organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Structural insights into 1,4-bis­­(neopent­yl­oxy)pillar[5]arene and the pyridine host–guest system

crossmark logo

aDepartment of Chemistry, Kuwait University, PO Box 5969, Safat 13060, Kuwait
*Correspondence e-mail: t.alazemi@ku.edu.kw

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 30 October 2024; accepted 5 November 2024; online 8 November 2024)

The crystal structure of 1,4-bis­(neopent­yloxy)pillar[5]arene, C95H140N2O10 (TbuP), featuring two encapsulated pyridine mol­ecules, reveals significant host–guest inter­actions. Inter­estingly, the pyridine guests are positioned near the neopent­yloxy substituents instead of the electron-rich aromatic core of the pillar[5]arene. This spatial arrangement suggests a preference for the pyridine mol­ecules to engage with the aliphatic regions of the host. Detailed analysis of the structural characteristics of this host–guest system (TbuP·2Py), as well as its packing pattern within the crystal network, is presented and discussed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The intrinsic cavity of pillar[n]arenes exhibits fascinating guest-encapsulation behavior, significantly influenced by their peripheral substitutions (Ogoshi et al., 2016[Ogoshi, T., Yamagishi, T. & Nakamoto, Y. (2016). Chem. Rev. 116, 7937-8002.]; Li et al., 2020[Li, Q., Zhu, H. & Huang, F. (2020). Trends Chem. 2, 850-864.]). The electron-rich cavity of pillar[5]arene tends to favor the inclusion of long aliphatic chains over aromatic guests. This limitation in encapsulating aromatic guests restricts the applications of pillararenes as functional materials. Optimizing the peripheral substituents on pillar[5]arene is therefore crucial to enhance its encapsulation performance for aromatic mol­ecules. By carefully selecting these substituents, the inter­actions and selectivity for specific aromatic guests can be fine-tuned, making pillar[5]arenes valuable for various applications, including separation technologies and sensor design (Jie et al., 2018[Jie, K., Zhou, Y., Li, E. & Huang, F. (2018). Acc. Chem. Res. 51, 2064-2072.]; Wu et al., 2020[Wu, Y., Zhou, J., Li, E., Wang, M., Jie, K., Zhu, H. & Huang, F. (2020). J. Am. Chem. Soc. 142, 19722-19730.]; Wu, Wu, Li et al., 2023[Wu, J.-R., Wu, G., Li, D., Li, M.-H., Wang, Y. & Yang, Y.-W. (2023). Nat. Commun. 14, 5954.]; Wu, Tang et al., 2023[Wu, Y., Tang, M., Wang, Z., Shi, L., Xiong, Z., Chen, Z., Sessler, J. L. & Huang, F. (2023). Nat. Commun. 14, 4927.]; Zhao et al., 2024[Zhao, X., Hua, B. & Shao, L. (2024). Chem. Commun. 60, 1164-1167.]).

The title inclusion complex (TbuP·2Py) crystallizes in the ortho­rhom­bic crystal system, space group Fdd2. The asymmetric unit contains half of the pillar[5]arene mol­ecule (Fig. 1[link]), with the complete structure revealed through symmetry expansion (Fig. 2[link]). This pillar[5]arene exhibits a penta­gonal macrocyclic shape with neopent­yloxy substitutions at both the top and bottom rims. Notably, one of the neopent­yloxy substituents shows positional disorder within the crystal, with only the higher occupancy orientation shown. In the crystal structure of the TbuP·2Py system, two pyridine mol­ecules are encapsulated within the cavity of the pillar[5]arene. These pyridine guests are strategically positioned adjacent to the neopent­yloxy regions rather than the electron-rich core, enhancing stability through non-bonding inter­actions. This is illustrated in the Fig. 3[link], with qu­anti­tative details provided in the accompanying table (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

π denotes the centroid of the pyridine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C46—H46⋯O4 0.93 2.88 3.56 (1) 131
C24—H24Bπ 0.97 2.99 3.921 (11) 161
C19—H19B⋯N1i 0.97 2.97 3.81 (1) 145
C39—H39B⋯N1i 0.97 3.17 3.74 (1) 120
Symmetry code: (i) [-x+1, -y, z].
[Figure 1]
Figure 1
Symmetry-expanded crystal structure of TBuP·2Py with displacement ellipsoids (30% probability; only the symmetry independent atoms are labeled). Only the major components of the disordered moieties are shown. Hydrogen atoms are omitted for clarity.
[Figure 2]
Figure 2
Crystal structure (symmetry expanded) of TBuP·2Py. Only the major components of the disordered moieties are shown. Hydrogen atoms belonging to the pillar[5]arene are omitted for clarity.
[Figure 3]
Figure 3
Supra­molecular inter­actions between the pillar[5]arene host and pyridine guests. π denotes the centroid of the pyridine ring. Symmetry code: (i) 1 − x, −y, z.

The neopent­yloxy substitutions on the rims of the pillar[5]arene play a crucial role in accommodating aromatic guests within the intrinsic cavity, which typically favors non-aromatic linear mol­ecules. The TbuP·2Py system exhibits a unique packing arrangement, forming one-dimensional channels along the b-axis direction in the crystal network (Fig. 4[link]). This specific organization is crucial for facilitating guest encapsulation and removal. Such arrangements enable the use of pillar[5]arene-based nonporous adaptive crystals (NACs) in adsorption and separation processes, highlighting the potential for tuning material properties based on guest inter­actions and opening avenues for further research and practical applications.

[Figure 4]
Figure 4
Packing pattern of TBuP·2Py system in the crystal network showing one-dimensional channels along the b-axis direction.

Synthesis and crystallization

The synthesis and characterization of 1,2,3,4,5-(1,4-neopent­yloxy)pillar[5]arene (TBuP) have been previously described (Al-Azemi et al., 2019[Al-Azemi, T. F., Vinodh, M., Alipour, F. H. & Mohamod, A. A. (2019). RSC Adv. 9, 23295-23301.]). Colorless blocks of TBuP·2Py crystals, suitable for single-crystal analysis, were obtained by dissolving 25 mg of TBuP in a chloro­form: pyridine solvent mixture (90:10 v/v, 1 ml) and allowing for slow solvent evaporation.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One of the neopentyl spacers of the pillar[5]arene in the crystal was found to be disordered. The most satisfactory occupancies for these disordered neopent­yloxy fractions were 0.607 (17):0.393 (17) for the major and minor components, respectively. The DELU and SIMU commands were used in the refinement to restrain the displacement factors of these disordered components. Additionally, the DELU and SIMU commands were used to restrain the displacement factors of the atoms belonging to the guest pyridine and another neopentyl moiety of the pillar[5]arene.

Table 2
Experimental details

Crystal data
Chemical formula C95H140N2O10
Mr 1470.08
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 293
a, b, c (Å) 47.848 (5), 14.2452 (14), 27.679 (2)
V3) 18866 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.17 × 0.14 × 0.11
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.156, 0.991
No. of measured, independent and observed [I > 2σ(I)] reflections 23011, 7942, 3988
Rint 0.087
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.192, 0.99
No. of reflections 7942
No. of parameters 526
No. of restraints 267
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.16
Computer programs: CrystalClear (Rigaku, 2016[Rigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2017[Rigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

1,4-Bis(neopentyloxy)pillar[5]arene top
Crystal data top
C95H140N2O10Dx = 1.035 Mg m3
Mr = 1470.08Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, Fdd2Cell parameters from 11195 reflections
a = 47.848 (5) Åθ = 3.1–25.0°
b = 14.2452 (14) ŵ = 0.07 mm1
c = 27.679 (2) ÅT = 293 K
V = 18866 (3) Å3Block, colorless
Z = 80.17 × 0.14 × 0.11 mm
F(000) = 6432
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3988 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.087
ω scansθmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 5654
Tmin = 0.156, Tmax = 0.991k = 1616
23011 measured reflectionsl = 3129
7942 independent reflections
Refinement top
Refinement on F2267 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.192 w = 1/[σ2(Fo2) + (0.0931P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
7942 reflectionsΔρmax = 0.25 e Å3
526 parametersΔρmin = 0.16 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The single-crystal data collection was performed using a Rigaku Rapid II diffractometer with Mo-Kα radiation at 293 K. The data was processed using the 'CrystalClear' software package. The structure was solved by direct methods using the 'CrystalStructure' crystallographic software package, and refinement was carried out with SHELXL2019/3. All the hydrogen atoms were positioned geometrically, with C—H distances of methyl, methylene, and aromatic groups being 0.96, 0.97, and 0.93 Å, respectively, and the displacement factors of hydrogen atoms were set to Uiso(H) = 1.2Ueq(C), for hydrogen atoms of the methyl groups the displacement parameters were set to Uiso(H) = 1.5Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.60191 (11)0.1383 (3)0.65859 (15)0.0888 (15)
N10.4746 (2)0.2097 (11)0.6285 (4)0.180 (4)
O20.56089 (11)0.1905 (3)0.58101 (15)0.0846 (14)
O30.52946 (10)0.1612 (3)0.81964 (17)0.0763 (12)
O40.57102 (9)0.1804 (3)0.75905 (14)0.0715 (12)
O50.53741 (8)0.1469 (3)0.51250 (16)0.0715 (12)
C10.57093 (11)0.0302 (4)0.5724 (2)0.0562 (15)
C20.58163 (13)0.0509 (4)0.5915 (2)0.0624 (16)
H20.5828710.1036060.5717350.075*
C30.59073 (13)0.0579 (5)0.6391 (2)0.0660 (17)
C40.58896 (12)0.0193 (4)0.6688 (2)0.0553 (15)
C50.57858 (13)0.1030 (4)0.6500 (2)0.0629 (17)
H50.5774220.1558370.6696580.076*
C60.56995 (13)0.1082 (4)0.6022 (2)0.0599 (16)
C70.59780 (13)0.0167 (5)0.7218 (2)0.0659 (18)
H7A0.6095850.0377340.7270800.079*
H7B0.6087920.0722010.7289210.079*
C80.57318 (12)0.0125 (4)0.75623 (19)0.0578 (15)
C90.56235 (13)0.0727 (4)0.7712 (2)0.0627 (16)
H90.5705290.1281180.7604130.075*
C100.53970 (14)0.0770 (4)0.8017 (2)0.0612 (16)
C110.52636 (12)0.0041 (5)0.8179 (2)0.0581 (15)
C120.53756 (14)0.0891 (5)0.8030 (2)0.0653 (17)
H120.5291360.1447130.8129160.078*
C130.56101 (14)0.0931 (5)0.7737 (2)0.0656 (16)
C140.5000000.0000000.8479 (4)0.072 (3)
H1440.4987 (16)0.052 (5)0.865 (3)0.107*
C150.48974 (14)0.0886 (4)0.5176 (2)0.0650 (16)
H150.4828860.1495620.5192990.078*
C160.51837 (14)0.0754 (5)0.5155 (2)0.0600 (15)
C170.52911 (13)0.0152 (4)0.51732 (19)0.0547 (15)
C180.56011 (13)0.0331 (4)0.5206 (2)0.0622 (16)
H18A0.5642030.0941870.5068010.075*
H18B0.5699050.0137110.5016110.075*
C190.60495 (17)0.2178 (5)0.6288 (3)0.085 (2)
H19A0.6157670.2012670.6004350.101*
H19B0.5866720.2388110.6181490.101*
C200.61933 (17)0.2962 (5)0.6554 (3)0.090 (2)
C210.6033 (3)0.3219 (8)0.7008 (4)0.166 (5)
H21A0.5838280.3286910.6932650.199*
H21B0.6056130.2733140.7245290.199*
H21C0.6103320.3800820.7134900.199*
C220.64888 (19)0.2686 (6)0.6669 (4)0.137 (4)
H22A0.6588650.3222410.6788450.164*
H22B0.6488450.2201430.6909600.164*
H22C0.6578260.2458380.6381220.164*
C230.6205 (3)0.3799 (6)0.6225 (4)0.150 (4)
H23A0.6018100.3997550.6148530.179*
H23B0.6302410.4301460.6382580.179*
H23C0.6300900.3633190.5932590.179*
C240.5605 (2)0.2736 (5)0.6084 (3)0.104 (2)
H24A0.5768160.2751670.6290950.125*
H24B0.5440590.2733070.6290370.125*
C250.5600 (2)0.3590 (6)0.5781 (3)0.104 (2)
C26A0.5842 (5)0.3647 (14)0.5425 (8)0.140 (5)0.607 (17)
H26A0.5827070.4215810.5240510.210*0.607 (17)
H26B0.6015790.3645380.5598510.210*0.607 (17)
H26C0.5835750.3117170.5211190.210*0.607 (17)
C27A0.5326 (4)0.3565 (10)0.5509 (7)0.116 (5)0.607 (17)
H27A0.5312560.4108140.5305120.174*0.607 (17)
H27B0.5318370.3007970.5314330.174*0.607 (17)
H27C0.5174040.3563080.5734940.174*0.607 (17)
C28A0.5613 (5)0.4454 (14)0.6142 (8)0.127 (5)0.607 (17)
H28A0.5610380.5028670.5960540.191*0.607 (17)
H28B0.5453740.4435430.6353280.191*0.607 (17)
H28C0.5781060.4421110.6329280.191*0.607 (17)
C26B0.5450 (8)0.442 (2)0.6081 (13)0.124 (6)0.393 (17)
H26D0.5445570.4982420.5887860.186*0.393 (17)
H26E0.5262000.4238930.6159290.186*0.393 (17)
H26F0.5551800.4540790.6373040.186*0.393 (17)
C27B0.5906 (6)0.383 (2)0.5733 (13)0.136 (6)0.393 (17)
H27D0.5926260.4380950.5539480.203*0.393 (17)
H27E0.5983620.3935960.6047910.203*0.393 (17)
H27F0.6001820.3313310.5581970.203*0.393 (17)
C28B0.5493 (7)0.3567 (18)0.5249 (11)0.124 (5)0.393 (17)
H28D0.5506290.4184690.5111380.187*0.393 (17)
H28E0.5605140.3139600.5063540.187*0.393 (17)
H28F0.5301790.3364200.5243680.187*0.393 (17)
C290.54706 (18)0.2407 (5)0.8176 (3)0.093 (2)
H29A0.5662690.2219210.8231930.111*
H29B0.5459630.2689180.7857060.111*
C300.5383 (2)0.3112 (6)0.8551 (3)0.104 (2)
C310.5083 (2)0.3401 (6)0.8486 (4)0.144 (4)
H31A0.5038870.3897880.8707620.173*
H31B0.5054280.3614750.8160960.173*
H31C0.4963100.2872860.8548450.173*
C320.5418 (2)0.2685 (7)0.9049 (3)0.138 (3)
H32A0.5359160.3129690.9289340.165*
H32B0.5305070.2128790.9073270.165*
H32C0.5610260.2525640.9100320.165*
C330.5569 (3)0.3968 (7)0.8477 (5)0.176 (5)
H33A0.5592240.4081830.8137920.211*
H33B0.5484100.4505510.8626070.211*
H33C0.5748520.3855730.8621930.211*
C340.58197 (18)0.2373 (5)0.7962 (3)0.089 (2)
H34A0.5978840.2059420.8107620.106*
H34B0.5678890.2457010.8210590.106*
C350.59094 (15)0.3319 (5)0.7775 (3)0.080 (2)
C360.6136 (2)0.3184 (7)0.7402 (3)0.132 (3)
H36A0.6191800.3783940.7276800.159*
H36B0.6066040.2801590.7142960.159*
H36C0.6293780.2880670.7548090.159*
C370.56685 (19)0.3821 (6)0.7551 (4)0.128 (4)
H37A0.5590800.3441210.7297440.153*
H37B0.5731390.4407050.7418420.153*
H37C0.5528280.3937290.7791320.153*
C380.60272 (19)0.3866 (6)0.8202 (3)0.117 (3)
H38A0.6172810.3506830.8352490.140*
H38B0.5881020.3983260.8431470.140*
H38C0.6101910.4452320.8089850.140*
C390.52736 (16)0.2326 (5)0.4937 (3)0.090 (2)
H39A0.5147800.2199310.4670580.109*
H39B0.5168710.2652450.5185910.109*
C400.55100 (17)0.2952 (5)0.4763 (3)0.089 (2)
C410.57107 (18)0.3144 (5)0.5154 (3)0.109 (3)
H41A0.5615160.3434270.5420110.130*
H41B0.5793690.2565890.5259460.130*
H41C0.5854040.3558060.5037750.130*
C420.5665 (3)0.2467 (8)0.4363 (4)0.165 (4)
H42A0.5816350.2857620.4255980.198*
H42B0.5737530.1880600.4478190.198*
H42C0.5539780.2353840.4097910.198*
C430.5379 (2)0.3833 (6)0.4582 (5)0.170 (5)
H43A0.5263470.4099330.4830610.204*
H43B0.5522130.4273410.4494720.204*
H43C0.5266160.3695190.4303840.204*
C440.4760 (3)0.3023 (12)0.6497 (5)0.172 (4)
H440.4675440.3551000.6363640.207*
C450.4908 (3)0.3035 (12)0.6910 (5)0.171 (4)
H450.4927110.3605520.7069560.205*
C460.5034 (3)0.2262 (13)0.7111 (4)0.160 (4)
H460.5141810.2323300.7389750.191*
C470.5004 (3)0.1472 (11)0.6917 (5)0.176 (4)
H470.5083280.0953120.7067720.211*
C480.4860 (3)0.1330 (11)0.6498 (6)0.183 (4)
H480.4841660.0734790.6363750.220*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.134 (4)0.066 (3)0.067 (3)0.022 (3)0.031 (3)0.005 (2)
N10.146 (7)0.257 (11)0.138 (7)0.022 (8)0.024 (6)0.030 (7)
O20.126 (4)0.061 (3)0.067 (3)0.009 (3)0.007 (3)0.008 (2)
O30.080 (3)0.057 (3)0.092 (3)0.005 (2)0.010 (2)0.016 (2)
O40.093 (3)0.059 (3)0.062 (3)0.011 (2)0.001 (2)0.002 (2)
O50.065 (3)0.064 (3)0.086 (3)0.013 (2)0.006 (2)0.022 (2)
C10.051 (4)0.060 (4)0.057 (4)0.002 (3)0.010 (3)0.005 (3)
C20.070 (4)0.058 (4)0.059 (4)0.008 (3)0.001 (3)0.000 (3)
C30.077 (5)0.059 (5)0.062 (4)0.002 (3)0.008 (3)0.013 (4)
C40.058 (4)0.057 (4)0.050 (4)0.002 (3)0.005 (3)0.004 (3)
C50.076 (5)0.056 (4)0.057 (4)0.007 (3)0.009 (3)0.001 (3)
C60.060 (4)0.060 (4)0.060 (4)0.006 (3)0.009 (3)0.016 (3)
C70.065 (5)0.073 (5)0.060 (4)0.003 (3)0.009 (3)0.001 (3)
C80.061 (4)0.063 (4)0.049 (3)0.004 (3)0.004 (3)0.000 (3)
C90.069 (4)0.063 (4)0.055 (4)0.004 (3)0.003 (3)0.001 (3)
C100.069 (4)0.061 (5)0.054 (4)0.001 (3)0.005 (3)0.008 (3)
C110.062 (4)0.064 (4)0.048 (3)0.001 (3)0.006 (3)0.000 (3)
C120.078 (5)0.061 (4)0.057 (4)0.003 (4)0.000 (4)0.002 (3)
C130.077 (4)0.067 (4)0.052 (4)0.012 (4)0.006 (3)0.005 (3)
C140.070 (7)0.085 (8)0.059 (6)0.001 (6)0.0000.000
C150.075 (5)0.060 (4)0.060 (4)0.006 (4)0.000 (3)0.010 (3)
C160.063 (5)0.065 (5)0.052 (4)0.011 (3)0.004 (3)0.006 (3)
C170.061 (4)0.061 (4)0.042 (3)0.011 (3)0.002 (3)0.005 (3)
C180.070 (5)0.065 (4)0.051 (4)0.003 (3)0.003 (3)0.009 (3)
C190.103 (6)0.061 (5)0.090 (5)0.002 (4)0.022 (4)0.002 (4)
C200.104 (6)0.048 (4)0.118 (7)0.002 (4)0.045 (5)0.004 (4)
C210.179 (12)0.138 (9)0.180 (11)0.024 (8)0.001 (9)0.087 (8)
C220.109 (8)0.116 (7)0.185 (10)0.000 (6)0.050 (7)0.018 (7)
C230.180 (10)0.078 (6)0.191 (10)0.028 (6)0.069 (8)0.030 (7)
C240.145 (5)0.073 (4)0.095 (5)0.000 (4)0.001 (4)0.012 (4)
C250.132 (5)0.075 (4)0.104 (5)0.008 (4)0.007 (4)0.023 (4)
C26A0.155 (9)0.128 (9)0.138 (10)0.014 (8)0.011 (8)0.046 (9)
C27A0.141 (10)0.076 (7)0.132 (10)0.006 (8)0.022 (8)0.038 (7)
C28A0.156 (13)0.077 (7)0.149 (9)0.011 (10)0.020 (10)0.022 (7)
C26B0.154 (13)0.077 (9)0.141 (11)0.006 (12)0.013 (12)0.021 (9)
C27B0.145 (10)0.122 (11)0.139 (13)0.027 (10)0.007 (11)0.021 (11)
C28B0.155 (11)0.097 (9)0.121 (9)0.007 (10)0.017 (9)0.034 (9)
C290.108 (5)0.074 (5)0.097 (5)0.005 (4)0.014 (4)0.014 (4)
C300.116 (6)0.080 (5)0.115 (5)0.012 (4)0.019 (5)0.034 (4)
C310.148 (8)0.109 (7)0.176 (9)0.031 (6)0.020 (7)0.029 (6)
C320.153 (8)0.157 (8)0.103 (6)0.002 (7)0.008 (6)0.041 (5)
C330.191 (10)0.102 (7)0.234 (12)0.054 (7)0.056 (9)0.054 (7)
C340.107 (6)0.075 (5)0.084 (5)0.005 (4)0.001 (4)0.006 (4)
C350.078 (5)0.068 (5)0.094 (5)0.014 (4)0.011 (4)0.001 (4)
C360.117 (8)0.144 (8)0.136 (8)0.043 (6)0.017 (7)0.001 (7)
C370.113 (7)0.084 (6)0.185 (10)0.002 (5)0.044 (7)0.014 (6)
C380.123 (7)0.095 (6)0.133 (7)0.023 (5)0.020 (6)0.025 (5)
C390.091 (5)0.084 (5)0.096 (5)0.018 (4)0.010 (4)0.039 (4)
C400.095 (5)0.086 (5)0.086 (5)0.032 (4)0.015 (4)0.033 (4)
C410.127 (6)0.099 (6)0.100 (6)0.048 (5)0.020 (5)0.023 (5)
C420.201 (10)0.179 (9)0.116 (7)0.081 (7)0.047 (7)0.019 (7)
C430.142 (9)0.121 (7)0.247 (12)0.047 (6)0.046 (8)0.110 (7)
C440.135 (8)0.235 (10)0.147 (8)0.009 (8)0.005 (6)0.044 (8)
C450.149 (9)0.237 (10)0.128 (8)0.010 (8)0.015 (6)0.002 (7)
C460.144 (8)0.240 (12)0.095 (7)0.031 (8)0.021 (6)0.006 (7)
C470.159 (8)0.236 (10)0.131 (8)0.037 (8)0.012 (6)0.024 (8)
C480.165 (9)0.238 (10)0.147 (8)0.029 (8)0.022 (7)0.021 (8)
Geometric parameters (Å, º) top
O1—C31.374 (7)C27A—H27A0.9600
O1—C191.409 (7)C27A—H27B0.9600
N1—C481.357 (16)C27A—H27C0.9600
N1—C441.445 (17)C28A—H28A0.9600
O2—C61.382 (7)C28A—H28B0.9600
O2—C241.405 (9)C28A—H28C0.9600
O3—C101.388 (7)C26B—H26D0.9600
O3—C291.412 (8)C26B—H26E0.9600
O4—C131.393 (7)C26B—H26F0.9600
O4—C341.410 (8)C27B—H27D0.9600
O5—C161.369 (7)C27B—H27E0.9600
O5—C391.412 (7)C27B—H27F0.9600
C1—C21.369 (8)C28B—H28D0.9600
C1—C61.386 (8)C28B—H28E0.9600
C1—C181.524 (8)C28B—H28F0.9600
C2—C31.392 (8)C29—C301.504 (10)
C2—H20.9300C29—H29A0.9700
C3—C41.376 (8)C29—H29B0.9700
C4—C51.392 (8)C30—C311.506 (13)
C4—C71.527 (8)C30—C321.516 (13)
C5—C61.388 (8)C30—C331.524 (12)
C5—H50.9300C31—H31A0.9600
C7—C81.516 (8)C31—H31B0.9600
C7—H7A0.9700C31—H31C0.9600
C7—H7B0.9700C32—H32A0.9600
C8—C131.375 (8)C32—H32B0.9600
C8—C91.384 (8)C32—H32C0.9600
C9—C101.376 (8)C33—H33A0.9600
C9—H90.9300C33—H33B0.9600
C10—C111.393 (8)C33—H33C0.9600
C11—C121.387 (8)C34—C351.507 (9)
C11—C141.512 (8)C34—H34A0.9700
C12—C131.385 (8)C34—H34B0.9700
C12—H120.9300C35—C371.492 (10)
C14—H1440.89 (7)C35—C361.510 (11)
C14—H144i0.89 (7)C35—C381.522 (10)
C15—C17i1.380 (8)C36—H36A0.9600
C15—C161.384 (9)C36—H36B0.9600
C15—H150.9300C36—H36C0.9600
C16—C171.391 (8)C37—H37A0.9600
C17—C181.508 (9)C37—H37B0.9600
C18—H18A0.9700C37—H37C0.9600
C18—H18B0.9700C38—H38A0.9600
C19—C201.504 (9)C38—H38B0.9600
C19—H19A0.9700C38—H38C0.9600
C19—H19B0.9700C39—C401.519 (10)
C20—C221.501 (11)C39—H39A0.9700
C20—C231.502 (11)C39—H39B0.9700
C20—C211.518 (13)C40—C411.473 (10)
C21—H21A0.9600C40—C431.491 (11)
C21—H21B0.9600C40—C421.501 (12)
C21—H21C0.9600C41—H41A0.9600
C22—H22A0.9600C41—H41B0.9600
C22—H22B0.9600C41—H41C0.9600
C22—H22C0.9600C42—H42A0.9600
C23—H23A0.9600C42—H42B0.9600
C23—H23B0.9600C42—H42C0.9600
C23—H23C0.9600C43—H43A0.9600
C24—C251.478 (10)C43—H43B0.9600
C24—H24A0.9700C43—H43C0.9600
C24—H24B0.9700C44—C451.346 (18)
C25—C27B1.50 (3)C44—H440.9300
C25—C27A1.513 (17)C45—C461.374 (17)
C25—C26A1.52 (2)C45—H450.9300
C25—C28B1.56 (3)C46—C471.257 (16)
C25—C28A1.59 (2)C46—H460.9300
C25—C26B1.62 (3)C47—C481.363 (18)
C26A—H26A0.9600C47—H470.9300
C26A—H26B0.9600C48—H480.9300
C26A—H26C0.9600
C3—O1—C19118.7 (5)C25—C28A—H28A109.5
C48—N1—C44122.6 (13)C25—C28A—H28B109.5
C6—O2—C24119.3 (5)H28A—C28A—H28B109.5
C10—O3—C29117.9 (5)C25—C28A—H28C109.5
C13—O4—C34115.3 (5)H28A—C28A—H28C109.5
C16—O5—C39116.0 (5)H28B—C28A—H28C109.5
C2—C1—C6117.3 (6)C25—C26B—H26D109.5
C2—C1—C18120.9 (6)C25—C26B—H26E109.5
C6—C1—C18121.8 (5)H26D—C26B—H26E109.5
C1—C2—C3122.9 (6)C25—C26B—H26F109.5
C1—C2—H2118.6H26D—C26B—H26F109.5
C3—C2—H2118.6H26E—C26B—H26F109.5
O1—C3—C4117.1 (5)C25—C27B—H27D109.5
O1—C3—C2123.6 (6)C25—C27B—H27E109.5
C4—C3—C2119.3 (6)H27D—C27B—H27E109.5
C3—C4—C5118.9 (6)C25—C27B—H27F109.5
C3—C4—C7122.5 (5)H27D—C27B—H27F109.5
C5—C4—C7118.6 (6)H27E—C27B—H27F109.5
C6—C5—C4120.5 (6)C25—C28B—H28D109.5
C6—C5—H5119.8C25—C28B—H28E109.5
C4—C5—H5119.8H28D—C28B—H28E109.5
O2—C6—C1116.0 (5)C25—C28B—H28F109.5
O2—C6—C5122.9 (6)H28D—C28B—H28F109.5
C1—C6—C5121.1 (6)H28E—C28B—H28F109.5
C8—C7—C4113.0 (5)O3—C29—C30109.9 (6)
C8—C7—H7A109.0O3—C29—H29A109.7
C4—C7—H7A109.0C30—C29—H29A109.7
C8—C7—H7B109.0O3—C29—H29B109.7
C4—C7—H7B109.0C30—C29—H29B109.7
H7A—C7—H7B107.8H29A—C29—H29B108.2
C13—C8—C9117.9 (6)C29—C30—C31111.4 (8)
C13—C8—C7121.2 (6)C29—C30—C32109.3 (7)
C9—C8—C7120.9 (6)C31—C30—C32108.8 (8)
C10—C9—C8121.2 (6)C29—C30—C33106.2 (8)
C10—C9—H9119.4C31—C30—C33108.9 (9)
C8—C9—H9119.4C32—C30—C33112.3 (9)
C9—C10—O3122.4 (6)C30—C31—H31A109.5
C9—C10—C11121.4 (6)C30—C31—H31B109.5
O3—C10—C11116.1 (6)H31A—C31—H31B109.5
C12—C11—C10116.9 (6)C30—C31—H31C109.5
C12—C11—C14121.3 (5)H31A—C31—H31C109.5
C10—C11—C14121.8 (5)H31B—C31—H31C109.5
C13—C12—C11121.5 (6)C30—C32—H32A109.5
C13—C12—H12119.3C30—C32—H32B109.5
C11—C12—H12119.3H32A—C32—H32B109.5
C8—C13—C12121.0 (6)C30—C32—H32C109.5
C8—C13—O4119.8 (6)H32A—C32—H32C109.5
C12—C13—O4119.1 (6)H32B—C32—H32C109.5
C11—C14—C11i113.2 (8)C30—C33—H33A109.5
C11—C14—H144109 (5)C30—C33—H33B109.5
C11i—C14—H144106 (5)H33A—C33—H33B109.5
C11—C14—H144i106 (5)C30—C33—H33C109.5
C11i—C14—H144i109 (5)H33A—C33—H33C109.5
H144—C14—H144i114 (10)H33B—C33—H33C109.5
C17i—C15—C16123.0 (6)O4—C34—C35111.7 (6)
C17i—C15—H15118.5O4—C34—H34A109.3
C16—C15—H15118.5C35—C34—H34A109.3
O5—C16—C15124.1 (6)O4—C34—H34B109.3
O5—C16—C17116.5 (6)C35—C34—H34B109.3
C15—C16—C17119.3 (5)H34A—C34—H34B108.0
C15i—C17—C16117.5 (6)C37—C35—C34110.6 (7)
C15i—C17—C18121.0 (6)C37—C35—C36109.3 (7)
C16—C17—C18121.5 (5)C34—C35—C36109.0 (7)
C17—C18—C1112.7 (5)C37—C35—C38111.3 (7)
C17—C18—H18A109.1C34—C35—C38107.3 (6)
C1—C18—H18A109.1C36—C35—C38109.3 (7)
C17—C18—H18B109.1C35—C36—H36A109.5
C1—C18—H18B109.1C35—C36—H36B109.5
H18A—C18—H18B107.8H36A—C36—H36B109.5
O1—C19—C20111.0 (6)C35—C36—H36C109.5
O1—C19—H19A109.4H36A—C36—H36C109.5
C20—C19—H19A109.4H36B—C36—H36C109.5
O1—C19—H19B109.4C35—C37—H37A109.5
C20—C19—H19B109.4C35—C37—H37B109.5
H19A—C19—H19B108.0H37A—C37—H37B109.5
C22—C20—C23107.6 (8)C35—C37—H37C109.5
C22—C20—C19109.9 (7)H37A—C37—H37C109.5
C23—C20—C19108.0 (7)H37B—C37—H37C109.5
C22—C20—C21111.3 (8)C35—C38—H38A109.5
C23—C20—C21109.2 (8)C35—C38—H38B109.5
C19—C20—C21110.7 (7)H38A—C38—H38B109.5
C20—C21—H21A109.5C35—C38—H38C109.5
C20—C21—H21B109.5H38A—C38—H38C109.5
H21A—C21—H21B109.5H38B—C38—H38C109.5
C20—C21—H21C109.5O5—C39—C40111.8 (6)
H21A—C21—H21C109.5O5—C39—H39A109.3
H21B—C21—H21C109.5C40—C39—H39A109.3
C20—C22—H22A109.5O5—C39—H39B109.3
C20—C22—H22B109.5C40—C39—H39B109.3
H22A—C22—H22B109.5H39A—C39—H39B107.9
C20—C22—H22C109.5C41—C40—C43111.4 (7)
H22A—C22—H22C109.5C41—C40—C42107.8 (8)
H22B—C22—H22C109.5C43—C40—C42110.3 (8)
C20—C23—H23A109.5C41—C40—C39111.2 (6)
C20—C23—H23B109.5C43—C40—C39106.7 (7)
H23A—C23—H23B109.5C42—C40—C39109.4 (7)
C20—C23—H23C109.5C40—C41—H41A109.5
H23A—C23—H23C109.5C40—C41—H41B109.5
H23B—C23—H23C109.5H41A—C41—H41B109.5
O2—C24—C25112.8 (7)C40—C41—H41C109.5
O2—C24—H24A109.0H41A—C41—H41C109.5
C25—C24—H24A109.0H41B—C41—H41C109.5
O2—C24—H24B109.0C40—C42—H42A109.5
C25—C24—H24B109.0C40—C42—H42B109.5
H24A—C24—H24B107.8H42A—C42—H42B109.5
C24—C25—C27B102.8 (14)C40—C42—H42C109.5
C24—C25—C27A106.0 (9)H42A—C42—H42C109.5
C24—C25—C26A113.7 (10)H42B—C42—H42C109.5
C27A—C25—C26A109.7 (12)C40—C43—H43A109.5
C24—C25—C28B121.5 (12)C40—C43—H43B109.5
C27B—C25—C28B103.9 (17)H43A—C43—H43B109.5
C24—C25—C28A106.4 (10)C40—C43—H43C109.5
C27A—C25—C28A111.3 (12)H43A—C43—H43C109.5
C26A—C25—C28A109.8 (13)H43B—C43—H43C109.5
C24—C25—C26B108.6 (14)C45—C44—N1112.4 (15)
C27B—C25—C26B108.3 (18)C45—C44—H44123.8
C28B—C25—C26B110.6 (17)N1—C44—H44123.8
C25—C26A—H26A109.5C44—C45—C46124.5 (16)
C25—C26A—H26B109.5C44—C45—H45117.7
H26A—C26A—H26B109.5C46—C45—H45117.7
C25—C26A—H26C109.5C47—C46—C45119.5 (14)
H26A—C26A—H26C109.5C47—C46—H46120.3
H26B—C26A—H26C109.5C45—C46—H46120.3
C25—C27A—H27A109.5C46—C47—C48123.8 (17)
C25—C27A—H27B109.5C46—C47—H47118.1
H27A—C27A—H27B109.5C48—C47—H47118.1
C25—C27A—H27C109.5N1—C48—C47117.0 (16)
H27A—C27A—H27C109.5N1—C48—H48121.5
H27B—C27A—H27C109.5C47—C48—H48121.5
C6—C1—C2—C31.5 (9)C12—C11—C14—C11i89.1 (5)
C18—C1—C2—C3177.4 (6)C10—C11—C14—C11i87.5 (5)
C19—O1—C3—C4177.8 (6)C39—O5—C16—C1522.9 (8)
C19—O1—C3—C21.3 (10)C39—O5—C16—C17158.2 (6)
C1—C2—C3—O1179.0 (6)C17i—C15—C16—O5175.5 (5)
C1—C2—C3—C40.2 (9)C17i—C15—C16—C175.7 (8)
O1—C3—C4—C5178.0 (5)O5—C16—C17—C15i176.4 (5)
C2—C3—C4—C51.2 (9)C15—C16—C17—C15i4.7 (7)
O1—C3—C4—C72.4 (9)O5—C16—C17—C185.6 (8)
C2—C3—C4—C7178.4 (6)C15—C16—C17—C18173.3 (5)
C3—C4—C5—C60.5 (9)C15i—C17—C18—C192.8 (6)
C7—C4—C5—C6179.1 (5)C16—C17—C18—C185.1 (7)
C24—O2—C6—C1177.3 (6)C2—C1—C18—C1793.7 (7)
C24—O2—C6—C50.5 (9)C6—C1—C18—C1785.2 (7)
C2—C1—C6—O2175.6 (5)C3—O1—C19—C20176.0 (6)
C18—C1—C6—O25.5 (8)O1—C19—C20—C2265.9 (9)
C2—C1—C6—C52.2 (8)O1—C19—C20—C23177.1 (7)
C18—C1—C6—C5176.7 (6)O1—C19—C20—C2157.5 (10)
C4—C5—C6—O2176.4 (5)C6—O2—C24—C25159.9 (7)
C4—C5—C6—C11.2 (9)O2—C24—C25—C27B92.6 (17)
C3—C4—C7—C8103.6 (7)O2—C24—C25—C27A64.5 (13)
C5—C4—C7—C876.0 (7)O2—C24—C25—C26A56.1 (15)
C4—C7—C8—C1389.9 (7)O2—C24—C25—C28B23 (2)
C4—C7—C8—C990.4 (7)O2—C24—C25—C28A177.0 (11)
C13—C8—C9—C101.5 (8)O2—C24—C25—C26B152.8 (15)
C7—C8—C9—C10178.8 (5)C10—O3—C29—C30156.6 (6)
C8—C9—C10—O3176.0 (5)O3—C29—C30—C3157.5 (10)
C8—C9—C10—C111.5 (9)O3—C29—C30—C3262.7 (9)
C29—O3—C10—C917.8 (8)O3—C29—C30—C33175.9 (8)
C29—O3—C10—C11159.8 (6)C13—O4—C34—C35177.1 (6)
C9—C10—C11—C122.1 (8)O4—C34—C35—C3759.2 (9)
O3—C10—C11—C12175.6 (5)O4—C34—C35—C3661.0 (8)
C9—C10—C11—C14174.7 (6)O4—C34—C35—C38179.2 (6)
O3—C10—C11—C147.6 (8)C16—O5—C39—C40161.0 (6)
C10—C11—C12—C130.4 (8)O5—C39—C40—C4157.5 (9)
C14—C11—C12—C13177.2 (6)O5—C39—C40—C43179.2 (8)
C9—C8—C13—C123.9 (8)O5—C39—C40—C4261.5 (9)
C7—C8—C13—C12176.3 (5)C48—N1—C44—C452.9 (19)
C9—C8—C13—O4179.1 (5)N1—C44—C45—C460.1 (19)
C7—C8—C13—O41.2 (8)C44—C45—C46—C473 (2)
C11—C12—C13—C83.4 (9)C45—C46—C47—C483 (2)
C11—C12—C13—O4178.7 (5)C44—N1—C48—C473 (2)
C34—O4—C13—C8117.8 (6)C46—C47—C48—N10 (2)
C34—O4—C13—C1266.9 (7)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
π denotes the centroid of the pyridine ring.
D—H···AD—HH···AD···AD—H···A
C46—H46···O40.932.883.56 (1)131
C24—H24B···π0.972.993.921 (11)161
C19—H19B···N1i0.972.973.81 (1)145
C39—H39B···N1i0.973.173.74 (1)120
Symmetry code: (i) x+1, y, z.
 

Funding information

The support of the Kuwait University Research Administration (research grant No. SC 05/23) and the facilities of RSPU through grant Nos. GS 03/08 (Rigaku RAPID II, Japan), GS 01/01 (NMR-Bruker DPX Avance 400, Germany) and GS 01/03 (GC MS Thermo Scientific, Germany) are gratefully acknowledged.

References

First citationAl-Azemi, T. F., Vinodh, M., Alipour, F. H. & Mohamod, A. A. (2019). RSC Adv. 9, 23295–23301.  Web of Science CAS PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJie, K., Zhou, Y., Li, E. & Huang, F. (2018). Acc. Chem. Res. 51, 2064–2072.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, Q., Zhu, H. & Huang, F. (2020). Trends Chem. 2, 850–864.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOgoshi, T., Yamagishi, T. & Nakamoto, Y. (2016). Chem. Rev. 116, 7937–8002.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (2016). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2017). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWu, J.-R., Wu, G., Li, D., Li, M.-H., Wang, Y. & Yang, Y.-W. (2023). Nat. Commun. 14, 5954.  Web of Science CSD CrossRef PubMed Google Scholar
First citationWu, Y., Tang, M., Wang, Z., Shi, L., Xiong, Z., Chen, Z., Sessler, J. L. & Huang, F. (2023). Nat. Commun. 14, 4927.  Web of Science CSD CrossRef PubMed Google Scholar
First citationWu, Y., Zhou, J., Li, E., Wang, M., Jie, K., Zhu, H. & Huang, F. (2020). J. Am. Chem. Soc. 142, 19722–19730.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhao, X., Hua, B. & Shao, L. (2024). Chem. Commun. 60, 1164–1167.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146