organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Redetermined structure of methyl 3-{4,4-di­fluoro-2-[2-(meth­oxy­car­bon­yl)­ethyl]-1,3,5,7-tetra­methyl-4-bora-3a,4a-di­aza-s-in­da­cen-6-yl}pro­pion­ate

crossmark logo

aUniversity of Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 5 September 2024; accepted 10 September 2024; online 17 September 2024)

In the title compound, C21H27BF2N2O4, a highly fluorescent boron–dipyrromethene dye, the methyl­propionate moieties have different conformations. In the crystal, weak C—H⋯F and C—H⋯O inter­actions link the mol­ecules. Some optical properties are presented.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Fluorescent dyes are of great inter­est for labeling for analytics in biology and medicine (e.g., Carpenter & Verkman, 2010[Carpenter, R. D. & Verkman, A. S. (2010). Org. Lett. 12, 1160-1163.]; He et al., 2003[He, H., Mortellaro, M. A., Leiner, M. J., Fraatz, R. J. & Tusa, J. K. (2003). J. Am. Chem. Soc. 125, 1468-1469.]; Marfin et al., 2017[Marfin, S. Y., Solomonov, A. V., Timin, A. S. & Rumyantsev, E. V. (2017). Curr. Med. Chem. 24, 2745-2772.]; Namkung et al., 2009[Namkung, W., Song, Y., Mills, A. D., Padmawar, P., Finkbeiner, W. E. & Verkman, A. S. I. (2009). J. Biol. Chem. 284, 15916-15926.]). Boron–dipyrromethene dyes (bodipy) show high quantum yields and excellent photostability and 9-aryl-substituted compounds have been the most investigated. The syntheses of these dyes usually consist of the condensation of pyrroles with aldehydes. To synthesize 9H-bodipy dyes, orthoformates have been used but here, di­methyl­formamide is the source of the central carbon atom in the title compound, C21H27BF2N2O4 (I) (Fig. 1[link]).

[Figure 1]
Figure 1
View of compound I. Displacement ellipsoids are drawn at the 50% probability level.

Despite the high formal symmetry of I, the mol­ecule shows no inherent symmetry in its crystalline form. This is due to the methyl­propionate moieties: the C17 branch adopts an all-anti conformation lying to one side of the π-system, while the C11 branch has an s–cis conformation on the other side of the π-system. The dihedral angles of these units with respect to the central fused-ring system are 84.3 (2) (C17 branch) and 74.6 (2)° (C11 branch). The 2,3,4-tris­ubstitution on the pyrrole rings enlarges the bond angles involving the methyl groups [C6—C5—C25 = 127.7 (4); C6—C7—C26 = 128.3 (4); C2—C1—C23 = 127.9 (4); C2—C3—C24 = 127.9 (4)°]. The near identical B4—N3A [1.537 (6) Å] and B4—N4A [1.535 (6) Å] bond lengths indicate the expected delocalization of charge (compare the chemical scheme).

In the extended structure of I, four mol­ecules fill the unit cell, which are arranged in layers lying parallel to the ac-plane and weak C—H⋯ and C—H⋯O inter­actions link the mol­ecules ((Fig. 2[link]), Table 1[link]). Within the plane a herringbone pattern is formed and a twofold screw axis relates the mol­ecular entities. These crystallographic results confirm recently reported deposited data (Uppal et al., 2020[Uppal, T., Graca, M., Vicente, H. & Fronczek, F. R. (2020). CSD Communication (refcode LUSXUV, CCDC 2019427). CCDC, Cambridge, England.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯F9i 0.98 2.37 3.324 (7) 163
C18—H18A⋯O14ii 0.99 2.57 3.268 (6) 128
C23—H23B⋯O20iii 0.98 2.54 3.470 (7) 158
Symmetry codes: (i) [x+1, y, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Partial packing diagram. View along the a axis.

Synthesis and crystallization

The compound was obtained as a side-product in the condensation of the pyrrole with a formyl­ated cryptand (Jochem et al., 2022[Jochem, M., Schollmeyer, D. & Detert, H. (2022). Molbank, M1348.]). To the cryptand (97 mg), containing 5% di­methyl­formamide (4.9 mg, 0.066 mmol) in dry chloro­form (10 ml) was added 3,5-dimethyl-4-(meth­oxy­carbon­yl)eth-2-yl­pyrrole (65.0 mg, 0.359 mmol). Then, 10 µl of tri­fluoro­acetic acid was added and stirred for 26 h. Diiso-propyl­ethyl­amine (1 ml) was added followed by di­chloro­dicyano­quinone (54 mg) and stirred for 2 h. Afterwards, BF3 diethyl ether solution (40%, 1 ml) was added dropwise and stirred. After complete addition, the mixture slowly turned red–violet and started fluorescing after about one h. After 20 h and addition of water (MilliQ, 20 ml), the organic phase was separated, washed with water and dried over Na2CO3. Purification via column chromatography (SiO2/CH2Cl2) led to the title compound being eluated first: it crystallized from chloro­form/2-propanol as a red solid (12.5 mg) and was recrystallized readily from the mixed solvents of aceto­nitrile and methanol. HR–ESI–MS: found: 421.2106 [M + H]+, calculated 421.2105 for C21H27BF2N2O4+; 1H NMR (400 MHz, CDCl3) δ = 6.98 (s, 1H), 3.67 (s, 6H), 2.71 (dd, J = 8.6, 6.9 Hz, 4H), 2.50 (s, 6H), 2.44 (dd, J = 8.6, 7.0 Hz, 4H), 2.19 (s, 6H). 13C NMR (101 MHz, CDCl3) δ = 173.25, 155.23, 137.92, 132.64, 128.15, 119.38, 51.86, 34.27, 19.65, 12.80, 9.71. 19F NMR (282 MHz, CDCl3) δ = −146.29 (dd, J = 66.4, 33.2 Hz). Optical properties: the title compound has a high of solubility in a broad range of polar solvents but very limited solubility in toluene and alkanes. Bright sunlight led to photochemical decomposition only in very polar media whereas 10−5 M solutions in less polar solvents remained stable. The absorption spectra in CH2Cl2 shows a peak at 527 nm with emission at 536 nm: increasing solvent polarity provokes bathochromic shifts of max. 3 nm.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H27BF2N2O4
Mr 420.25
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 11.9299 (8), 21.6278 (17), 8.2665 (6)
β (°) 108.251 (6)
V3) 2025.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.20 × 0.10 × 0.04
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (X-RED32; Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.985, 0.995
No. of measured, independent and observed [I > 2σ(I)] reflections 9943, 4863, 2663
Rint 0.052
(sin θ/λ)max−1) 0.664
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.238, 1.09
No. of reflections 4863
No. of parameters 277
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.48
Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2020[Stoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SHELXT2014 (Shelxdrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Methyl 3-{4,4-difluoro-2-[2-(methoxycarbonyl)ethyl]-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacen-6-yl}propionate top
Crystal data top
C21H27BF2N2O4F(000) = 888
Mr = 420.25Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.9299 (8) ÅCell parameters from 6884 reflections
b = 21.6278 (17) Åθ = 2.6–28.3°
c = 8.2665 (6) ŵ = 0.11 mm1
β = 108.251 (6)°T = 120 K
V = 2025.6 (3) Å3Plate, red
Z = 40.20 × 0.10 × 0.04 mm
Data collection top
Stoe IPDS 2T
diffractometer
4863 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2663 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.052
rotation method, ω scansθmax = 28.2°, θmin = 2.6°
Absorption correction: integration
(XRED32; Stoe & Cie, 2020)
h = 1515
Tmin = 0.985, Tmax = 0.995k = 2628
9943 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.090H-atom parameters constrained
wR(F2) = 0.238 w = 1/[σ2(Fo2) + (0.0569P)2 + 5.4328P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4863 reflectionsΔρmax = 0.50 e Å3
277 parametersΔρmin = 0.48 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbon atoms were placed at calculated positions and were refined in the riding-model approximation with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(methyl C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6168 (4)0.1527 (2)0.1730 (5)0.0375 (10)
C20.6242 (4)0.0886 (2)0.1758 (5)0.0401 (10)
N3A0.4545 (3)0.11329 (17)0.2243 (4)0.0357 (8)
C30.5240 (4)0.0654 (2)0.2098 (5)0.0365 (10)
N4A0.2907 (3)0.17653 (16)0.2632 (4)0.0320 (8)
B40.3319 (5)0.1102 (2)0.2480 (6)0.0345 (10)
C50.1906 (4)0.1955 (2)0.2927 (5)0.0321 (9)
C60.1870 (4)0.2612 (2)0.2985 (5)0.0339 (9)
C70.2882 (4)0.2830 (2)0.2691 (5)0.0334 (9)
C7A0.3531 (4)0.2300 (2)0.2478 (5)0.0332 (9)
C80.4593 (4)0.2254 (2)0.2161 (5)0.0378 (10)
H80.4991010.2621060.2024650.045*
C8A0.5107 (4)0.1680 (2)0.2034 (5)0.0344 (9)
F90.2522 (2)0.08108 (12)0.1056 (3)0.0419 (6)
F100.3365 (2)0.07568 (12)0.3926 (3)0.0463 (7)
C110.7237 (4)0.0497 (2)0.1543 (6)0.0447 (11)
H11A0.7656210.0733100.0881770.054*
H11B0.6907100.0119610.0891410.054*
C120.8112 (4)0.0313 (2)0.3255 (6)0.0462 (12)
H12A0.8456140.0692190.3889890.055*
H12B0.7684550.0090780.3928990.055*
C130.9092 (4)0.0090 (2)0.3081 (6)0.0421 (11)
O140.9331 (3)0.05959 (17)0.3704 (5)0.0525 (9)
O150.9673 (3)0.01777 (16)0.2139 (4)0.0482 (8)
C161.0658 (5)0.0171 (3)0.1959 (7)0.0571 (14)
H16A1.1124350.0091310.1443680.086*
H16B1.0365170.0530780.1227650.086*
H16C1.1155110.0310560.3082570.086*
C170.0914 (4)0.2973 (2)0.3389 (5)0.0365 (10)
H17A0.1209080.3395170.3747040.044*
H17B0.0740360.2774070.4362570.044*
C180.0232 (4)0.3022 (2)0.1904 (5)0.0343 (9)
H18A0.0096170.3286260.1005210.041*
H18B0.0460000.2605630.1414150.041*
C190.1220 (4)0.3287 (2)0.2435 (5)0.0372 (10)
O200.1238 (3)0.33229 (16)0.3882 (4)0.0449 (8)
O210.2120 (3)0.34756 (15)0.1088 (4)0.0412 (7)
C220.3121 (4)0.3733 (3)0.1478 (7)0.0512 (13)
H22A0.3763530.3806540.0418480.077*
H22B0.2892550.4125090.2088160.077*
H22C0.3385220.3443080.2194040.077*
C230.7046 (5)0.1981 (2)0.1491 (7)0.0506 (12)
H23A0.6630030.2333670.0824590.076*
H23B0.7535530.1781610.0885450.076*
H23C0.7548930.2125490.2605570.076*
C240.4960 (4)0.0000 (2)0.2359 (6)0.0420 (11)
H24A0.5232880.0266760.1601000.063*
H24B0.4105100.0046180.2103980.063*
H24C0.5357390.0117630.3545780.063*
C250.0994 (4)0.1511 (2)0.3080 (6)0.0399 (10)
H25A0.0451830.1721260.3577890.060*
H25B0.1376290.1166080.3815010.060*
H25C0.0551690.1353400.1948870.060*
C260.3262 (4)0.3483 (2)0.2625 (5)0.0377 (10)
H26A0.3399270.3558850.1533160.057*
H26B0.3993340.3557340.3558040.057*
H26C0.2644430.3761880.2739690.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.046 (3)0.031 (2)0.002 (2)0.0166 (19)0.0004 (19)
C20.043 (2)0.045 (3)0.032 (2)0.006 (2)0.0103 (19)0.0036 (19)
N3A0.040 (2)0.037 (2)0.0308 (18)0.0052 (16)0.0126 (16)0.0006 (15)
C30.042 (2)0.038 (2)0.031 (2)0.004 (2)0.0129 (18)0.0005 (18)
N4A0.0363 (19)0.0325 (19)0.0314 (18)0.0011 (15)0.0164 (15)0.0021 (14)
B40.042 (3)0.038 (3)0.025 (2)0.003 (2)0.013 (2)0.0021 (19)
C50.035 (2)0.039 (2)0.0240 (19)0.0021 (18)0.0110 (17)0.0012 (16)
C60.038 (2)0.041 (2)0.0244 (19)0.0009 (19)0.0122 (17)0.0015 (17)
C70.038 (2)0.037 (2)0.025 (2)0.0002 (18)0.0088 (17)0.0012 (16)
C7A0.039 (2)0.036 (2)0.025 (2)0.0024 (19)0.0123 (17)0.0001 (17)
C80.042 (2)0.041 (3)0.033 (2)0.004 (2)0.0153 (19)0.0032 (19)
C8A0.039 (2)0.034 (2)0.034 (2)0.0003 (19)0.0155 (18)0.0020 (17)
F90.0437 (14)0.0432 (15)0.0382 (14)0.0020 (12)0.0123 (11)0.0047 (11)
F100.0596 (17)0.0445 (16)0.0405 (14)0.0089 (13)0.0238 (13)0.0098 (12)
C110.044 (3)0.050 (3)0.041 (3)0.005 (2)0.014 (2)0.009 (2)
C120.045 (3)0.056 (3)0.038 (2)0.009 (2)0.014 (2)0.003 (2)
C130.036 (2)0.050 (3)0.038 (2)0.002 (2)0.0085 (19)0.002 (2)
O140.053 (2)0.049 (2)0.053 (2)0.0036 (17)0.0130 (17)0.0062 (17)
O150.0476 (19)0.051 (2)0.052 (2)0.0070 (16)0.0231 (16)0.0032 (16)
C160.053 (3)0.067 (4)0.057 (3)0.012 (3)0.025 (3)0.002 (3)
C170.041 (2)0.044 (3)0.028 (2)0.005 (2)0.0146 (18)0.0009 (18)
C180.037 (2)0.040 (2)0.027 (2)0.0010 (19)0.0126 (17)0.0018 (17)
C190.043 (2)0.039 (2)0.033 (2)0.001 (2)0.0158 (19)0.0009 (18)
O200.0460 (18)0.058 (2)0.0358 (17)0.0070 (16)0.0203 (14)0.0003 (15)
O210.0360 (16)0.051 (2)0.0364 (16)0.0061 (15)0.0112 (13)0.0013 (14)
C220.037 (2)0.066 (3)0.054 (3)0.011 (2)0.019 (2)0.004 (3)
C230.050 (3)0.053 (3)0.055 (3)0.003 (2)0.025 (2)0.003 (2)
C240.047 (3)0.040 (3)0.039 (2)0.004 (2)0.012 (2)0.001 (2)
C250.042 (2)0.048 (3)0.036 (2)0.000 (2)0.019 (2)0.0010 (19)
C260.044 (2)0.037 (2)0.033 (2)0.000 (2)0.0123 (19)0.0003 (18)
Geometric parameters (Å, º) top
C1—C21.389 (6)C13—O151.326 (5)
C1—C8A1.405 (6)O15—C161.443 (6)
C1—C231.494 (6)C16—H16A0.9800
C2—C31.404 (6)C16—H16B0.9800
C2—C111.510 (6)C16—H16C0.9800
N3A—C31.356 (5)C17—C181.528 (6)
N3A—C8A1.396 (5)C17—H17A0.9900
N3A—B41.537 (6)C17—H17B0.9900
C3—C241.483 (6)C18—C191.496 (6)
N4A—C51.355 (5)C18—H18A0.9900
N4A—C7A1.403 (5)C18—H18B0.9900
N4A—B41.535 (6)C19—O201.205 (5)
B4—F101.395 (5)C19—O211.345 (5)
B4—F91.409 (5)O21—C221.442 (5)
C5—C61.424 (6)C22—H22A0.9800
C5—C251.486 (6)C22—H22B0.9800
C6—C71.386 (6)C22—H22C0.9800
C6—C171.504 (6)C23—H23A0.9800
C7—C7A1.424 (6)C23—H23B0.9800
C7—C261.490 (6)C23—H23C0.9800
C7A—C81.375 (6)C24—H24A0.9800
C8—C8A1.403 (6)C24—H24B0.9800
C8—H80.9500C24—H24C0.9800
C11—C121.525 (7)C25—H25A0.9800
C11—H11A0.9900C25—H25B0.9800
C11—H11B0.9900C25—H25C0.9800
C12—C131.501 (6)C26—H26A0.9800
C12—H12A0.9900C26—H26B0.9800
C12—H12B0.9900C26—H26C0.9800
C13—O141.205 (6)
C2—C1—C8A106.8 (4)C13—O15—C16115.1 (4)
C2—C1—C23127.9 (4)O15—C16—H16A109.5
C8A—C1—C23125.3 (4)O15—C16—H16B109.5
C1—C2—C3107.8 (4)H16A—C16—H16B109.5
C1—C2—C11127.0 (4)O15—C16—H16C109.5
C3—C2—C11125.1 (4)H16A—C16—H16C109.5
C3—N3A—C8A107.8 (3)H16B—C16—H16C109.5
C3—N3A—B4127.6 (4)C6—C17—C18114.1 (3)
C8A—N3A—B4124.4 (4)C6—C17—H17A108.7
N3A—C3—C2109.1 (4)C18—C17—H17A108.7
N3A—C3—C24122.9 (4)C6—C17—H17B108.7
C2—C3—C24127.9 (4)C18—C17—H17B108.7
C5—N4A—C7A106.8 (3)H17A—C17—H17B107.6
C5—N4A—B4128.4 (4)C19—C18—C17112.3 (3)
C7A—N4A—B4124.8 (3)C19—C18—H18A109.1
F10—B4—F9108.2 (4)C17—C18—H18A109.1
F10—B4—N4A111.0 (3)C19—C18—H18B109.1
F9—B4—N4A109.7 (4)C17—C18—H18B109.1
F10—B4—N3A110.4 (4)H18A—C18—H18B107.9
F9—B4—N3A109.4 (3)O20—C19—O21123.0 (4)
N4A—B4—N3A108.2 (4)O20—C19—C18125.2 (4)
N4A—C5—C6110.2 (4)O21—C19—C18111.8 (3)
N4A—C5—C25122.0 (4)C19—O21—C22115.7 (3)
C6—C5—C25127.7 (4)O21—C22—H22A109.5
C7—C6—C5107.2 (4)O21—C22—H22B109.5
C7—C6—C17128.7 (4)H22A—C22—H22B109.5
C5—C6—C17123.9 (4)O21—C22—H22C109.5
C6—C7—C7A106.6 (4)H22A—C22—H22C109.5
C6—C7—C26128.3 (4)H22B—C22—H22C109.5
C7A—C7—C26125.0 (4)C1—C23—H23A109.5
C8—C7A—N4A120.2 (4)C1—C23—H23B109.5
C8—C7A—C7130.7 (4)H23A—C23—H23B109.5
N4A—C7A—C7109.1 (3)C1—C23—H23C109.5
C7A—C8—C8A121.9 (4)H23A—C23—H23C109.5
C7A—C8—H8119.0H23B—C23—H23C109.5
C8A—C8—H8119.0C3—C24—H24A109.5
N3A—C8A—C8120.2 (4)C3—C24—H24B109.5
N3A—C8A—C1108.5 (4)H24A—C24—H24B109.5
C8—C8A—C1131.3 (4)C3—C24—H24C109.5
C2—C11—C12111.8 (4)H24A—C24—H24C109.5
C2—C11—H11A109.3H24B—C24—H24C109.5
C12—C11—H11A109.3C5—C25—H25A109.5
C2—C11—H11B109.3C5—C25—H25B109.5
C12—C11—H11B109.3H25A—C25—H25B109.5
H11A—C11—H11B107.9C5—C25—H25C109.5
C13—C12—C11112.9 (4)H25A—C25—H25C109.5
C13—C12—H12A109.0H25B—C25—H25C109.5
C11—C12—H12A109.0C7—C26—H26A109.5
C13—C12—H12B109.0C7—C26—H26B109.5
C11—C12—H12B109.0H26A—C26—H26B109.5
H12A—C12—H12B107.8C7—C26—H26C109.5
O14—C13—O15123.4 (4)H26A—C26—H26C109.5
O14—C13—C12125.0 (4)H26B—C26—H26C109.5
O15—C13—C12111.6 (4)
C8A—C1—C2—C30.8 (5)C17—C6—C7—C262.9 (7)
C23—C1—C2—C3177.2 (4)C5—N4A—C7A—C8179.6 (4)
C8A—C1—C2—C11178.2 (4)B4—N4A—C7A—C80.2 (6)
C23—C1—C2—C110.2 (8)C5—N4A—C7A—C70.1 (4)
C8A—N3A—C3—C21.3 (5)B4—N4A—C7A—C7180.0 (4)
B4—N3A—C3—C2175.1 (4)C6—C7—C7A—C8179.9 (4)
C8A—N3A—C3—C24176.0 (4)C26—C7—C7A—C80.7 (7)
B4—N3A—C3—C247.6 (7)C6—C7—C7A—N4A0.4 (4)
C1—C2—C3—N3A1.3 (5)C26—C7—C7A—N4A179.6 (4)
C11—C2—C3—N3A178.8 (4)N4A—C7A—C8—C8A2.0 (6)
C1—C2—C3—C24175.8 (4)C7—C7A—C8—C8A178.3 (4)
C11—C2—C3—C241.7 (7)C3—N3A—C8A—C8178.6 (4)
C5—N4A—B4—F1055.6 (6)B4—N3A—C8A—C84.9 (6)
C7A—N4A—B4—F10124.6 (4)C3—N3A—C8A—C10.8 (5)
C5—N4A—B4—F963.9 (5)B4—N3A—C8A—C1175.8 (4)
C7A—N4A—B4—F9116.0 (4)C7A—C8—C8A—N3A0.5 (6)
C5—N4A—B4—N3A176.9 (4)C7A—C8—C8A—C1179.7 (4)
C7A—N4A—B4—N3A3.3 (5)C2—C1—C8A—N3A0.0 (5)
C3—N3A—B4—F1056.7 (6)C23—C1—C8A—N3A178.1 (4)
C8A—N3A—B4—F10127.4 (4)C2—C1—C8A—C8179.3 (5)
C3—N3A—B4—F962.3 (5)C23—C1—C8A—C81.2 (8)
C8A—N3A—B4—F9113.6 (4)C1—C2—C11—C1295.7 (6)
C3—N3A—B4—N4A178.3 (4)C3—C2—C11—C1281.3 (6)
C8A—N3A—B4—N4A5.8 (5)C2—C11—C12—C13178.2 (4)
C7A—N4A—C5—C60.6 (5)C11—C12—C13—O14123.1 (5)
B4—N4A—C5—C6179.6 (4)C11—C12—C13—O1556.6 (6)
C7A—N4A—C5—C25177.1 (4)O14—C13—O15—C162.4 (7)
B4—N4A—C5—C252.8 (6)C12—C13—O15—C16177.9 (4)
N4A—C5—C6—C70.8 (5)C7—C6—C17—C18105.4 (5)
C25—C5—C6—C7176.6 (4)C5—C6—C17—C1878.1 (5)
N4A—C5—C6—C17176.4 (3)C6—C17—C18—C19170.2 (4)
C25—C5—C6—C176.2 (7)C17—C18—C19—O2017.2 (6)
C5—C6—C7—C7A0.7 (5)C17—C18—C19—O21164.1 (4)
C17—C6—C7—C7A176.3 (4)O20—C19—O21—C220.7 (7)
C5—C6—C7—C26179.8 (4)C18—C19—O21—C22179.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···F9i0.982.373.324 (7)163
C18—H18A···O14ii0.992.573.268 (6)128
C23—H23B···O20iii0.982.543.470 (7)158
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1/2, z1/2.
 

References

First citationCarpenter, R. D. & Verkman, A. S. (2010). Org. Lett. 12, 1160–1163.  PubMed Google Scholar
First citationHe, H., Mortellaro, M. A., Leiner, M. J., Fraatz, R. J. & Tusa, J. K. (2003). J. Am. Chem. Soc. 125, 1468–1469.  PubMed Google Scholar
First citationJochem, M., Schollmeyer, D. & Detert, H. (2022). Molbank, M1348.  Google Scholar
First citationMarfin, S. Y., Solomonov, A. V., Timin, A. S. & Rumyantsev, E. V. (2017). Curr. Med. Chem. 24, 2745–2772.  PubMed Google Scholar
First citationNamkung, W., Song, Y., Mills, A. D., Padmawar, P., Finkbeiner, W. E. & Verkman, A. S. I. (2009). J. Biol. Chem. 284, 15916–15926.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2020). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUppal, T., Graca, M., Vicente, H. & Fronczek, F. R. (2020). CSD Communication (refcode LUSXUV, CCDC 2019427). CCDC, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146