organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3aH,4H,5H,8H,9H,9aH-Cyclo­octa­[d][1,3]dioxole-2-thione

crossmark logo

aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 4 October 2024; accepted 18 October 2024; online 8 November 2024)

The thio­nocarbonate of trans-cyclo­octenediol, C9H12O2S, crystallizes with a 9/1 disorder in the position of the R,R and S,S-enanti­omers. As a result of trans-annulation, both rings adopt a twist conformation.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyclic thio­nocarbonates, 1,3-dioxolan-2-thio­nes, are important inter­mediates for several transformations (Klein et al., 2022[Klein, M. T., Krause, B. M., Neudörfl, J.-M., Kühne, R. & Schmalz, H.-G. (2022). Org. Biomol. Chem. 20, 9368-9377.]; Rizzo & Trauner, 2018[Rizzo, A. & Trauner, D. (2018). Org. Lett. 20, 1841-1844.]). Outstanding in this context is the Corey–Winter reaction, a reductive desulfuration with fragmentation of the heterocycle leading to alkenes (Corey et al. 1965[Corey, E. J., Carey, F. A. & Winter, R. A. E. (1965). J. Am. Chem. Soc. 87, 934-935.]). This method allows cistrans isomerizations of alkenes and the synthesis of strained compounds (Paquette et al., 1975[Paquette, L. A., Itoh, I. & Farnham, W. B. (1975). J. Am. Chem. Soc. 97, 7280-7285.]; Daub et al., 1972[Daub, J. & Erhardt, U. (1972). Tetrahedron, 28, 181-186.]). As part of our inter­est in strained hydro­carbons (Detert & Meier, 1997a[Detert, H. & Meier, H. (1997). Liebigs Ann. Recl, pp. 1557-1563.],b[Detert, H. & Meier, H. (1997). Liebigs Ann. Recl, pp. 1565-1570.]), the title compound was prepared as a precursor for the ‘labile’ 1,5-cyclo­octa­diene (Ziegler & Wilms, 1950[Ziegler, K. & Wilms, H. (1950). Justus Liebigs Ann. Chem. 567, 1-43.]). The racemate crystallizes with disorder, the positions of the title mol­ecule are filled in a 9/1 ratio with S,S- and R,R-enanti­omers (Fig. 1[link]). As a result of trans-annulation located on C3,C10, both rings adopt a twist conformation. Furthermore, the eight-membered ring forms two planes, the olefinic unit (C5,C6,C7,C8) with maximum deviation of 0.008 (7) Å from the mean plane and the aliphatic part (C4,C5,C8,C9), maximum deviation 0.051 (8) Å. Then angle between the mean planes amounts to 67.5 (5)°. The cyclic thio­nocarbonate is nearly planar, C3 lies slightly above the mean plane [0.092 (8) Å] and C10 similarly below [0.094 (2) Å]. The exocyclic sulfur atom deviates from this plane by just 0.01 (2) Å. The packing is shown in Fig. 2[link].

[Figure 1]
Figure 1
View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Bonds involving the lower occupied sites are drawn with broken tubes.
[Figure 2]
Figure 2
Part of the packing diagram. View along the c-axis. Minor occupied sites are omitted for clarity.

Synthesis and crystallization

(5Z-1,2-trans)-Cyclo­oct-5-ene-1,2-diol (3.00 g, 0.02 mol, 1.00 eq), 4-dimethylaminopyridine (DMAP; 5.86 g, 0.05 mol, 2.40 eq), pyridine (32.24 ml, 0.40 mol) and di­chloro­methane (40.00 ml) were placed in a flask with a magnetic stirrer under a nitro­gen atmosphere. The mixture was cooled in ice–water, while a solution of thio­phosgene (2.76 g, 0.02 mol, 1.20 eq) in di­chloro­methane (20.00 ml) was added over 1 h, after one additional hour the reaction mixture was allowed to warm up to room temperature and was stirred for 16 h. The solvent was removed by distillation. The reaction mixture was diluted with a saturated sodium chloride solution (40.00 ml). The aqueous phase was separated and extracted with ethyl acetate (4 × 50.00 ml). The combined organic phases were dried over magnesium sulfate. The mixture was filtered to remove the magnesium sulfate and the solvent was removed under reduced pressure. The crude product was purified by column chromatography (EtOAc:cyclo­hexane = 1:3). The light-orange solid obtained was recrystallized from cyclo­hexane solution. (Z)-3a,4,5,8,9,9a-Hexa­hydro­cyclo­octa­[d][1,3]dioxole-2-thione (0.38 g, 2.00 mmol, 10%) was obtained as colorless crystals. TLC: Rf = 0.46 (EtOAc:Cyclo­hexane = 1:3). Melting range: (EtOAc) = 127–132°C. ESI–HRMS (pos.): calc. [C9H12O2S]+: m/z = 185.0631, found: m/z = 185.0632. 1H-NMR: (300 MHz, CDCl3); δ [p.p.m.] = 5.70–5.58 (m, 2H, 5-CH, 6-CH), 4.72–4.62 (m, 2H, 2-CH, 9-CH), 2.36–2.23 (m, 4H, 4-CH2, 7-CH2), 2.23–2.13 (m, 2H, 3-CH2, 8-CH2), 1.77–1.61 (m, 2H, 3-CH2, 8-CH2). 13C-NMR: (75 MHz, CDCl3); δ [p.p.m.] = 191.51 (1 C, C=S), 129.21 (2 C, 5-CH, 6-CH), 87.27 (2 C, 2-CH, 9-CH), 29.23 (2 C, 3-CH2, 8-CH2), 20.66 (2 C, 4-CH2, 7-CH2). The assignment of H- and C-signals is based on HH-Cosy, HMBC– and HSQC– experiments. IR: 3018 (w), 2952 (w), 1449 (w), 1322 (s), 1257 (s), 1039 (s), 965 (s), 878 (w), 783 (m), 595 (w) cm−1.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Hydrogen atoms were placed at calculated positions and were refined in the riding-model approximation with Caromatic–H = 0.95 Å, Cmethyl­ene–H = 0.99 Å, and with Uiso(H) = 1.2 Ueq(C). The site occupation factors were kept fixed at 0.9 and 0.1 for the disordered sites. The displacement parameters of the disordered C and O atoms were constrained to be equal for the corresponding sites. The absolute structure could not be determined reliably.

Table 1
Experimental details

Crystal data
Chemical formula C9H12O2S
Mr 184.25
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 120
a, b, c (Å) 7.5555 (9), 15.7119 (17), 7.4892 (8)
V3) 889.05 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.32
Crystal size (mm) 0.57 × 0.09 × 0.03
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration
Tmin, Tmax 0.898, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 3713, 1963, 1439
Rint 0.055
(sin θ/λ)max−1) 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.159, 1.10
No. of reflections 1963
No. of parameters 121
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.29
Absolute structure Classical Flack method preferred over Parsons because s.u. lower.
Absolute structure parameter 0.3 (3)
Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

3aH,4H,5H,8H,9H,9aH-Cycloocta[d][1,3]dioxole-2-thione top
Crystal data top
C9H12O2SDx = 1.377 Mg m3
Mr = 184.25Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 3621 reflections
a = 7.5555 (9) Åθ = 3.0–28.2°
b = 15.7119 (17) ŵ = 0.32 mm1
c = 7.4892 (8) ÅT = 120 K
V = 889.05 (17) Å3Needle, colorless
Z = 40.57 × 0.09 × 0.03 mm
F(000) = 392
Data collection top
Stoe IPDS 2T
diffractometer
1963 independent reflections
Radiation source: sealed X-ray tube, 12x0.4mm long-fine focus1439 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.055
rotation method, ω scansθmax = 28.0°, θmin = 3.0°
Absorption correction: integrationh = 99
Tmin = 0.898, Tmax = 0.989k = 2020
3713 measured reflectionsl = 98
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.070 w = 1/[σ2(Fo2) + (0.0349P)2 + 2.2293P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.159(Δ/σ)max = 0.002
S = 1.10Δρmax = 0.32 e Å3
1963 reflectionsΔρmin = 0.29 e Å3
121 parametersAbsolute structure: Classical Flack method preferred over Parsons because s.u. lower.
6 restraintsAbsolute structure parameter: 0.3 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5985 (9)0.3473 (4)0.6938 (9)0.0291 (14)
O20.5867 (7)0.3159 (3)0.5280 (6)0.0292 (12)0.9
C30.4227 (10)0.3437 (5)0.4437 (10)0.0267 (15)0.9
H30.3350240.2960750.4433070.032*0.9
C40.4633 (10)0.3704 (5)0.2539 (10)0.0324 (16)
H4A0.4951290.3194950.1830130.039*0.9
H4B0.5666530.4091990.2541350.039*0.9
H4C0.4486870.3078950.2478670.039*0.1
H4D0.5753520.3860470.1935980.039*0.1
C50.3070 (9)0.4151 (5)0.1658 (9)0.0350 (16)
H5A0.2934590.4723830.2192820.042*
H5B0.3329000.4227420.0371910.042*
C60.1361 (10)0.3678 (4)0.1850 (10)0.0357 (17)
H60.1073770.3269130.0960480.043*
C70.0227 (9)0.3789 (4)0.3170 (11)0.0334 (16)
H70.0800120.3440290.3184130.040*
C80.0442 (10)0.4430 (4)0.4663 (10)0.0349 (16)
H8A0.0739150.4556400.5170330.042*
H8B0.0913870.4965790.4154290.042*
C90.1672 (9)0.4140 (5)0.6185 (9)0.0335 (17)
H9A0.1505710.4520700.7224250.040*0.9
H9B0.1334620.3557180.6555150.040*0.9
H9C0.0944520.3820820.7056810.040*0.1
H9D0.2110170.4656220.6799860.040*0.1
C100.3590 (11)0.4144 (5)0.5659 (10)0.0307 (17)0.9
H100.3901220.4708730.5128540.037*0.9
O110.4647 (7)0.4000 (4)0.7264 (6)0.0317 (13)0.9
S120.7542 (3)0.32268 (11)0.8348 (3)0.0398 (4)
O2A0.635 (6)0.375 (3)0.523 (6)0.0292 (12)0.1
C3A0.465 (6)0.400 (4)0.446 (4)0.0267 (15)0.1
H3A0.4496200.4634210.4520800.032*0.1
C10A0.335 (7)0.357 (4)0.570 (6)0.0307 (17)0.1
H10A0.2976080.3000010.5219160.037*0.1
O11A0.430 (3)0.347 (3)0.740 (5)0.0317 (13)0.1
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (4)0.032 (3)0.018 (3)0.007 (3)0.000 (3)0.001 (3)
O20.031 (3)0.035 (3)0.021 (3)0.005 (2)0.000 (2)0.001 (2)
C30.027 (4)0.027 (3)0.027 (4)0.000 (3)0.000 (3)0.004 (3)
C40.040 (4)0.035 (4)0.022 (4)0.003 (3)0.005 (3)0.003 (3)
C50.046 (4)0.043 (4)0.016 (3)0.005 (4)0.001 (3)0.000 (3)
C60.046 (4)0.033 (3)0.028 (4)0.002 (3)0.013 (4)0.002 (3)
C70.034 (3)0.029 (3)0.038 (5)0.000 (3)0.005 (4)0.001 (3)
C80.036 (4)0.035 (3)0.034 (4)0.010 (3)0.004 (3)0.001 (3)
C90.040 (4)0.036 (4)0.025 (4)0.006 (3)0.003 (3)0.001 (3)
C100.045 (5)0.029 (4)0.019 (4)0.005 (4)0.001 (3)0.000 (3)
O110.041 (3)0.037 (3)0.017 (3)0.004 (3)0.003 (2)0.005 (2)
S120.0412 (8)0.0489 (9)0.0293 (8)0.0041 (10)0.0065 (9)0.0080 (10)
O2A0.031 (3)0.035 (3)0.021 (3)0.005 (2)0.000 (2)0.001 (2)
C3A0.027 (4)0.027 (3)0.027 (4)0.000 (3)0.000 (3)0.004 (3)
C10A0.045 (5)0.029 (4)0.019 (4)0.005 (4)0.001 (3)0.000 (3)
O11A0.041 (3)0.037 (3)0.017 (3)0.004 (3)0.003 (2)0.005 (2)
Geometric parameters (Å, º) top
C1—O11A1.32 (3)C6—H60.9500
C1—O111.330 (8)C7—C81.515 (10)
C1—O21.339 (8)C7—H70.9500
C1—O2A1.38 (5)C8—C91.539 (10)
C1—S121.627 (7)C8—H8A0.9900
O2—C31.458 (8)C8—H8B0.9900
C3—C41.514 (10)C9—C101.502 (10)
C3—C101.517 (10)C9—C10A1.60 (7)
C3—H31.0000C9—H9A0.9900
C4—C3A1.51 (3)C9—H9B0.9900
C4—C51.524 (10)C9—H9C0.9900
C4—H4A0.9900C9—H9D0.9900
C4—H4B0.9900C10—O111.461 (8)
C4—H4C0.9900C10—H101.0000
C4—H4D0.9900O2A—C3A1.46 (3)
C5—C61.497 (10)C3A—C10A1.52 (3)
C5—H5A0.9900C3A—H3A1.0000
C5—H5B0.9900C10A—O11A1.47 (3)
C6—C71.320 (10)C10A—H10A1.0000
O11—C1—O2110.5 (6)C7—C8—H8A108.6
O11A—C1—O2A116 (3)C9—C8—H8A108.6
O11A—C1—S12122 (2)C7—C8—H8B108.6
O11—C1—S12125.4 (5)C9—C8—H8B108.6
O2—C1—S12124.2 (5)H8A—C8—H8B107.6
O2A—C1—S12122.2 (17)C10—C9—C8112.8 (6)
C1—O2—C3110.3 (5)C8—C9—C10A118.6 (17)
O2—C3—C4108.5 (6)C10—C9—H9A109.0
O2—C3—C10103.2 (6)C8—C9—H9A109.0
C4—C3—C10115.3 (6)C10—C9—H9B109.0
O2—C3—H3109.8C8—C9—H9B109.0
C4—C3—H3109.8H9A—C9—H9B107.8
C10—C3—H3109.8C8—C9—H9C107.7
C3—C4—C5112.2 (6)C10A—C9—H9C107.7
C3A—C4—C5105.9 (18)C8—C9—H9D107.7
C3—C4—H4A109.2C10A—C9—H9D107.7
C5—C4—H4A109.2H9C—C9—H9D107.1
C3—C4—H4B109.2O11—C10—C9108.1 (5)
C5—C4—H4B109.2O11—C10—C3102.1 (6)
H4A—C4—H4B107.9C9—C10—C3117.5 (7)
C3A—C4—H4C110.5O11—C10—H10109.6
C5—C4—H4C110.5C9—C10—H10109.6
C3A—C4—H4D110.5C3—C10—H10109.6
C5—C4—H4D110.5C1—O11—C10111.1 (5)
H4C—C4—H4D108.7C1—O2A—C3A106 (3)
C6—C5—C4113.4 (6)O2A—C3A—C4107 (3)
C6—C5—H5A108.9O2A—C3A—C10A102 (4)
C4—C5—H5A108.9C4—C3A—C10A116 (4)
C6—C5—H5B108.9O2A—C3A—H3A110.4
C4—C5—H5B108.9C4—C3A—H3A110.4
H5A—C5—H5B107.7C10A—C3A—H3A110.4
C7—C6—C5124.5 (7)O11A—C10A—C3A105 (4)
C7—C6—H6117.8O11A—C10A—C9104 (4)
C5—C6—H6117.8C3A—C10A—C9113 (4)
C6—C7—C8124.9 (6)O11A—C10A—H10A111.2
C6—C7—H7117.6C3A—C10A—H10A111.2
C8—C7—H7117.6C9—C10A—H10A111.2
C7—C8—C9114.5 (6)C1—O11A—C10A104 (3)
O11—C1—O2—C35.2 (7)S12—C1—O11—C10174.4 (5)
S12—C1—O2—C3174.1 (5)C9—C10—O11—C1138.8 (6)
C1—O2—C3—C4136.5 (6)C3—C10—O11—C114.3 (8)
C1—O2—C3—C1013.7 (7)O11A—C1—O2A—C3A2 (5)
O2—C3—C4—C5169.9 (6)S12—C1—O2A—C3A173 (3)
C10—C3—C4—C554.7 (9)C1—O2A—C3A—C4140 (3)
C3—C4—C5—C649.4 (8)C1—O2A—C3A—C10A17 (5)
C3A—C4—C5—C687 (2)C5—C4—C3A—O2A167 (3)
C4—C5—C6—C791.1 (8)C5—C4—C3A—C10A80 (4)
C5—C6—C7—C82.1 (11)O2A—C3A—C10A—O11A26 (6)
C6—C7—C8—C981.3 (9)C4—C3A—C10A—O11A142 (4)
C7—C8—C9—C1072.8 (8)O2A—C3A—C10A—C9139 (4)
C7—C8—C9—C10A35 (3)C4—C3A—C10A—C9105 (4)
C8—C9—C10—O11170.6 (6)C8—C9—C10A—O11A175 (3)
C8—C9—C10—C374.7 (9)C8—C9—C10A—C3A61 (4)
O2—C3—C10—O1115.9 (7)O2A—C1—O11A—C10A15 (5)
C4—C3—C10—O11134.1 (6)S12—C1—O11A—C10A170 (3)
O2—C3—C10—C9134.0 (6)C3A—C10A—O11A—C125 (6)
C4—C3—C10—C9107.9 (7)C9—C10A—O11A—C1144 (3)
O2—C1—O11—C106.3 (8)
 

References

First citationCorey, E. J., Carey, F. A. & Winter, R. A. E. (1965). J. Am. Chem. Soc. 87, 934–935.  CrossRef CAS Web of Science Google Scholar
First citationDaub, J. & Erhardt, U. (1972). Tetrahedron, 28, 181–186.  CrossRef CAS Web of Science Google Scholar
First citationDetert, H. & Meier, H. (1997). Liebigs Ann. Recl, pp. 1557–1563.  Google Scholar
First citationDetert, H. & Meier, H. (1997). Liebigs Ann. Recl, pp. 1565–1570.  Google Scholar
First citationKlein, M. T., Krause, B. M., Neudörfl, J.-M., Kühne, R. & Schmalz, H.-G. (2022). Org. Biomol. Chem. 20, 9368–9377.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPaquette, L. A., Itoh, I. & Farnham, W. B. (1975). J. Am. Chem. Soc. 97, 7280–7285.  CrossRef CAS Web of Science Google Scholar
First citationRizzo, A. & Trauner, D. (2018). Org. Lett. 20, 1841–1844.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationZiegler, K. & Wilms, H. (1950). Justus Liebigs Ann. Chem. 567, 1–43.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146