organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Amino-5-oxo-4-(thio­phen-2-yl)-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile

crossmark logo

aSchool of Chemistry and Physics, University of KwaZulu-Natal, Westville campus, Private bag X54001, Durban, 4000, South Africa, and bMultimedia University of Kenya, PO Box 15653-00503, Nairobi, Kenya
*Correspondence e-mail: Zamisas@ukzn.ac.za

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 27 September 2024; accepted 30 October 2024; online 8 November 2024)

The crystal structure of the title compound, C14H12N2O2S, reveals two symmetrically independent mol­ecules within the asymmetric unit. Each mol­ecule contains a chromenone core attached to a 2-thio­phene ring, cyano, and amino groups. The 2-thio­phene ring of one of the two mol­ecules in the asymmetric unit was found to be disordered over two positions, with the major component having a site occupancy factor of 0.837 (2). The 2-thio­phene ring is nearly orthogonal to the fused 4H-pyran ring, with dihedral angles between the two sets of planes being 89.5 (5) and 89.63 (8)°. Inter­molecular hydrogen bonding, involving N—H⋯N and N—H⋯O inter­actions, creates two distinct motifs leading to the formation of a two-dimensional supra­molecular network along the crystallographic ac plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyran-based 2-amino-3-carbo­nitrile derivatives are known to possess inter­esting pharmacological properties, which enable them to be explored as potential anti­cancer (Braga et al., 2022[Braga, T. C., Silva, M. M., Nascimento, E. O. O., da Silva, E. C. D., Rego, Y. D., Mandal, M., de Souza, Z. A., Ruiz, A. L. T. G., de Carvalho, J. E., Martins, F. T., Figueiredo, I. M., de Aquino, T. M., da Silva, C. M., Mandal, B., Brahmachari, G., Santos, J. C. C. & de Fátima, Â. (2022). Eur. J. Med. Chem. Rep. 4, 100030.]), anti­oxidant (Symeonidis et al., 2009[Symeonidis, T., Chamilos, M., Hadjipavlou-Litina, D. J., Kallitsakis, M. & Litinas, K. E. (2009). Bioorg. Med. Chem. Lett. 19, 1139-1142.]), anti­bacterial (Kathrotiya & Patel, 2012[Kathrotiya, H. G. & Patel, M. P. (2012). Med. Chem. Res. 21, 3406-3416.]), anti­fungal (Alvey et al., 2009[Alvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497-2505.]), hypotensive (Cai et al., 2009[Cai, S. X., Drewe, J. & Kemnitzer, W. (2009). Anticancer Agents Med. Chem. 9, 437-456.]) and anti­leishmanial (Narender et al., 2004[Narender, T., Shweta & Gupta, S. (2004). Bioorg. Med. Chem. Lett. 14, 3913-3916.]) agents. In our previous work, we surveyed the Cambridge Structural Database (CSD) and categorized the diverse inter­molecular hydrogen-bonding patterns that emerge in the crystal structures of aryl-based rac-2-amino-3-carbo­nitrile derivatives (Zamisa et al., 2022[Zamisa, S. J., Adeleke, A. A., Devnarain, N., Rhman, M. A., Owira, P. M. O. & Omondi, B. (2023). RSC Adv. 13, 21820-21837.]). The study revealed that the propensity of inter­molecular hydrogen bonds that involve the compounds amino functional group could be linked to their binding affinity towards calf thymus de­oxy­ribonucleic acid, which aligned with our quest for developing potential anti­cancer agents (Adeleke et al., 2022[Adeleke, A. A., Zamisa, S. J., Islam, M. S., Olofinsan, K., Salau, V. F., Mocktar, C. & Omondi, B. (2022). BioMetals, 35, 363-394.], 2023[Adeleke, A. A., Oladipo, S. D., Zamisa, S. J., Sanusi, I. A. & Omondi, B. (2023). Inorg. Chim. Acta, 558, 121760.]; Zamisa et al., 2023[Zamisa, S. J., Ngubane, N. P., Adeleke, A. A., Jonnalagadda, S. B. & Omondi, B. (2022). Cryst. Growth Des. 22, 5814-5834.]).

The crystal structure of the title compound consists of two symmetrically independent mol­ecules in the asymmetric unit. Each mol­ecule consists of a chromenone moiety with a 2-thio­phene, cyano and amino groups attached to it, as shown in Fig. 1[link]. The 2-thio­phene rings are orthogonal to the fused 4H-pyran rings, with measured dihedral angles of 89.5 (5) and 89.63 (8)°, which is slightly wider than that of 2-amino-7,7-dimethyl-5-oxo-4-(thio­phen-2-yl)-5,6,7,8-tetra­hydro-4H-1-ben­zo­pyran-3-carbo­nitrile [85.80 (8)°; Zamisa et al., 2022[Zamisa, S. J., Ngubane, N. P., Adeleke, A. A., Jonnalagadda, S. B. & Omondi, B. (2022). Cryst. Growth Des. 22, 5814-5834.]]. In the crystal packing of the title compound, inter­molecular hydrogen-bonding patterns engendered by the amino functional group were found (Fig. 2[link]). One of amino functional group's hydrogen atoms (H1A or H3A) inter­acts with the nitro­gen atom (N2 or N4) of the cyano group in a neighbouring mol­ecule, via N—H⋯N hydrogen bonds (Table 1[link]), with graph-set descriptor R22(12). The other hydrogen atom of the amino functional group (H1B or H3B) forms N—H⋯O hydrogen bonds [graph-set descriptor C(8)] with the carbonyl oxygen atom (O4 or O2) of a neighbouring mol­ecule (Table 1[link]). The inter­molecular N—H⋯N and N—H⋯O hydrogen bonding patterns are categorized as motif I and II, respectively, according to the literature (Zamisa et al., 2022[Zamisa, S. J., Ngubane, N. P., Adeleke, A. A., Jonnalagadda, S. B. & Omondi, B. (2022). Cryst. Growth Des. 22, 5814-5834.]). The combination of the two hydrogen-bonding motifs results in the formation of a two-dimensional supra­molecular structure that extends along the crystallographic ac plane as shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N4i 0.86 (1) 2.25 (1) 3.089 (3) 164 (2)
N3—H3B⋯O2ii 0.86 (1) 2.10 (2) 2.794 (2) 138 (2)
N1—H1A⋯N2iii 0.86 (1) 2.25 (1) 3.105 (2) 174 (2)
N1—H1B⋯O4iv 0.86 (1) 2.13 (1) 2.984 (2) 176 (2)
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x, -y+1, -z+2]; (iv) [-x+1, -y+1, -z+2].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Only one of the two mol­ecules in the asymmetric unit is shown for clarity.
[Figure 2]
Figure 2
Representation of inter­molecular N—H⋯N (blue dotted bonds) and N—H⋯O (red dotted bonds) hydrogen-bonding patterns which are categorized as motifs I and II, respectively.
[Figure 3]
Figure 3
Representation of the two-dimensional supra­molecular architecture that results from inter­molecular N—H⋯N and N—H⋯O hydrogen bonds.

Synthesis and crystallization

A mixture of malono­nitrile (0.01515 mmol), 2-thio­phene­carboxaldehyde (0.01515 mmol), 1,3-cyclo­hexa­nedione (0.01515 mmol), and two drops of tri­ethyl­amine added as a catalyst, was poured in a 35 ml microwave reaction vessel, which was closed using a snap-on cap. The same microwave radiation-assisted synthesis protocol described in the literature was followed (Zamisa et al., 2022[Zamisa, S. J., Ngubane, N. P., Adeleke, A. A., Jonnalagadda, S. B. & Omondi, B. (2022). Cryst. Growth Des. 22, 5814-5834.]). This reaction was closely monitored by thin-layer chromatography with a solvent mixture of ethyl acetate:hexane (1:1 ratio, v/v). A brown solid mass precipitated from the reaction mixture and was filtered off in vacuo. The crude product was then purified by recrystallization from an ethano­lic solution, to give brown block-shaped crystals.

Refinement

Crystallographic data and structure refinement details are summarized in Table 2[link]. The 2-thio­phene ring of one of the two mol­ecules of the title compound in the asymmetric unit was found to be disordered over two positions. PART instructions were used to model the disorder (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), with the major component having a site occupancy factor of 0.837 (2). Furthermore, the refinement of the disordered 2-thio­phene ring was kept stable with SADI, SIMU and DELU restraints in SHELXL. The displacement parameters of the equivalent atoms of the disordered components were kept the same using an EADP instruction (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). Finally, the hydrogen atoms of the amino functional group were located and assigned from a difference map, but the N—H bond lengths were restrained to 0.860 (1) Å using DFIX instructions.

Table 2
Experimental details

Crystal data
Chemical formula C14H12N2O2S
Mr 272.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.6822 (2), 10.0623 (2), 16.5504 (4)
α, β, γ (°) 77.201 (1), 84.053 (1), 73.839 (1)
V3) 1352.89 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.22 × 0.18 × 0.13
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.710, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 31629, 5315, 3991
Rint 0.030
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.05
No. of reflections 5315
No. of parameters 368
No. of restraints 14
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

2-Amino-5-oxo-4-(thiophen-2-yl)-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile top
Crystal data top
C14H12N2O2SZ = 4
Mr = 272.32F(000) = 568
Triclinic, P1Dx = 1.337 Mg m3
a = 8.6822 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0623 (2) ÅCell parameters from 9904 reflections
c = 16.5504 (4) Åθ = 2.3–27.2°
α = 77.201 (1)°µ = 0.24 mm1
β = 84.053 (1)°T = 296 K
γ = 73.839 (1)°Needle, yellow
V = 1352.89 (5) Å30.22 × 0.18 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
5315 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs3991 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 7.9 pixels mm-1θmax = 26.0°, θmin = 1.3°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.710, Tmax = 0.746l = 2020
31629 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: mixed
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.4153P]
where P = (Fo2 + 2Fc2)/3
5315 reflections(Δ/σ)max = 0.001
368 parametersΔρmax = 0.36 e Å3
14 restraintsΔρmin = 0.37 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S20.10201 (8)0.94938 (7)0.60311 (4)0.0711 (2)
O30.42624 (18)0.71195 (16)0.48925 (8)0.0573 (4)
O40.49178 (17)0.66307 (15)0.77429 (8)0.0510 (3)
N30.2673 (3)0.6174 (2)0.43486 (12)0.0666 (5)
H3A0.1778 (15)0.597 (3)0.4339 (16)0.080*
H3B0.321 (3)0.640 (3)0.3895 (8)0.080*
N40.0220 (3)0.4797 (2)0.60077 (13)0.0712 (6)
C150.1180 (3)0.5409 (2)0.59319 (12)0.0498 (5)
C160.2381 (2)0.6149 (2)0.58188 (11)0.0438 (4)
C170.3050 (3)0.6454 (2)0.50498 (12)0.0485 (5)
C180.4997 (2)0.7261 (2)0.55589 (12)0.0478 (5)
C190.4398 (2)0.70019 (19)0.63378 (11)0.0418 (4)
C200.2793 (2)0.66725 (19)0.65438 (11)0.0395 (4)
H200.2901030.5904370.7033290.047*
C210.6484 (3)0.7723 (3)0.52901 (14)0.0622 (6)
H21A0.6300470.8446210.4787740.075*
H21B0.7339300.6928720.5167950.075*
C220.6987 (3)0.8305 (3)0.59647 (16)0.0734 (7)
H22A0.8065290.8414060.5831680.088*
H22B0.6271450.9229800.5986040.088*
C230.6942 (3)0.7334 (3)0.68045 (15)0.0683 (7)
H23A0.7783200.6465180.6807060.082*
H23B0.7163650.7780960.7226030.082*
C240.5369 (2)0.6985 (2)0.70210 (12)0.0446 (4)
C250.1501 (2)0.7936 (2)0.67445 (11)0.0436 (4)
C260.0545 (3)0.8058 (3)0.74616 (14)0.0595 (5)
H260.0622180.7340920.7931560.071*
C270.0554 (3)0.9393 (3)0.7394 (2)0.0844 (8)
H270.1299520.9642230.7817000.101*
C280.0440 (3)1.0265 (3)0.6680 (2)0.0856 (9)
H280.1077781.1187490.6547710.103*
O10.56105 (15)0.28654 (14)1.02275 (7)0.0454 (3)
O20.7051 (2)0.3316 (2)0.73827 (9)0.0738 (5)
N10.3186 (2)0.3670 (2)1.07922 (10)0.0531 (4)
H1A0.2157 (3)0.398 (2)1.0812 (14)0.064*
H1B0.372 (2)0.354 (2)1.1226 (8)0.064*
N20.0503 (2)0.5075 (2)0.90516 (11)0.0595 (5)
C10.1816 (2)0.4476 (2)0.91835 (11)0.0432 (4)
C20.3455 (2)0.37569 (18)0.93099 (11)0.0382 (4)
C30.4013 (2)0.34601 (19)1.00834 (11)0.0389 (4)
C40.6690 (2)0.27370 (19)0.95603 (11)0.0401 (4)
C50.6239 (2)0.29850 (19)0.87822 (11)0.0400 (4)
C60.4509 (2)0.33547 (19)0.85652 (10)0.0384 (4)
H60.4323980.4190300.8114800.046*
C70.7462 (3)0.2988 (2)0.80992 (13)0.0515 (5)
C80.9179 (3)0.2652 (3)0.83094 (15)0.0685 (7)
H8A0.9457300.3524770.8297980.082*
H8B0.9853890.2194610.7891250.082*
C90.9518 (3)0.1697 (3)0.91552 (16)0.0704 (7)
H9A1.0615860.1588560.9284940.084*
H9B0.9401870.0770740.9143020.084*
C100.8381 (2)0.2298 (2)0.98259 (13)0.0529 (5)
H10A0.8476700.1590011.0335460.064*
H10B0.8668230.3106300.9932720.064*
C110.4122 (2)0.2179 (2)0.82559 (11)0.0415 (4)
S10.43755 (12)0.05115 (8)0.88552 (5)0.0659 (3)0.837 (2)
C120.3525 (6)0.2187 (5)0.7519 (3)0.0724 (13)0.837 (2)
H120.3261370.2989650.7101300.087*0.837 (2)
C130.3351 (17)0.0874 (8)0.7456 (5)0.0737 (13)0.837 (2)
H130.2998890.0705230.6985810.088*0.837 (2)
C140.3736 (11)0.0099 (5)0.8132 (5)0.0655 (10)0.837 (2)
H140.3660760.1021350.8198450.079*0.837 (2)
S1A0.3589 (11)0.2484 (7)0.7296 (4)0.0659 (3)0.163 (2)
C12A0.409 (3)0.0840 (17)0.8574 (12)0.0724 (13)0.163 (2)
H12A0.4383760.0411080.9115080.087*0.163 (2)
C13A0.361 (7)0.010 (3)0.805 (2)0.0737 (13)0.163 (2)
H13A0.3610860.0846660.8186190.088*0.163 (2)
C14A0.314 (10)0.097 (4)0.735 (3)0.0737 (13)0.163 (2)
H14A0.2644120.0756580.6937900.088*0.163 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0787 (4)0.0567 (4)0.0716 (4)0.0080 (3)0.0210 (3)0.0044 (3)
O30.0665 (9)0.0756 (10)0.0363 (7)0.0287 (8)0.0050 (6)0.0105 (7)
O40.0540 (8)0.0610 (9)0.0424 (8)0.0152 (7)0.0133 (6)0.0144 (6)
N30.0837 (15)0.0846 (14)0.0418 (10)0.0311 (12)0.0117 (10)0.0189 (10)
N40.0732 (13)0.0932 (15)0.0646 (12)0.0411 (12)0.0085 (10)0.0248 (11)
C150.0513 (12)0.0588 (12)0.0443 (11)0.0127 (10)0.0106 (9)0.0192 (9)
C160.0474 (11)0.0473 (11)0.0400 (10)0.0114 (9)0.0109 (8)0.0128 (8)
C170.0550 (12)0.0521 (11)0.0407 (10)0.0112 (10)0.0129 (9)0.0129 (9)
C180.0490 (11)0.0523 (11)0.0425 (10)0.0113 (9)0.0072 (9)0.0108 (9)
C190.0412 (10)0.0449 (10)0.0402 (10)0.0086 (8)0.0081 (8)0.0113 (8)
C200.0440 (10)0.0433 (10)0.0335 (9)0.0128 (8)0.0088 (7)0.0074 (7)
C210.0573 (13)0.0757 (15)0.0560 (13)0.0259 (12)0.0033 (10)0.0100 (11)
C220.0640 (15)0.0934 (19)0.0765 (17)0.0420 (14)0.0017 (13)0.0204 (14)
C230.0501 (13)0.1007 (19)0.0635 (14)0.0301 (13)0.0080 (11)0.0204 (13)
C240.0439 (11)0.0447 (10)0.0472 (11)0.0077 (9)0.0100 (9)0.0148 (8)
C250.0432 (10)0.0497 (11)0.0447 (10)0.0167 (9)0.0085 (8)0.0149 (8)
C260.0599 (13)0.0687 (12)0.0583 (13)0.0253 (9)0.0061 (10)0.0236 (11)
C270.0637 (16)0.0900 (17)0.111 (2)0.0130 (12)0.0103 (15)0.0593 (19)
C280.0677 (17)0.0618 (16)0.130 (3)0.0017 (13)0.0277 (17)0.0390 (17)
O10.0371 (7)0.0586 (8)0.0357 (7)0.0034 (6)0.0062 (5)0.0093 (6)
O20.0749 (11)0.1056 (14)0.0436 (9)0.0294 (10)0.0117 (8)0.0201 (8)
N10.0405 (9)0.0784 (12)0.0378 (9)0.0036 (9)0.0051 (7)0.0203 (8)
N20.0423 (10)0.0775 (13)0.0546 (11)0.0028 (9)0.0102 (8)0.0177 (9)
C10.0462 (12)0.0486 (11)0.0372 (10)0.0097 (9)0.0054 (8)0.0153 (8)
C20.0376 (10)0.0385 (9)0.0383 (9)0.0056 (8)0.0057 (7)0.0110 (7)
C30.0369 (10)0.0410 (10)0.0386 (9)0.0060 (8)0.0050 (7)0.0118 (8)
C40.0386 (10)0.0396 (10)0.0431 (10)0.0089 (8)0.0016 (8)0.0121 (8)
C50.0416 (10)0.0392 (9)0.0409 (10)0.0109 (8)0.0007 (8)0.0118 (8)
C60.0429 (10)0.0388 (9)0.0325 (9)0.0077 (8)0.0050 (7)0.0077 (7)
C70.0549 (12)0.0567 (12)0.0492 (12)0.0196 (10)0.0082 (9)0.0222 (10)
C80.0513 (13)0.0968 (19)0.0706 (15)0.0288 (13)0.0161 (11)0.0413 (14)
C90.0391 (12)0.0877 (18)0.0875 (18)0.0058 (12)0.0023 (11)0.0384 (15)
C100.0409 (11)0.0601 (13)0.0588 (12)0.0091 (9)0.0089 (9)0.0162 (10)
C110.0398 (10)0.0481 (11)0.0374 (9)0.0080 (8)0.0034 (8)0.0139 (8)
S10.0967 (7)0.0480 (4)0.0577 (5)0.0199 (4)0.0220 (4)0.0107 (3)
C120.087 (2)0.065 (3)0.068 (3)0.025 (2)0.034 (2)0.0009 (19)
C130.081 (5)0.096 (2)0.065 (3)0.031 (3)0.018 (2)0.0414 (19)
C140.073 (3)0.0532 (18)0.077 (2)0.017 (2)0.0004 (19)0.0270 (17)
S1A0.0967 (7)0.0480 (4)0.0577 (5)0.0199 (4)0.0220 (4)0.0107 (3)
C12A0.087 (2)0.065 (3)0.068 (3)0.025 (2)0.034 (2)0.0009 (19)
C13A0.081 (5)0.096 (2)0.065 (3)0.031 (3)0.018 (2)0.0414 (19)
C14A0.081 (5)0.096 (2)0.065 (3)0.031 (3)0.018 (2)0.0414 (19)
Geometric parameters (Å, º) top
S2—C251.716 (2)N1—H1B0.8600 (10)
S2—C281.704 (3)N1—C31.337 (2)
O3—C171.373 (3)N2—C11.149 (2)
O3—C181.382 (2)C1—C21.419 (3)
O4—C241.225 (2)C2—C31.357 (2)
N3—H3A0.8600 (10)C2—C61.517 (2)
N3—H3B0.8600 (10)C4—C51.335 (3)
N3—C171.344 (2)C4—C101.493 (3)
N4—C151.149 (3)C5—C61.505 (3)
C15—C161.416 (3)C5—C71.468 (3)
C16—C171.351 (3)C6—H60.9800
C16—C201.523 (2)C6—C111.517 (3)
C18—C191.337 (3)C7—C81.494 (3)
C18—C211.485 (3)C8—H8A0.9700
C19—C201.509 (3)C8—H8B0.9700
C19—C241.473 (3)C8—C91.517 (4)
C20—H200.9800C9—H9A0.9700
C20—C251.517 (3)C9—H9B0.9700
C21—H21A0.9700C9—C101.520 (3)
C21—H21B0.9700C10—H10A0.9700
C21—C221.521 (3)C10—H10B0.9700
C22—H22A0.9700C11—S11.717 (2)
C22—H22B0.9700C11—C121.371 (5)
C22—C231.515 (3)C11—S1A1.639 (6)
C23—H23A0.9700C11—C12A1.340 (14)
C23—H23B0.9700S1—C141.664 (6)
C23—C241.493 (3)C12—H120.9300
C25—C261.384 (3)C12—C131.399 (7)
C26—H260.9300C13—H130.9300
C26—C271.404 (4)C13—C141.316 (5)
C27—H270.9300C14—H140.9300
C27—C281.319 (4)S1A—C14A1.66 (2)
C28—H280.9300C12A—H12A0.9300
O1—C31.372 (2)C12A—C13A1.42 (2)
O1—C41.377 (2)C13A—H13A0.9300
O2—C71.221 (3)C13A—C14A1.315 (17)
N1—H1A0.8600 (10)C14A—H14A0.9300
C28—S2—C2592.21 (14)C3—C2—C6122.88 (16)
C17—O3—C18118.29 (15)N1—C3—O1110.24 (15)
H3A—N3—H3B121 (2)N1—C3—C2128.33 (17)
C17—N3—H3A118.8 (18)C2—C3—O1121.42 (16)
C17—N3—H3B118.9 (18)O1—C4—C10111.39 (15)
N4—C15—C16178.5 (2)C5—C4—O1122.87 (16)
C15—C16—C20119.63 (17)C5—C4—C10125.73 (17)
C17—C16—C15118.39 (17)C4—C5—C6122.77 (16)
C17—C16—C20121.82 (17)C4—C5—C7119.17 (18)
N3—C17—O3110.55 (18)C7—C5—C6117.95 (16)
N3—C17—C16127.3 (2)C2—C6—H6107.6
C16—C17—O3122.10 (16)C5—C6—C2108.66 (14)
O3—C18—C21111.46 (17)C5—C6—H6107.6
C19—C18—O3122.36 (18)C5—C6—C11111.93 (15)
C19—C18—C21126.18 (18)C11—C6—C2113.07 (15)
C18—C19—C20122.39 (16)C11—C6—H6107.6
C18—C19—C24118.72 (18)O2—C7—C5119.7 (2)
C24—C19—C20118.84 (16)O2—C7—C8122.03 (19)
C16—C20—H20108.2C5—C7—C8118.24 (19)
C19—C20—C16108.00 (15)C7—C8—H8A109.1
C19—C20—H20108.2C7—C8—H8B109.1
C19—C20—C25111.81 (15)C7—C8—C9112.65 (19)
C25—C20—C16112.35 (15)H8A—C8—H8B107.8
C25—C20—H20108.2C9—C8—H8A109.1
C18—C21—H21A109.5C9—C8—H8B109.1
C18—C21—H21B109.5C8—C9—H9A109.4
C18—C21—C22110.55 (18)C8—C9—H9B109.4
H21A—C21—H21B108.1C8—C9—C10111.3 (2)
C22—C21—H21A109.5H9A—C9—H9B108.0
C22—C21—H21B109.5C10—C9—H9A109.4
C21—C22—H22A109.4C10—C9—H9B109.4
C21—C22—H22B109.4C4—C10—C9110.25 (17)
H22A—C22—H22B108.0C4—C10—H10A109.6
C23—C22—C21111.2 (2)C4—C10—H10B109.6
C23—C22—H22A109.4C9—C10—H10A109.6
C23—C22—H22B109.4C9—C10—H10B109.6
C22—C23—H23A109.0H10A—C10—H10B108.1
C22—C23—H23B109.0C6—C11—S1121.78 (13)
H23A—C23—H23B107.8C6—C11—S1A118.6 (3)
C24—C23—C22113.06 (19)C12—C11—C6130.4 (2)
C24—C23—H23A109.0C12—C11—S1107.9 (2)
C24—C23—H23B109.0C12A—C11—C6136.1 (8)
O4—C24—C19120.29 (18)C12A—C11—S1A105.3 (8)
O4—C24—C23121.58 (18)C14—S1—C1193.38 (18)
C19—C24—C23118.05 (18)C11—C12—H12123.2
C20—C25—S2120.92 (14)C11—C12—C13113.5 (4)
C26—C25—S2109.92 (16)C13—C12—H12123.2
C26—C25—C20129.15 (19)C12—C13—H13123.5
C25—C26—H26124.1C14—C13—C12113.0 (4)
C25—C26—C27111.9 (2)C14—C13—H13123.5
C27—C26—H26124.1S1—C14—H14123.9
C26—C27—H27122.8C13—C14—S1112.2 (4)
C28—C27—C26114.3 (3)C13—C14—H14123.9
C28—C27—H27122.8C11—S1A—C14A97.3 (12)
S2—C28—H28124.2C11—C12A—H12A121.4
C27—C28—S2111.7 (2)C11—C12A—C13A117.1 (15)
C27—C28—H28124.2C13A—C12A—H12A121.4
C3—O1—C4118.88 (13)C12A—C13A—H13A125.2
H1A—N1—H1B120 (2)C14A—C13A—C12A110 (2)
C3—N1—H1A121.5 (16)C14A—C13A—H13A125.2
C3—N1—H1B117.9 (15)S1A—C14A—H14A125.1
N2—C1—C2177.5 (2)C13A—C14A—S1A109.8 (19)
C1—C2—C6117.98 (15)C13A—C14A—H14A125.1
C3—C2—C1119.15 (16)
S2—C25—C26—C271.3 (2)C1—C2—C6—C5164.50 (16)
O3—C18—C19—C206.0 (3)C1—C2—C6—C1170.6 (2)
O3—C18—C19—C24171.55 (17)C2—C6—C11—S163.9 (2)
O3—C18—C21—C22162.46 (19)C2—C6—C11—C12115.0 (4)
C15—C16—C17—O3177.49 (18)C2—C6—C11—S1A121.2 (4)
C15—C16—C17—N32.3 (3)C2—C6—C11—C12A59.1 (16)
C15—C16—C20—C19162.83 (17)C3—O1—C4—C59.4 (3)
C15—C16—C20—C2573.4 (2)C3—O1—C4—C10170.46 (16)
C16—C20—C25—S262.0 (2)C3—C2—C6—C515.4 (2)
C16—C20—C25—C26117.1 (2)C3—C2—C6—C11109.5 (2)
C17—O3—C18—C1911.9 (3)C4—O1—C3—N1171.63 (16)
C17—O3—C18—C21168.12 (18)C4—O1—C3—C28.4 (3)
C17—C16—C20—C1921.9 (2)C4—C5—C6—C214.6 (2)
C17—C16—C20—C25101.9 (2)C4—C5—C6—C11111.03 (19)
C18—O3—C17—N3168.63 (18)C4—C5—C7—O2174.59 (19)
C18—O3—C17—C1611.2 (3)C4—C5—C7—C82.5 (3)
C18—C19—C20—C1621.4 (2)C5—C4—C10—C918.9 (3)
C18—C19—C20—C25102.7 (2)C5—C6—C11—S159.2 (2)
C18—C19—C24—O4173.63 (18)C5—C6—C11—C12121.9 (4)
C18—C19—C24—C233.2 (3)C5—C6—C11—S1A115.7 (4)
C18—C21—C22—C2347.1 (3)C5—C6—C11—C12A64.1 (15)
C19—C18—C21—C2217.5 (3)C5—C7—C8—C927.9 (3)
C19—C20—C25—S259.58 (19)C6—C2—C3—O15.0 (3)
C19—C20—C25—C26121.3 (2)C6—C2—C3—N1174.93 (19)
C20—C16—C17—O37.2 (3)C6—C5—C7—O21.7 (3)
C20—C16—C17—N3173.0 (2)C6—C5—C7—C8178.74 (19)
C20—C19—C24—O44.1 (3)C6—C11—S1—C14179.9 (4)
C20—C19—C24—C23179.11 (19)C6—C11—C12—C13179.0 (7)
C20—C25—C26—C27177.9 (2)C6—C11—S1A—C14A174 (3)
C21—C18—C19—C20173.9 (2)C6—C11—C12A—C13A179 (3)
C21—C18—C19—C248.5 (3)C7—C5—C6—C2161.54 (16)
C21—C22—C23—C2453.0 (3)C7—C5—C6—C1172.9 (2)
C22—C23—C24—O4155.5 (2)C7—C8—C9—C1053.4 (3)
C22—C23—C24—C1927.7 (3)C8—C9—C10—C448.0 (3)
C24—C19—C20—C16156.23 (16)C10—C4—C5—C6176.85 (18)
C24—C19—C20—C2579.7 (2)C10—C4—C5—C77.1 (3)
C25—S2—C28—C270.0 (2)C11—S1—C14—C130.6 (10)
C25—C26—C27—C281.4 (3)C11—C12—C13—C142.5 (14)
C26—C27—C28—S20.8 (3)C11—S1A—C14A—C13A9 (7)
C28—S2—C25—C20178.51 (16)C11—C12A—C13A—C14A5 (7)
C28—S2—C25—C260.78 (17)S1—C11—C12—C132.0 (8)
O1—C4—C5—C63.3 (3)C12—C11—S1—C140.8 (4)
O1—C4—C5—C7172.76 (16)C12—C13—C14—S11.8 (15)
O1—C4—C10—C9161.20 (18)S1A—C11—C12A—C13A2 (3)
O2—C7—C8—C9155.1 (2)C12A—C11—S1A—C14A6 (3)
C1—C2—C3—O1174.91 (17)C12A—C13A—C14A—S1A9 (8)
C1—C2—C3—N15.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N4i0.86 (1)2.25 (1)3.089 (3)164 (2)
N3—H3B···O2ii0.86 (1)2.10 (2)2.794 (2)138 (2)
N1—H1A···N2iii0.86 (1)2.25 (1)3.105 (2)174 (2)
N1—H1B···O4iv0.86 (1)2.13 (1)2.984 (2)176 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+2; (iv) x+1, y+1, z+2.
 

Funding information

The authors acknowledge the University of KwaZulu-Natal for financial support.

References

First citationAdeleke, A. A., Oladipo, S. D., Zamisa, S. J., Sanusi, I. A. & Omondi, B. (2023). Inorg. Chim. Acta, 558, 121760.  CrossRef Google Scholar
First citationAdeleke, A. A., Zamisa, S. J., Islam, M. S., Olofinsan, K., Salau, V. F., Mocktar, C. & Omondi, B. (2022). BioMetals, 35, 363–394.  CrossRef CAS PubMed Google Scholar
First citationAlvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497–2505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBraga, T. C., Silva, M. M., Nascimento, E. O. O., da Silva, E. C. D., Rego, Y. D., Mandal, M., de Souza, Z. A., Ruiz, A. L. T. G., de Carvalho, J. E., Martins, F. T., Figueiredo, I. M., de Aquino, T. M., da Silva, C. M., Mandal, B., Brahmachari, G., Santos, J. C. C. & de Fátima, Â. (2022). Eur. J. Med. Chem. Rep. 4, 100030.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, S. X., Drewe, J. & Kemnitzer, W. (2009). Anticancer Agents Med. Chem. 9, 437–456.  CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKathrotiya, H. G. & Patel, M. P. (2012). Med. Chem. Res. 21, 3406–3416.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNarender, T., Shweta & Gupta, S. (2004). Bioorg. Med. Chem. Lett. 14, 3913–3916.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSymeonidis, T., Chamilos, M., Hadjipavlou-Litina, D. J., Kallitsakis, M. & Litinas, K. E. (2009). Bioorg. Med. Chem. Lett. 19, 1139–1142.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZamisa, S. J., Adeleke, A. A., Devnarain, N., Rhman, M. A., Owira, P. M. O. & Omondi, B. (2023). RSC Adv. 13, 21820–21837.  CrossRef CAS PubMed Google Scholar
First citationZamisa, S. J., Ngubane, N. P., Adeleke, A. A., Jonnalagadda, S. B. & Omondi, B. (2022). Cryst. Growth Des. 22, 5814–5834.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146