.0035 (9)0.0019 (10)
C90.0168 (10)0.0214 (12)0.0264 (11)0.0005 (8)0.0073 (9)0.0014 (9)
C100.0180 (10)0.0284 (12)0.0256 (11)0.0011 (9)0.0105 (9)0.0028 (9)
C110.0229 (11)0.0277 (12)0.0229 (11)0.0014 (9)0.0121 (9)0.0053 (9)
C11A0.0168 (10)0.0255 (12)0.0164 (10)0.0046 (8)0.0048 (8)0.0034 (9)
Geometric parameters (Å, º) top
Se1—C11A1.847 (2)C6—H6B0.9900
Se1—N21.875 (2)C7—C81.527 (3)
N2—N31.274 (3)C7—H7A0.9900
N3—C3A1.377 (3)C7—H7B0.9900
C3A—C11A1.370 (3)C8—C91.536 (3)
C3A—C41.503 (3)C8—H8A0.9900
C4—C51.538 (3)C8—H8B0.9900
C4—H4A0.9900C9—C101.500 (3)
C4—H4B0.9900C9—H9A0.9900
C5—C61.531 (3)C9—H9B0.9900
C5—H5A0.9900C10—C111.327 (3)
C5—H5B0.9900C10—H100.9500
C6—C71.529 (3)C11—C11A1.475 (3)
C6—H6A0.9900C11—H110.9500
C11A—Se1—N287.18 (9)C6—C7—H7A108.8
N3—N2—Se1110.36 (16)C8—C7—H7B108.8
N2—N3—C3A118.2 (2)C6—C7—H7B108.8
C11A—C3A—N3115.3 (2)H7A—C7—H7B107.6
C11A—C3A—C4126.8 (2)C7—C8—C9113.71 (19)
N3—C3A—C4117.9 (2)C7—C8—H8A108.8
C3A—C4—C5112.50 (19)C9—C8—H8A108.8
C3A—C4—H4A109.1C7—C8—H8B108.8
C5—C4—H4A109.1C9—C8—H8B108.8
C3A—C4—H4B109.1H8A—C8—H8B107.7
C5—C4—H4B109.1C10—C9—C8112.46 (19)
H4A—C4—H4B107.8C10—C9—H9A109.1
C6—C5—C4113.46 (19)C8—C9—H9A109.1
C6—C5—H5A108.9C10—C9—H9B109.1
C4—C5—H5A108.9C8—C9—H9B109.1
C6—C5—H5B108.9H9A—C9—H9B107.8
C4—C5—H5B108.9C11—C10—C9126.8 (2)
H5A—C5—H5B107.7C11—C10—H10116.6
C7—C6—C5114.7 (2)C9—C10—H10116.6
C7—C6—H6A108.6C10—C11—C11A124.5 (2)
C5—C6—H6A108.6C10—C11—H11117.8
C7—C6—H6B108.6C11A—C11—H11117.8
C5—C6—H6B108.6C3A—C11A—C11127.3 (2)
H6A—C6—H6B107.6C3A—C11A—Se1109.01 (17)
C8—C7—C6114.0 (2)C11—C11A—Se1123.72 (17)
C8—C7—H7A108.8
C11A—Se1—N2—N30.04 (18)C8—C9—C10—C11110.4 (3)
Se1—N2—N3—C3A0.2 (3)C9—C10—C11—C11A0.2 (4)
N2—N3—C3A—C11A0.3 (3)N3—C3A—C11A—C11178.8 (2)
N2—N3—C3A—C4178.1 (2)C4—C3A—C11A—C112.9 (4)
C11A—C3A—C4—C5108.5 (3)N3—C3A—C11A—Se10.3 (3)
N3—C3A—C4—C569.7 (3)C4—C3A—C11A—Se1178.00 (18)
C3A—C4—C5—C656.7 (3)C10—C11—C11A—C3A92.0 (3)
C4—C5—C6—C763.5 (3)C10—C11—C11A—Se189.0 (3)
C5—C6—C7—C8149.2 (2)N2—Se1—C11A—C3A0.12 (17)
C6—C7—C8—C965.1 (3)N2—Se1—C11A—C11179.0 (2)
C7—C8—C9—C1057.5 (3)
 

References

First citationBissinger, H.-J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221–224.  CrossRef Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 255–270. Munksgaard, Copenhagen.  Google Scholar
First citationDetert, H. & Meier, H. (1997). Liebigs Ann. Recl, pp. 1557–1563.  Google Scholar
First citationHirano, S., Hiyama, T., Fujita, S., Kawaguti, T., Hayashi, Y. & Nozaki, H. (1974). Tetrahedron, 30, 2633–2640.  CrossRef Google Scholar
First citationLalezari, I., Shafiee, A. & Yalpani, M. (1972). J. Heterocycl. Chem. 9, 1411–1412.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWhitham, G. H. & Zaidlewicz, M. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 1509–1513.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146