organic compounds
3aH,4H,5H,8H,9H,9aH-Cycloocta[d][1,3]dioxole-2-thione
aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de
The thionocarbonate of trans-cyclooctenediol, C9H12O2S, crystallizes with a 9/1 disorder in the position of the R,R and S,S-enantiomers. As a result of trans-annulation, both rings adopt a twist conformation.
Keywords: crystal structure; sulfur; heterocycles.
CCDC reference: 2391879
Structure description
Cyclic thionocarbonates, 1,3-dioxolan-2-thiones, are important intermediates for several transformations (Klein et al., 2022; Rizzo & Trauner, 2018). Outstanding in this context is the Corey–Winter reaction, a reductive desulfuration with fragmentation of the heterocycle leading to (Corey et al. 1965). This method allows cis–trans isomerizations of and the synthesis of strained compounds (Paquette et al., 1975; Daub et al., 1972). As part of our interest in strained hydrocarbons (Detert & Meier, 1997a,b), the title compound was prepared as a precursor for the ‘labile’ 1,5-cyclooctadiene (Ziegler & Wilms, 1950). The racemate crystallizes with disorder, the positions of the title molecule are filled in a 9/1 ratio with S,S- and R,R-enantiomers (Fig. 1). As a result of trans-annulation located on C3,C10, both rings adopt a twist conformation. Furthermore, the eight-membered ring forms two planes, the olefinic unit (C5,C6,C7,C8) with maximum deviation of 0.008 (7) Å from the mean plane and the aliphatic part (C4,C5,C8,C9), maximum deviation 0.051 (8) Å. Then angle between the mean planes amounts to 67.5 (5)°. The cyclic thionocarbonate is nearly planar, C3 lies slightly above the mean plane [0.092 (8) Å] and C10 similarly below [0.094 (2) Å]. The exocyclic sulfur atom deviates from this plane by just 0.01 (2) Å. The packing is shown in Fig. 2.
Synthesis and crystallization
(5Z-1,2-trans)-Cyclooct-5-ene-1,2-diol (3.00 g, 0.02 mol, 1.00 eq), 4-dimethylaminopyridine (DMAP; 5.86 g, 0.05 mol, 2.40 eq), pyridine (32.24 ml, 0.40 mol) and dichloromethane (40.00 ml) were placed in a flask with a magnetic stirrer under a nitrogen atmosphere. The mixture was cooled in ice–water, while a solution of thiophosgene (2.76 g, 0.02 mol, 1.20 eq) in dichloromethane (20.00 ml) was added over 1 h, after one additional hour the reaction mixture was allowed to warm up to room temperature and was stirred for 16 h. The solvent was removed by distillation. The reaction mixture was diluted with a saturated sodium chloride solution (40.00 ml). The aqueous phase was separated and extracted with ethyl acetate (4 × 50.00 ml). The combined organic phases were dried over magnesium sulfate. The mixture was filtered to remove the magnesium sulfate and the solvent was removed under reduced pressure. The crude product was purified by (EtOAc:cyclohexane = 1:3). The light-orange solid obtained was recrystallized from cyclohexane solution. (Z)-3a,4,5,8,9,9a-Hexahydrocycloocta[d][1,3]dioxole-2-thione (0.38 g, 2.00 mmol, 10%) was obtained as colorless crystals. TLC: Rf = 0.46 (EtOAc:Cyclohexane = 1:3). Melting range: (EtOAc) = 127–132°C. ESI–HRMS (pos.): calc. [C9H12O2S]+: m/z = 185.0631, found: m/z = 185.0632. 1H-NMR: (300 MHz, CDCl3); δ [p.p.m.] = 5.70–5.58 (m, 2H, 5-CH, 6-CH), 4.72–4.62 (m, 2H, 2-CH, 9-CH), 2.36–2.23 (m, 4H, 4-CH2, 7-CH2), 2.23–2.13 (m, 2H, 3-CH2, 8-CH2), 1.77–1.61 (m, 2H, 3-CH2, 8-CH2). 13C-NMR: (75 MHz, CDCl3); δ [p.p.m.] = 191.51 (1 C, C=S), 129.21 (2 C, 5-CH, 6-CH), 87.27 (2 C, 2-CH, 9-CH), 29.23 (2 C, 3-CH2, 8-CH2), 20.66 (2 C, 4-CH2, 7-CH2). The assignment of H- and C-signals is based on HH-Cosy, HMBC– and HSQC– experiments. IR: 3018 (w), 2952 (w), 1449 (w), 1322 (s), 1257 (s), 1039 (s), 965 (s), 878 (w), 783 (m), 595 (w) cm−1.
Refinement
Crystal data, data collection and structure . Hydrogen atoms were placed at calculated positions and were refined in the riding-model approximation with Caromatic–H = 0.95 Å, Cmethylene–H = 0.99 Å, and with Uiso(H) = 1.2 Ueq(C). The site occupation factors were kept fixed at 0.9 and 0.1 for the disordered sites. The displacement parameters of the disordered C and O atoms were constrained to be equal for the corresponding sites. The could not be determined reliably.
details are summarized in Table 1Structural data
CCDC reference: 2391879
https://doi.org/10.1107/S2414314624010198/bt4155sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624010198/bt4155Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624010198/bt4155Isup3.cml
C9H12O2S | Dx = 1.377 Mg m−3 |
Mr = 184.25 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 3621 reflections |
a = 7.5555 (9) Å | θ = 3.0–28.2° |
b = 15.7119 (17) Å | µ = 0.32 mm−1 |
c = 7.4892 (8) Å | T = 120 K |
V = 889.05 (17) Å3 | Needle, colorless |
Z = 4 | 0.57 × 0.09 × 0.03 mm |
F(000) = 392 |
Stoe IPDS 2T diffractometer | 1963 independent reflections |
Radiation source: sealed X-ray tube, 12x0.4mm long-fine focus | 1439 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.055 |
rotation method, ω scans | θmax = 28.0°, θmin = 3.0° |
Absorption correction: integration | h = −9→9 |
Tmin = 0.898, Tmax = 0.989 | k = −20→20 |
3713 measured reflections | l = −9→8 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.070 | w = 1/[σ2(Fo2) + (0.0349P)2 + 2.2293P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.159 | (Δ/σ)max = 0.002 |
S = 1.10 | Δρmax = 0.32 e Å−3 |
1963 reflections | Δρmin = −0.29 e Å−3 |
121 parameters | Absolute structure: Classical Flack method preferred over Parsons because s.u. lower. |
6 restraints | Absolute structure parameter: 0.3 (3) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.5985 (9) | 0.3473 (4) | 0.6938 (9) | 0.0291 (14) | |
O2 | 0.5867 (7) | 0.3159 (3) | 0.5280 (6) | 0.0292 (12) | 0.9 |
C3 | 0.4227 (10) | 0.3437 (5) | 0.4437 (10) | 0.0267 (15) | 0.9 |
H3 | 0.335024 | 0.296075 | 0.443307 | 0.032* | 0.9 |
C4 | 0.4633 (10) | 0.3704 (5) | 0.2539 (10) | 0.0324 (16) | |
H4A | 0.495129 | 0.319495 | 0.183013 | 0.039* | 0.9 |
H4B | 0.566653 | 0.409199 | 0.254135 | 0.039* | 0.9 |
H4C | 0.448687 | 0.307895 | 0.247867 | 0.039* | 0.1 |
H4D | 0.575352 | 0.386047 | 0.193598 | 0.039* | 0.1 |
C5 | 0.3070 (9) | 0.4151 (5) | 0.1658 (9) | 0.0350 (16) | |
H5A | 0.293459 | 0.472383 | 0.219282 | 0.042* | |
H5B | 0.332900 | 0.422742 | 0.037191 | 0.042* | |
C6 | 0.1361 (10) | 0.3678 (4) | 0.1850 (10) | 0.0357 (17) | |
H6 | 0.107377 | 0.326913 | 0.096048 | 0.043* | |
C7 | 0.0227 (9) | 0.3789 (4) | 0.3170 (11) | 0.0334 (16) | |
H7 | −0.080012 | 0.344029 | 0.318413 | 0.040* | |
C8 | 0.0442 (10) | 0.4430 (4) | 0.4663 (10) | 0.0349 (16) | |
H8A | −0.073915 | 0.455640 | 0.517033 | 0.042* | |
H8B | 0.091387 | 0.496579 | 0.415429 | 0.042* | |
C9 | 0.1672 (9) | 0.4140 (5) | 0.6185 (9) | 0.0335 (17) | |
H9A | 0.150571 | 0.452070 | 0.722425 | 0.040* | 0.9 |
H9B | 0.133462 | 0.355718 | 0.655515 | 0.040* | 0.9 |
H9C | 0.094452 | 0.382082 | 0.705681 | 0.040* | 0.1 |
H9D | 0.211017 | 0.465622 | 0.679986 | 0.040* | 0.1 |
C10 | 0.3590 (11) | 0.4144 (5) | 0.5659 (10) | 0.0307 (17) | 0.9 |
H10 | 0.390122 | 0.470873 | 0.512854 | 0.037* | 0.9 |
O11 | 0.4647 (7) | 0.4000 (4) | 0.7264 (6) | 0.0317 (13) | 0.9 |
S12 | 0.7542 (3) | 0.32268 (11) | 0.8348 (3) | 0.0398 (4) | |
O2A | 0.635 (6) | 0.375 (3) | 0.523 (6) | 0.0292 (12) | 0.1 |
C3A | 0.465 (6) | 0.400 (4) | 0.446 (4) | 0.0267 (15) | 0.1 |
H3A | 0.449620 | 0.463421 | 0.452080 | 0.032* | 0.1 |
C10A | 0.335 (7) | 0.357 (4) | 0.570 (6) | 0.0307 (17) | 0.1 |
H10A | 0.297608 | 0.300001 | 0.521916 | 0.037* | 0.1 |
O11A | 0.430 (3) | 0.347 (3) | 0.740 (5) | 0.0317 (13) | 0.1 |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.037 (4) | 0.032 (3) | 0.018 (3) | −0.007 (3) | 0.000 (3) | 0.001 (3) |
O2 | 0.031 (3) | 0.035 (3) | 0.021 (3) | 0.005 (2) | 0.000 (2) | −0.001 (2) |
C3 | 0.027 (4) | 0.027 (3) | 0.027 (4) | 0.000 (3) | 0.000 (3) | 0.004 (3) |
C4 | 0.040 (4) | 0.035 (4) | 0.022 (4) | 0.003 (3) | 0.005 (3) | 0.003 (3) |
C5 | 0.046 (4) | 0.043 (4) | 0.016 (3) | 0.005 (4) | 0.001 (3) | 0.000 (3) |
C6 | 0.046 (4) | 0.033 (3) | 0.028 (4) | 0.002 (3) | −0.013 (4) | −0.002 (3) |
C7 | 0.034 (3) | 0.029 (3) | 0.038 (5) | 0.000 (3) | −0.005 (4) | 0.001 (3) |
C8 | 0.036 (4) | 0.035 (3) | 0.034 (4) | 0.010 (3) | 0.004 (3) | 0.001 (3) |
C9 | 0.040 (4) | 0.036 (4) | 0.025 (4) | 0.006 (3) | 0.003 (3) | −0.001 (3) |
C10 | 0.045 (5) | 0.029 (4) | 0.019 (4) | 0.005 (4) | −0.001 (3) | 0.000 (3) |
O11 | 0.041 (3) | 0.037 (3) | 0.017 (3) | 0.004 (3) | −0.003 (2) | −0.005 (2) |
S12 | 0.0412 (8) | 0.0489 (9) | 0.0293 (8) | −0.0041 (10) | −0.0065 (9) | 0.0080 (10) |
O2A | 0.031 (3) | 0.035 (3) | 0.021 (3) | 0.005 (2) | 0.000 (2) | −0.001 (2) |
C3A | 0.027 (4) | 0.027 (3) | 0.027 (4) | 0.000 (3) | 0.000 (3) | 0.004 (3) |
C10A | 0.045 (5) | 0.029 (4) | 0.019 (4) | 0.005 (4) | −0.001 (3) | 0.000 (3) |
O11A | 0.041 (3) | 0.037 (3) | 0.017 (3) | 0.004 (3) | −0.003 (2) | −0.005 (2) |
C1—O11A | 1.32 (3) | C6—H6 | 0.9500 |
C1—O11 | 1.330 (8) | C7—C8 | 1.515 (10) |
C1—O2 | 1.339 (8) | C7—H7 | 0.9500 |
C1—O2A | 1.38 (5) | C8—C9 | 1.539 (10) |
C1—S12 | 1.627 (7) | C8—H8A | 0.9900 |
O2—C3 | 1.458 (8) | C8—H8B | 0.9900 |
C3—C4 | 1.514 (10) | C9—C10 | 1.502 (10) |
C3—C10 | 1.517 (10) | C9—C10A | 1.60 (7) |
C3—H3 | 1.0000 | C9—H9A | 0.9900 |
C4—C3A | 1.51 (3) | C9—H9B | 0.9900 |
C4—C5 | 1.524 (10) | C9—H9C | 0.9900 |
C4—H4A | 0.9900 | C9—H9D | 0.9900 |
C4—H4B | 0.9900 | C10—O11 | 1.461 (8) |
C4—H4C | 0.9900 | C10—H10 | 1.0000 |
C4—H4D | 0.9900 | O2A—C3A | 1.46 (3) |
C5—C6 | 1.497 (10) | C3A—C10A | 1.52 (3) |
C5—H5A | 0.9900 | C3A—H3A | 1.0000 |
C5—H5B | 0.9900 | C10A—O11A | 1.47 (3) |
C6—C7 | 1.320 (10) | C10A—H10A | 1.0000 |
O11—C1—O2 | 110.5 (6) | C7—C8—H8A | 108.6 |
O11A—C1—O2A | 116 (3) | C9—C8—H8A | 108.6 |
O11A—C1—S12 | 122 (2) | C7—C8—H8B | 108.6 |
O11—C1—S12 | 125.4 (5) | C9—C8—H8B | 108.6 |
O2—C1—S12 | 124.2 (5) | H8A—C8—H8B | 107.6 |
O2A—C1—S12 | 122.2 (17) | C10—C9—C8 | 112.8 (6) |
C1—O2—C3 | 110.3 (5) | C8—C9—C10A | 118.6 (17) |
O2—C3—C4 | 108.5 (6) | C10—C9—H9A | 109.0 |
O2—C3—C10 | 103.2 (6) | C8—C9—H9A | 109.0 |
C4—C3—C10 | 115.3 (6) | C10—C9—H9B | 109.0 |
O2—C3—H3 | 109.8 | C8—C9—H9B | 109.0 |
C4—C3—H3 | 109.8 | H9A—C9—H9B | 107.8 |
C10—C3—H3 | 109.8 | C8—C9—H9C | 107.7 |
C3—C4—C5 | 112.2 (6) | C10A—C9—H9C | 107.7 |
C3A—C4—C5 | 105.9 (18) | C8—C9—H9D | 107.7 |
C3—C4—H4A | 109.2 | C10A—C9—H9D | 107.7 |
C5—C4—H4A | 109.2 | H9C—C9—H9D | 107.1 |
C3—C4—H4B | 109.2 | O11—C10—C9 | 108.1 (5) |
C5—C4—H4B | 109.2 | O11—C10—C3 | 102.1 (6) |
H4A—C4—H4B | 107.9 | C9—C10—C3 | 117.5 (7) |
C3A—C4—H4C | 110.5 | O11—C10—H10 | 109.6 |
C5—C4—H4C | 110.5 | C9—C10—H10 | 109.6 |
C3A—C4—H4D | 110.5 | C3—C10—H10 | 109.6 |
C5—C4—H4D | 110.5 | C1—O11—C10 | 111.1 (5) |
H4C—C4—H4D | 108.7 | C1—O2A—C3A | 106 (3) |
C6—C5—C4 | 113.4 (6) | O2A—C3A—C4 | 107 (3) |
C6—C5—H5A | 108.9 | O2A—C3A—C10A | 102 (4) |
C4—C5—H5A | 108.9 | C4—C3A—C10A | 116 (4) |
C6—C5—H5B | 108.9 | O2A—C3A—H3A | 110.4 |
C4—C5—H5B | 108.9 | C4—C3A—H3A | 110.4 |
H5A—C5—H5B | 107.7 | C10A—C3A—H3A | 110.4 |
C7—C6—C5 | 124.5 (7) | O11A—C10A—C3A | 105 (4) |
C7—C6—H6 | 117.8 | O11A—C10A—C9 | 104 (4) |
C5—C6—H6 | 117.8 | C3A—C10A—C9 | 113 (4) |
C6—C7—C8 | 124.9 (6) | O11A—C10A—H10A | 111.2 |
C6—C7—H7 | 117.6 | C3A—C10A—H10A | 111.2 |
C8—C7—H7 | 117.6 | C9—C10A—H10A | 111.2 |
C7—C8—C9 | 114.5 (6) | C1—O11A—C10A | 104 (3) |
O11—C1—O2—C3 | −5.2 (7) | S12—C1—O11—C10 | 174.4 (5) |
S12—C1—O2—C3 | 174.1 (5) | C9—C10—O11—C1 | 138.8 (6) |
C1—O2—C3—C4 | 136.5 (6) | C3—C10—O11—C1 | 14.3 (8) |
C1—O2—C3—C10 | 13.7 (7) | O11A—C1—O2A—C3A | 2 (5) |
O2—C3—C4—C5 | −169.9 (6) | S12—C1—O2A—C3A | −173 (3) |
C10—C3—C4—C5 | −54.7 (9) | C1—O2A—C3A—C4 | −140 (3) |
C3—C4—C5—C6 | −49.4 (8) | C1—O2A—C3A—C10A | −17 (5) |
C3A—C4—C5—C6 | −87 (2) | C5—C4—C3A—O2A | −167 (3) |
C4—C5—C6—C7 | 91.1 (8) | C5—C4—C3A—C10A | 80 (4) |
C5—C6—C7—C8 | 2.1 (11) | O2A—C3A—C10A—O11A | 26 (6) |
C6—C7—C8—C9 | −81.3 (9) | C4—C3A—C10A—O11A | 142 (4) |
C7—C8—C9—C10 | 72.8 (8) | O2A—C3A—C10A—C9 | 139 (4) |
C7—C8—C9—C10A | 35 (3) | C4—C3A—C10A—C9 | −105 (4) |
C8—C9—C10—O11 | 170.6 (6) | C8—C9—C10A—O11A | 175 (3) |
C8—C9—C10—C3 | −74.7 (9) | C8—C9—C10A—C3A | 61 (4) |
O2—C3—C10—O11 | −15.9 (7) | O2A—C1—O11A—C10A | 15 (5) |
C4—C3—C10—O11 | −134.1 (6) | S12—C1—O11A—C10A | −170 (3) |
O2—C3—C10—C9 | −134.0 (6) | C3A—C10A—O11A—C1 | −25 (6) |
C4—C3—C10—C9 | 107.9 (7) | C9—C10A—O11A—C1 | −144 (3) |
O2—C1—O11—C10 | −6.3 (8) |
References
Corey, E. J., Carey, F. A. & Winter, R. A. E. (1965). J. Am. Chem. Soc. 87, 934–935. CrossRef CAS Web of Science Google Scholar
Daub, J. & Erhardt, U. (1972). Tetrahedron, 28, 181–186. CrossRef CAS Web of Science Google Scholar
Detert, H. & Meier, H. (1997). Liebigs Ann. Recl, pp. 1557–1563. Google Scholar
Detert, H. & Meier, H. (1997). Liebigs Ann. Recl, pp. 1565–1570. Google Scholar
Klein, M. T., Krause, B. M., Neudörfl, J.-M., Kühne, R. & Schmalz, H.-G. (2022). Org. Biomol. Chem. 20, 9368–9377. Web of Science CSD CrossRef CAS PubMed Google Scholar
Paquette, L. A., Itoh, I. & Farnham, W. B. (1975). J. Am. Chem. Soc. 97, 7280–7285. CrossRef CAS Web of Science Google Scholar
Rizzo, A. & Trauner, D. (2018). Org. Lett. 20, 1841–1844. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Ziegler, K. & Wilms, H. (1950). Justus Liebigs Ann. Chem. 567, 1–43. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.