metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ-adipato-κ4O1,O1′:O6,O6′-bis­­[(2,2′-di­pyridyl­amine-κ2N,N′)zinc(II)] trihydrate

crossmark logo

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartment de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cDepartment of Inorganic Chemistry, Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam, and dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen
*Correspondence e-mail: fatima.setifi@univ-setif.dz, phamchienthang@hus.edu.vn

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 August 2024; accepted 16 September 2024; online 20 September 2024)

The title compound, [Zn2(C6H8O4)2(C10H9N3)2]·3H2O or {Zn2[(C5H4N)2NH]2[μ-(CH2)4(COO)2]2}·3H2O, was separ­ated from the solvothermal reaction of zinc(II) sulfate hepta­hydrate, 2,2′-di­pyridyl­amine and sodium adipate. The dinuclear metal complex has a centrosymmetric structure, with the ZnII atom adopting a highly distorted octa­hedral coordination sphere composed of four oxygen atoms from bridging adipato ligands and two pyridine nitro­gen atoms. In the crystal, the title compound aggregates into a tri-periodic supra­molecular structure through inter­molecular hydrogen-bonding networks of the form O—H⋯O and N—H⋯O.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Polynitrile and bis-carboxyl­ate compounds derived from transition-metal ions are of great inter­est with respect to their magnetic and luminescence properties, diverse mol­ecular structures and for their topologies (Addala et al. 2019[Addala, A., Poupon, M., Bernès, S., Kürkçüoğlu, G. S., Liu, X., Lehchili, F., Kučeráková, M., Dušek, M., Setifi, F., Setifi, Z. & Reedijk, J. (2019). Polyhedron, 170, 271-277.]; Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]; Klongdee et al., 2023[Klongdee, F., Sasada, Y., Nakano, M., Chainok, K., Youngme, S. & Boonmak, J. (2023). New J. Chem. 47, 9669-9680.]).

As a part of our continuing studies of the structural, magnetic and luminescence properties of coordination complexes containing polynitrile and/or bis-carboxyl­ate and polypyridyl units (Setifi et al., 2006[Setifi, F., Bouchama, A., Sala-Pala, J., Salaün, J.-Y. & Triki, S. (2006). Inorg. Chim. Acta, 359, 3269-3274.], 2016[Setifi, Z., Ghazzali, M., Glidewell, C., Pérez, O., Setifi, F., Gómez-García, C. J. & Reedijk, J. (2016). Polyhedron, 117, 244-248.]; Lehchili et al., 2017[Lehchili, F., Setifi, F., Liu, X., Saneei, A., Kučeráková, M., Setifi, Z., Dušek, M., Poupon, M., Pourayoubi, M. & Reedijk, J. (2017). Polyhedron, 131, 27-33.]), we report here the mol­ecular and crystal structure of the dinuclear compound, [Zn2(adp)2(dpa)2]·3H2O, based on the adipate dianion (adp) as ligand and the 2,2′-di­pyridyl­amine (dpa) as co-ligand.

The asymmetric unit of the title compound consists of half of the metal complex mol­ecule and two water mol­ecules (one of which exhibits half-occupancy). The mol­ecule is completed by inversion symmetry. The ZnII atom is octa­hedrally coordinated by two (O,O′) donor sets of carboxyl­ato groups from two different adp ligands and one (N,N)-chelating dpa co-ligand (Fig. 1[link]). Except the Zn—O4 contact with a significantly long bond of 2.567 (2) Å, the lengths of other Zn—O bonds are in the range of 2.0073 (19)–2.2146 (17) Å, while Zn1—N1 and Zn1—N3 bond lengths are 2.0473 (16) and 2.0470 (16) Å, respectively. As a result of the long Zn—O4 bond, the highly distorted octa­hedral coordination environment of ZnII ion is best described as [5 + 1]. This bonding situation of the present dinuclear ZnII compound closely resembles NiII and CuII counterparts previously reported (Setifi et al., 2014[Setifi, Z., Setifi, F., Ghazzali, M., El-Ghozzi, M., Avignant, D., Pérez, O. & Reedijk, J. (2014). Polyhedron, 75, 68-72.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing the atom labeling. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: ($) −x + 1, −y + 1, −z + 1.]

In the crystal, complex mol­ecules aggregate into a tri-periodic supra­molecular hydrogen-bonding network. The NH groups of dpa form hydrogen bonds with the O5 water mol­ecules, which in turn provide hydrogen bonds to carboxyl­ate oxygen atoms (O1 and O4) of adp (Table 1[link], Fig. 2[link]a). In addition, the half-occupied O6 water mol­ecule is also involved in weaker hydrogen bonds with adp through O2 and O4 atoms (Table 1[link], Fig. 2[link]b).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1 0.85 1.89 2.728 (3) 167
O5—H5B⋯O4i 0.85 2.10 2.877 (3) 151
O6—H6A⋯O4 0.85 2.26 3.107 (5) 173
O6—H6B⋯O2ii 0.85 2.58 3.275 (5) 140
N2—H2⋯O5iii 0.86 1.97 2.824 (2) 177
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-1, y, z]; (iii) [-x+1, -y, -z+1].
[Figure 2]
Figure 2
Partial packing diagram showing the hydrogen-bonding inter­actions involving (a) O5 water mol­ecules (shown in projection down the a axis) and (b) O6 water mol­ecules (shown in projection down the b axis). Hydrogen atoms bonded to carbon atoms were omitted for clarity. [Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (iii) −x + 1, −y, −z + 1; (iv) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (v) x − [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (vi) x − [{1\over 2}], −y + [{1\over 2}], z − [{1\over 2}]; (vii) −x + [{1\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (viii) x, y + 1, z; (ix) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (x) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (xi) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (xii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (xiii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]].

Synthesis and crystallization

The title compound was prepared solvothermally under autogenous pressure from a mixture of zinc(II) sulfate hepta­hydrate (29 mg, 0.1 mmol), 2,2′-di­pyridyl­amine (24 mg, 0.2 mmol) and sodium adipate (0.2 mol l−1) in a mixture of water and ethanol (4:1 v/v, 25 ml). This mixture was sealed in a Teflon-lined autoclave and held at 393 K for 2 d, and then cooled to ambient temperature at a rate of 10 K h−1 to give the product in form of colorless needles (yield 36%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The O6 atom and associated H atoms of the second water mol­ecule were refined with an occupancy of 0.5. Hydrogen atoms of the water mol­ecules were included in calculated positions and were refined in a riding model, with O—H distances of 0.85 Å and Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Zn2(C6H8O4)2(C10H9N3)2]·3H2O
Mr 815.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 302
a, b, c (Å) 8.2105 (3), 14.4478 (6), 15.2042 (8)
β (°) 101.694 (2)
V3) 1766.14 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.43
Crystal size (mm) 0.18 × 0.11 × 0.06
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.492, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20158, 6416, 4033
Rint 0.038
(sin θ/λ)max−1) 0.762
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.102, 1.02
No. of reflections 6416
No. of parameters 241
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.86
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 1.5 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Di-µ-adipato-κ4O1,O1':O6,O6'-bis{[N-(pyridin-2-yl-κN)pyridin-2-amine-κN1]zinc(II)} trihydrate top
Crystal data top
[Zn2(C6H8O4)2(C10H9N3)2]·3H2OF(000) = 844
Mr = 815.44Dx = 1.533 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.2105 (3) ÅCell parameters from 1439 reflections
b = 14.4478 (6) Åθ = 2.3–26.3°
c = 15.2042 (8) ŵ = 1.43 mm1
β = 101.694 (2)°T = 302 K
V = 1766.14 (14) Å3Needle, colourless
Z = 20.18 × 0.11 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
4033 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray sourceRint = 0.038
ω scansθmax = 32.8°, θmin = 3.6°
Absorption correction: multi-scan
(Crysalis Red; Oxford Diffraction, 2009)
h = 1012
Tmin = 0.492, Tmax = 1.000k = 2221
20158 measured reflectionsl = 2321
6416 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.9459P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6416 reflectionsΔρmax = 0.48 e Å3
241 parametersΔρmin = 0.86 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.52923 (3)0.23563 (2)0.59713 (2)0.03924 (9)
O40.3690 (3)0.31102 (13)0.70690 (14)0.0791 (7)
O20.7724 (3)0.30383 (15)0.60833 (13)0.0752 (6)
O10.6465 (2)0.25296 (11)0.47921 (12)0.0498 (4)
O50.6289 (3)0.16459 (13)0.31903 (14)0.0725 (6)
H5A0.6392940.1994700.3648500.109*
H5B0.7229140.1673910.3037800.109*
O60.0902 (5)0.1631 (3)0.6599 (3)0.0730 (11)0.5
H6A0.1716710.1999840.6756840.109*0.5
H6B0.0084710.1907010.6748410.109*0.5
N10.3655 (2)0.13927 (11)0.53175 (11)0.0347 (4)
N20.4477 (2)0.01757 (11)0.63553 (12)0.0375 (4)
H20.4208180.0377310.6479370.045*
N30.6264 (2)0.14173 (11)0.69451 (11)0.0352 (4)
O30.4049 (3)0.35591 (12)0.57654 (16)0.0757 (6)
C10.3528 (2)0.05144 (13)0.55665 (13)0.0320 (4)
C20.2422 (3)0.01017 (15)0.50387 (15)0.0423 (5)
H2A0.2357520.0713510.5218630.051*
C30.1439 (3)0.02034 (18)0.42585 (16)0.0488 (6)
H30.0693540.0197990.3906020.059*
C40.1559 (3)0.11133 (18)0.39960 (16)0.0503 (6)
H40.0902850.1335640.3466850.060*
C50.2670 (3)0.16751 (16)0.45378 (16)0.0462 (5)
H50.2755550.2286590.4361710.055*
C60.5767 (2)0.05380 (13)0.69865 (13)0.0315 (4)
C70.6539 (3)0.00637 (14)0.76730 (14)0.0369 (4)
H70.6180340.0673050.7687490.044*
C80.7820 (3)0.02557 (16)0.83172 (15)0.0434 (5)
H80.8342640.0134150.8774860.052*
C90.8335 (3)0.11660 (16)0.82839 (16)0.0485 (5)
H90.9199510.1398540.8719290.058*
C100.7542 (3)0.17143 (15)0.75964 (16)0.0456 (5)
H100.7896700.2323470.7573270.055*
C160.3524 (3)0.36974 (15)0.64708 (19)0.0480 (6)
C150.2705 (3)0.46125 (15)0.65891 (17)0.0473 (5)
H15A0.3418630.4946130.7072150.057*
H15B0.1670410.4486080.6781700.057*
C140.2323 (3)0.52446 (14)0.57801 (15)0.0403 (5)
H14A0.1612710.4920510.5288750.048*
H14B0.3351210.5397900.5592400.048*
C130.8531 (3)0.38678 (15)0.40257 (19)0.0519 (6)
H13A0.9497050.4025540.3779840.062*
H13B0.7774940.3519210.3572270.062*
C120.9082 (3)0.32560 (18)0.4846 (2)0.0611 (7)
H12A0.9656670.2720540.4672670.073*
H12B0.9868350.3597560.5290590.073*
C110.7690 (3)0.29305 (14)0.52654 (16)0.0420 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04188 (14)0.02539 (11)0.04678 (16)0.00240 (9)0.00029 (10)0.00485 (10)
O40.1090 (17)0.0462 (11)0.0712 (14)0.0344 (11)0.0072 (12)0.0039 (9)
O20.1084 (17)0.0698 (13)0.0417 (11)0.0076 (12)0.0020 (10)0.0048 (9)
O10.0475 (8)0.0476 (9)0.0585 (11)0.0147 (7)0.0204 (8)0.0152 (7)
O50.1197 (18)0.0454 (10)0.0540 (12)0.0324 (11)0.0216 (11)0.0117 (8)
O60.068 (3)0.060 (2)0.095 (3)0.0104 (19)0.027 (2)0.015 (2)
N10.0350 (8)0.0316 (8)0.0364 (9)0.0025 (6)0.0044 (7)0.0024 (7)
N20.0445 (9)0.0270 (8)0.0396 (10)0.0074 (7)0.0050 (7)0.0037 (7)
N30.0383 (8)0.0266 (7)0.0388 (9)0.0020 (6)0.0028 (7)0.0011 (6)
O30.0923 (14)0.0387 (9)0.1157 (18)0.0024 (9)0.0674 (14)0.0157 (10)
C10.0309 (9)0.0323 (9)0.0342 (10)0.0020 (7)0.0100 (7)0.0012 (7)
C20.0439 (11)0.0360 (10)0.0468 (13)0.0097 (8)0.0090 (9)0.0051 (9)
C30.0393 (11)0.0579 (14)0.0463 (14)0.0089 (10)0.0022 (9)0.0121 (11)
C40.0464 (12)0.0623 (15)0.0379 (13)0.0038 (11)0.0015 (10)0.0010 (11)
C50.0489 (12)0.0428 (12)0.0432 (13)0.0014 (9)0.0011 (10)0.0067 (9)
C60.0338 (9)0.0289 (9)0.0336 (10)0.0031 (7)0.0112 (7)0.0011 (7)
C70.0436 (11)0.0317 (9)0.0374 (11)0.0049 (8)0.0128 (8)0.0034 (8)
C80.0459 (12)0.0439 (12)0.0389 (12)0.0116 (9)0.0052 (9)0.0050 (9)
C90.0479 (12)0.0467 (13)0.0443 (13)0.0032 (10)0.0063 (10)0.0024 (10)
C100.0490 (12)0.0327 (10)0.0486 (13)0.0028 (9)0.0059 (10)0.0032 (9)
C160.0352 (10)0.0348 (11)0.0721 (17)0.0011 (8)0.0067 (10)0.0129 (11)
C150.0572 (13)0.0351 (11)0.0547 (14)0.0089 (9)0.0237 (11)0.0008 (10)
C140.0405 (10)0.0337 (10)0.0482 (13)0.0049 (8)0.0126 (9)0.0022 (9)
C130.0521 (13)0.0379 (11)0.0749 (18)0.0038 (10)0.0342 (12)0.0127 (11)
C120.0382 (12)0.0476 (13)0.097 (2)0.0029 (10)0.0115 (12)0.0249 (13)
C110.0505 (12)0.0241 (8)0.0501 (14)0.0025 (8)0.0071 (10)0.0064 (8)
Geometric parameters (Å, º) top
Zn1—O42.567 (2)C3—C41.383 (4)
Zn1—O22.202 (2)C4—H40.9300
Zn1—O12.2146 (17)C4—C51.366 (3)
Zn1—N12.0473 (16)C5—H50.9300
Zn1—N32.0470 (16)C6—C71.407 (3)
Zn1—O32.0073 (19)C7—H70.9300
Zn1—C112.563 (2)C7—C81.364 (3)
O4—C161.231 (3)C8—H80.9300
O2—C111.248 (3)C8—C91.385 (3)
O1—C111.253 (3)C9—H90.9300
O5—H5A0.8500C9—C101.367 (3)
O5—H5B0.8504C10—H100.9300
O6—H6A0.8508C16—C151.511 (3)
O6—H6B0.8500C15—H15A0.9700
N1—C11.334 (2)C15—H15B0.9700
N1—C51.355 (3)C15—C141.513 (3)
N2—H20.8600C14—H14A0.9700
N2—C11.381 (2)C14—H14B0.9700
N2—C61.380 (2)C14—C13i1.519 (3)
N3—C61.340 (2)C13—H13A0.9700
N3—C101.358 (3)C13—H13B0.9700
O3—C161.250 (3)C13—C121.520 (3)
C1—C21.402 (3)C12—H12A0.9700
C2—H2A0.9300C12—H12B0.9700
C2—C31.365 (3)C12—C111.493 (3)
C3—H30.9300
O2—Zn1—O4109.63 (8)C4—C5—H5118.1
O2—Zn1—O158.38 (7)N2—C6—C7116.65 (17)
O2—Zn1—C1129.12 (7)N3—C6—N2121.67 (17)
O1—Zn1—O4147.40 (6)N3—C6—C7121.68 (18)
O1—Zn1—C1129.26 (6)C6—C7—H7120.3
N1—Zn1—O4103.40 (7)C8—C7—C6119.32 (19)
N1—Zn1—O2146.89 (8)C8—C7—H7120.3
N1—Zn1—O191.96 (6)C7—C8—H8120.3
N1—Zn1—C11120.07 (7)C7—C8—C9119.4 (2)
N3—Zn1—O489.24 (6)C9—C8—H8120.3
N3—Zn1—O291.51 (7)C8—C9—H9120.8
N3—Zn1—O1119.40 (7)C10—C9—C8118.5 (2)
N3—Zn1—N191.24 (6)C10—C9—H9120.8
N3—Zn1—C11107.32 (7)N3—C10—C9123.5 (2)
O3—Zn1—O454.76 (7)N3—C10—H10118.2
O3—Zn1—O292.81 (8)C9—C10—H10118.2
O3—Zn1—O193.82 (7)O4—C16—O3121.2 (2)
O3—Zn1—N1104.48 (8)O4—C16—C15120.0 (2)
O3—Zn1—N3142.92 (8)O3—C16—C15118.8 (2)
O3—Zn1—C1193.66 (7)C16—C15—H15A108.0
C11—Zn1—O4132.29 (7)C16—C15—H15B108.0
C16—O4—Zn178.85 (16)C16—C15—C14117.1 (2)
C11—O2—Zn191.72 (15)H15A—C15—H15B107.3
C11—O1—Zn190.99 (15)C14—C15—H15A108.0
H5A—O5—H5B104.5C14—C15—H15B108.0
H6A—O6—H6B104.4C15—C14—H14A109.1
C1—N1—Zn1126.18 (13)C15—C14—H14B109.1
C1—N1—C5117.85 (18)C15—C14—C13i112.29 (19)
C5—N1—Zn1115.89 (14)H14A—C14—H14B107.9
C1—N2—H2113.3C13i—C14—H14A109.1
C6—N2—H2113.3C13i—C14—H14B109.1
C6—N2—C1133.48 (16)C14i—C13—H13A108.8
C6—N3—Zn1125.79 (13)C14i—C13—H13B108.8
C6—N3—C10117.58 (17)C14i—C13—C12113.8 (2)
C10—N3—Zn1116.62 (13)H13A—C13—H13B107.7
C16—O3—Zn1104.91 (17)C12—C13—H13A108.8
N1—C1—N2121.38 (17)C12—C13—H13B108.8
N1—C1—C2121.34 (18)C13—C12—H12A108.7
N2—C1—C2117.28 (18)C13—C12—H12B108.7
C1—C2—H2A120.2H12A—C12—H12B107.6
C3—C2—C1119.5 (2)C11—C12—C13114.03 (19)
C3—C2—H2A120.2C11—C12—H12A108.7
C2—C3—H3120.2C11—C12—H12B108.7
C2—C3—C4119.6 (2)O2—C11—Zn159.17 (14)
C4—C3—H3120.2O2—C11—O1118.9 (2)
C3—C4—H4121.0O2—C11—C12121.4 (2)
C5—C4—C3118.0 (2)O1—C11—Zn159.75 (12)
C5—C4—H4121.0O1—C11—C12119.6 (2)
N1—C5—C4123.8 (2)C12—C11—Zn1179.3 (2)
N1—C5—H5118.1
Zn1—O4—C16—O34.8 (2)C1—N1—C5—C40.0 (3)
Zn1—O4—C16—C15174.0 (2)C1—N2—C6—N35.6 (3)
Zn1—O2—C11—O10.5 (2)C1—N2—C6—C7174.1 (2)
Zn1—O2—C11—C12179.62 (18)C1—C2—C3—C40.6 (3)
Zn1—O1—C11—O20.5 (2)C2—C3—C4—C50.1 (4)
Zn1—O1—C11—C12179.63 (18)C3—C4—C5—N10.2 (4)
Zn1—N1—C1—N23.8 (3)C5—N1—C1—N2179.40 (19)
Zn1—N1—C1—C2176.34 (15)C5—N1—C1—C20.4 (3)
Zn1—N1—C5—C4177.1 (2)C6—N2—C1—N17.0 (3)
Zn1—N3—C6—N21.2 (3)C6—N2—C1—C2173.1 (2)
Zn1—N3—C6—C7178.48 (14)C6—N3—C10—C90.1 (3)
Zn1—N3—C10—C9179.1 (2)C6—C7—C8—C90.0 (3)
Zn1—O3—C16—O46.3 (3)C7—C8—C9—C100.5 (4)
Zn1—O3—C16—C15172.52 (17)C8—C9—C10—N30.5 (4)
O4—C16—C15—C14171.6 (2)C10—N3—C6—N2179.91 (19)
N1—C1—C2—C30.7 (3)C10—N3—C6—C70.4 (3)
N2—C1—C2—C3179.1 (2)C16—C15—C14—C13i178.8 (2)
N2—C6—C7—C8179.88 (19)C14i—C13—C12—C1161.0 (3)
N3—C6—C7—C80.4 (3)C13—C12—C11—O2127.6 (3)
O3—C16—C15—C149.6 (3)C13—C12—C11—O153.3 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O10.851.892.728 (3)167
O5—H5B···O4ii0.852.102.877 (3)151
O6—H6A···O40.852.263.107 (5)173
O6—H6B···O2iii0.852.583.275 (5)140
N2—H2···O5iv0.861.972.824 (2)177
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x1, y, z; (iv) x+1, y, z+1.
 

Acknowledgements

La plateforme technique DRX de l'institut Lavoisier de Versailles is thanked for its support for the single-crystal X-ray crystallographic data collection and analysis.

Funding information

Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique), the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and the PRFU project (grant No. B00L01UN190120230003).

References

First citationAddala, A., Poupon, M., Bernès, S., Kürkçüoğlu, G. S., Liu, X., Lehchili, F., Kučeráková, M., Dušek, M., Setifi, F., Setifi, Z. & Reedijk, J. (2019). Polyhedron, 170, 271–277.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKlongdee, F., Sasada, Y., Nakano, M., Chainok, K., Youngme, S. & Boonmak, J. (2023). New J. Chem. 47, 9669–9680.  CSD CrossRef CAS Google Scholar
First citationLehchili, F., Setifi, F., Liu, X., Saneei, A., Kučeráková, M., Setifi, Z., Dušek, M., Poupon, M., Pourayoubi, M. & Reedijk, J. (2017). Polyhedron, 131, 27–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSetifi, F., Bouchama, A., Sala-Pala, J., Salaün, J.-Y. & Triki, S. (2006). Inorg. Chim. Acta, 359, 3269–3274.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Ghazzali, M., Glidewell, C., Pérez, O., Setifi, F., Gómez-García, C. J. & Reedijk, J. (2016). Polyhedron, 117, 244–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Setifi, F., Ghazzali, M., El-Ghozzi, M., Avignant, D., Pérez, O. & Reedijk, J. (2014). Polyhedron, 75, 68–72.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146