organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(3,4-Di­meth­­oxy­phen­yl)-3-(1,3-di­phenyl-1H-pyrazol-4-yl)prop-2-en-1-one

crossmark logo

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dddklab@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 28 August 2024; accepted 3 September 2024; online 6 September 2024)

In the title compound, C26H22N2O3, the dihedral angle between the benzene and pyrazole rings of the chalcone unit is 88.3 (1)°. The pyrazole ring has two attached phenyl rings that form dihedral angles with the pyrazole ring of 22.6 (2) and 40.0 (1)°. In the crystal, pairwise C—H⋯O hydrogen bonds generate R22(20) inversion dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazoles are promising scaffolds in medicinal chemistry due to their versatile biological efficacy, including anti­bacterial, anti-inflammatory, anti­oxidant, anti­depressant, and anti­cancer activity (Brullo et al., 2020[Brullo, C., Rapetti, F. & Bruno, O. (2020). Molecules, 25, 3457.]; Ebenezer et al., 2022[Ebenezer, O., Shapi, M. & Tuszynski, J. (2022). Biomedicines, 10, 1124.]). As a result of intensive research on the anti­cancer activity of pyrazole-containing mol­ecules, a number of anti­cancer drugs such as niraparib, critinib and darolutamide have been developed and are commercially available (Sivaramakarthikeyan et al., 2020[Sivaramakarthikeyan, R., Iniyaval, S., Saravanan, V., Lim, W.-M., Mai, C.-W. & Ramalingan, C. (2020). ACS Omega, 5, 10089-10098.]). Chalcones also exhibit various physiological phenomena, including anti­cancer activity (Elkanzi et al., 2022[Elkanzi, N. A. A., Hrichi, H., Alolayan, R. A., Derafa, W., Zahou, F. M. & Bakr, R. B. (2022). ACS Omega, 7, 27769-27786.]). As part of our ongoing research to develop new chalcones derivatives (Sung, 2019[Sung, J. (2019). IUCrData, 4, x191281.]) with anti-cancer activities, the pyrazole-containing chalcone title compound was synthesized and its crystal structure was determined.

The title compound, C26H22N2O3, was prepared by a Claisen–Schmidt condensation reaction between 3,4-dimehoxyaceo­phenone and 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (Fig. 1[link]). The mol­ecular structure of title compound is shown in Fig. 2[link]. The C=C and C=O double bonds usually lie in the same plane in the enone bridge of the chalcone unit. However, in this mol­ecule, the O1—C1—C8—C9 torsion angle is 17.3 (2)°, indicating a significant twist. The C2–C7 benzene ring has two meth­oxy groups attached at C4 and C5, which are twisted from the ring plane with torsion angles of 6.1 (2)° [C3—C4—O2—C10] and −7.3 (2)° [C6—C5—O3—C11]. The pyrazole ring (N1/N2/C14/C12/C13) has the C15–C20 and C21–C26 phenyl groups attached to atoms N1 and C14, respectively. The C15–C20 and C21–C26 phenyl rings make dihedral angles with the pyrazole ring of 22.6 (2) and 40.0 (1)°, respectively, while the dihedral angle between the phenyl rings is 53.3 (3)°. In the crystal, pairs of C—H—O hydrogen bonds generate inversion dimers with graph-set notation R22 (20) (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.94 2.34 3.2648 (19) 169
Symmetry code: (i) [-x+1, -y+2, -z+1].
[Figure 1]
Figure 1
Synthetic scheme for the title compound.
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
Part of the crystal structure of the title compound, showing the weak C—H⋯O pairwise hydrogen bonds that form R22(20) dimers.

Synthesis and crystallization

3,4-Di­meth­oxy­aceo­phenone (180 mg, 1 mmol) was dissolved in 20 ml of ethanol. Then, 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (248 mg, 1 mmol) was slowly added until a clear solution was formed. The temperature of reaction mixture was adjusted to 276–277 K using an ice bath. To the cooled reaction mixture was added 1.5 ml of 30% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 30 h. This mixture was poured into iced water (50 ml) and was acidified (pH = 3) with 3 N HCl solution to give a precipitate. After filtration, the crude solid was recrystallized from ethanol solution to form crystals in the form of yellow blocks suitable for X-ray diffraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H22N2O3
Mr 410.45
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 223
a, b, c (Å) 9.342 (3), 10.524 (3), 11.967 (4)
α, β, γ (°) 73.831 (10), 79.643 (11), 72.648 (10)
V3) 1072.6 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.26 × 0.22 × 0.07
 
Data collection
Diffractometer PHOTON III M14
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.706, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39655, 5269, 4173
Rint 0.044
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.04
No. of reflections 5269
No. of parameters 282
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

(E)-1-(3,4-Dimethoxyphenyl)-3-(1,3-diphenyl-1H-pyrazol-4-yl)prop-2-en-1-one top
Crystal data top
C26H22N2O3Z = 2
Mr = 410.45F(000) = 432
Triclinic, P1Dx = 1.271 Mg m3
a = 9.342 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.524 (3) ÅCell parameters from 9940 reflections
c = 11.967 (4) Åθ = 2.3–28.2°
α = 73.831 (10)°µ = 0.08 mm1
β = 79.643 (11)°T = 223 K
γ = 72.648 (10)°BLOCK, yellow
V = 1072.6 (6) Å30.26 × 0.22 × 0.07 mm
Data collection top
PHOTON III M14
diffractometer
4173 reflections with I > 2σ(I)
φ and ω scansRint = 0.044
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.3°, θmin = 2.1°
Tmin = 0.706, Tmax = 0.746h = 1212
39655 measured reflectionsk = 1313
5269 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.3885P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5269 reflectionsΔρmax = 0.24 e Å3
282 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.62809 (17)0.71283 (14)0.49957 (12)0.0323 (3)
C20.67643 (16)0.84296 (13)0.47121 (12)0.0289 (3)
C30.70448 (15)0.90841 (13)0.35225 (11)0.0278 (3)
H30.69080.87110.29340.033*
C40.75205 (14)1.02730 (13)0.32222 (11)0.0256 (3)
C50.77516 (16)1.08293 (13)0.41023 (12)0.0289 (3)
C60.74834 (19)1.01806 (16)0.52704 (13)0.0380 (3)
H60.76401.05400.58610.046*
C70.69805 (18)0.89929 (15)0.55667 (12)0.0367 (3)
H70.67850.85680.63600.044*
C80.55681 (16)0.66700 (14)0.61955 (12)0.0305 (3)
H80.51850.73060.66630.037*
C90.54487 (16)0.53814 (14)0.66390 (12)0.0299 (3)
H90.58660.47480.61720.036*
C100.7475 (2)1.05899 (18)0.11652 (13)0.0506 (5)
H10A0.80650.96580.11720.076*
H10B0.77191.11960.04270.076*
H10C0.64101.06320.12600.076*
C110.8254 (2)1.27120 (18)0.45672 (15)0.0502 (4)
H11A0.73161.28000.50780.075*
H11B0.83861.36160.41780.075*
H11C0.90891.21940.50260.075*
C120.47133 (15)0.49005 (13)0.77989 (12)0.0276 (3)
C130.35511 (16)0.56706 (13)0.84202 (12)0.0301 (3)
H130.31030.66160.81810.036*
C140.49721 (15)0.35452 (13)0.85328 (11)0.0254 (3)
C150.19811 (15)0.51457 (13)1.03298 (12)0.0274 (3)
C160.07757 (16)0.62931 (14)1.00652 (13)0.0336 (3)
H160.07560.68740.93090.040*
C170.04030 (17)0.65744 (16)1.09308 (15)0.0397 (4)
H170.12190.73511.07550.048*
C180.03903 (19)0.57258 (17)1.20473 (15)0.0439 (4)
H180.11960.59151.26250.053*
C190.08327 (19)0.45892 (18)1.23016 (14)0.0440 (4)
H190.08550.40141.30600.053*
C200.20220 (17)0.42922 (15)1.14506 (13)0.0356 (3)
H200.28450.35231.16310.043*
C210.61238 (15)0.22895 (13)0.83440 (11)0.0257 (3)
C220.75946 (16)0.23372 (14)0.78641 (12)0.0324 (3)
H220.78390.31840.76130.039*
C230.86940 (17)0.11392 (16)0.77567 (14)0.0389 (3)
H230.96790.11810.74360.047*
C240.83513 (18)0.01186 (15)0.81191 (13)0.0395 (4)
H240.91010.09250.80460.047*
C250.68948 (18)0.01789 (14)0.85903 (13)0.0371 (3)
H250.66570.10280.88370.045*
C260.57853 (16)0.10188 (13)0.86983 (12)0.0310 (3)
H260.48000.09720.90120.037*
N10.31718 (13)0.48180 (11)0.94375 (10)0.0276 (2)
N20.40423 (12)0.34957 (11)0.95287 (10)0.0271 (2)
O10.64801 (16)0.64685 (12)0.42551 (10)0.0540 (3)
O20.78144 (12)1.10062 (9)0.21009 (8)0.0311 (2)
O30.82098 (12)1.20091 (10)0.37080 (9)0.0362 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0405 (8)0.0263 (7)0.0269 (7)0.0117 (6)0.0029 (6)0.0019 (5)
C20.0330 (7)0.0244 (6)0.0253 (6)0.0089 (5)0.0017 (5)0.0012 (5)
C30.0329 (7)0.0256 (6)0.0234 (6)0.0089 (5)0.0005 (5)0.0047 (5)
C40.0267 (6)0.0222 (6)0.0222 (6)0.0045 (5)0.0012 (5)0.0006 (5)
C50.0325 (7)0.0257 (6)0.0277 (7)0.0102 (5)0.0007 (5)0.0037 (5)
C60.0557 (10)0.0390 (8)0.0243 (7)0.0222 (7)0.0021 (6)0.0063 (6)
C70.0525 (9)0.0354 (8)0.0216 (6)0.0198 (7)0.0000 (6)0.0008 (6)
C80.0355 (7)0.0252 (6)0.0269 (7)0.0091 (5)0.0039 (6)0.0033 (5)
C90.0336 (7)0.0251 (6)0.0269 (7)0.0071 (5)0.0020 (5)0.0035 (5)
C100.0866 (14)0.0502 (10)0.0237 (7)0.0381 (10)0.0088 (8)0.0007 (7)
C110.0754 (13)0.0474 (10)0.0415 (9)0.0368 (9)0.0012 (8)0.0146 (8)
C120.0328 (7)0.0203 (6)0.0266 (6)0.0085 (5)0.0000 (5)0.0014 (5)
C130.0361 (7)0.0208 (6)0.0289 (7)0.0081 (5)0.0008 (6)0.0009 (5)
C140.0275 (6)0.0222 (6)0.0253 (6)0.0090 (5)0.0008 (5)0.0020 (5)
C150.0290 (7)0.0255 (6)0.0285 (7)0.0102 (5)0.0020 (5)0.0076 (5)
C160.0343 (8)0.0278 (7)0.0371 (8)0.0071 (6)0.0020 (6)0.0073 (6)
C170.0315 (8)0.0339 (8)0.0538 (10)0.0054 (6)0.0012 (7)0.0180 (7)
C180.0381 (8)0.0480 (9)0.0481 (9)0.0162 (7)0.0150 (7)0.0226 (8)
C190.0468 (9)0.0492 (9)0.0315 (8)0.0161 (8)0.0083 (7)0.0064 (7)
C200.0360 (8)0.0334 (7)0.0314 (7)0.0068 (6)0.0016 (6)0.0040 (6)
C210.0298 (7)0.0237 (6)0.0208 (6)0.0063 (5)0.0023 (5)0.0020 (5)
C220.0322 (7)0.0310 (7)0.0313 (7)0.0098 (6)0.0012 (6)0.0030 (6)
C230.0297 (7)0.0439 (9)0.0357 (8)0.0026 (6)0.0002 (6)0.0075 (7)
C240.0425 (9)0.0327 (8)0.0347 (8)0.0061 (6)0.0071 (7)0.0096 (6)
C250.0512 (9)0.0237 (7)0.0338 (8)0.0071 (6)0.0055 (7)0.0050 (6)
C260.0344 (7)0.0268 (7)0.0304 (7)0.0100 (6)0.0013 (6)0.0039 (5)
N10.0308 (6)0.0202 (5)0.0271 (6)0.0055 (4)0.0004 (5)0.0019 (4)
N20.0288 (6)0.0197 (5)0.0279 (6)0.0051 (4)0.0008 (4)0.0020 (4)
O10.0929 (10)0.0427 (6)0.0342 (6)0.0384 (7)0.0159 (6)0.0134 (5)
O20.0460 (6)0.0264 (5)0.0203 (4)0.0153 (4)0.0013 (4)0.0004 (4)
O30.0517 (6)0.0316 (5)0.0299 (5)0.0223 (5)0.0001 (5)0.0050 (4)
Geometric parameters (Å, º) top
C1—O11.2283 (18)C13—N11.3560 (17)
C1—C81.4832 (19)C13—H130.9400
C1—C21.4998 (19)C14—N21.3408 (17)
C2—C71.386 (2)C14—C211.4784 (18)
C2—C31.4133 (18)C15—C161.390 (2)
C3—C41.3842 (18)C15—C201.391 (2)
C3—H30.9400C15—N11.4302 (17)
C4—O21.3743 (15)C16—C171.393 (2)
C4—C51.4139 (19)C16—H160.9400
C5—O31.3659 (16)C17—C181.385 (2)
C5—C61.3884 (19)C17—H170.9400
C6—C71.397 (2)C18—C191.391 (2)
C6—H60.9400C18—H180.9400
C7—H70.9400C19—C201.390 (2)
C8—C91.3422 (18)C19—H190.9400
C8—H80.9400C20—H200.9400
C9—C121.4588 (19)C21—C261.3988 (18)
C9—H90.9400C21—C221.4005 (19)
C10—O21.4249 (19)C22—C231.390 (2)
C10—H10A0.9700C22—H220.9400
C10—H10B0.9700C23—C241.388 (2)
C10—H10C0.9700C23—H230.9400
C11—O31.4363 (19)C24—C251.389 (2)
C11—H11A0.9700C24—H240.9400
C11—H11B0.9700C25—C261.394 (2)
C11—H11C0.9700C25—H250.9400
C12—C131.3817 (19)C26—H260.9400
C12—C141.4274 (17)N1—N21.3719 (15)
O1—C1—C8121.61 (13)N2—C14—C12111.62 (11)
O1—C1—C2120.66 (12)N2—C14—C21119.59 (11)
C8—C1—C2117.73 (12)C12—C14—C21128.73 (12)
C7—C2—C3118.98 (12)C16—C15—C20120.49 (13)
C7—C2—C1122.70 (12)C16—C15—N1119.88 (12)
C3—C2—C1118.31 (12)C20—C15—N1119.61 (12)
C4—C3—C2120.18 (12)C15—C16—C17119.35 (14)
C4—C3—H3119.9C15—C16—H16120.3
C2—C3—H3119.9C17—C16—H16120.3
O2—C4—C3125.50 (12)C18—C17—C16120.93 (14)
O2—C4—C5114.22 (11)C18—C17—H17119.5
C3—C4—C5120.28 (12)C16—C17—H17119.5
O3—C5—C6125.18 (13)C17—C18—C19119.00 (14)
O3—C5—C4115.36 (11)C17—C18—H18120.5
C6—C5—C4119.45 (12)C19—C18—H18120.5
C5—C6—C7119.92 (14)C20—C19—C18120.95 (15)
C5—C6—H6120.0C20—C19—H19119.5
C7—C6—H6120.0C18—C19—H19119.5
C2—C7—C6121.18 (13)C19—C20—C15119.26 (14)
C2—C7—H7119.4C19—C20—H20120.4
C6—C7—H7119.4C15—C20—H20120.4
C9—C8—C1122.51 (13)C26—C21—C22118.70 (12)
C9—C8—H8118.7C26—C21—C14120.51 (12)
C1—C8—H8118.7C22—C21—C14120.71 (12)
C8—C9—C12124.25 (13)C23—C22—C21120.31 (13)
C8—C9—H9117.9C23—C22—H22119.8
C12—C9—H9117.9C21—C22—H22119.8
O2—C10—H10A109.5C24—C23—C22120.61 (14)
O2—C10—H10B109.5C24—C23—H23119.7
H10A—C10—H10B109.5C22—C23—H23119.7
O2—C10—H10C109.5C23—C24—C25119.64 (13)
H10A—C10—H10C109.5C23—C24—H24120.2
H10B—C10—H10C109.5C25—C24—H24120.2
O3—C11—H11A109.5C24—C25—C26120.07 (14)
O3—C11—H11B109.5C24—C25—H25120.0
H11A—C11—H11B109.5C26—C25—H25120.0
O3—C11—H11C109.5C25—C26—C21120.66 (14)
H11A—C11—H11C109.5C25—C26—H26119.7
H11B—C11—H11C109.5C21—C26—H26119.7
C13—C12—C14104.13 (11)C13—N1—N2111.93 (11)
C13—C12—C9126.94 (12)C13—N1—C15127.64 (11)
C14—C12—C9128.89 (12)N2—N1—C15120.36 (10)
N1—C13—C12107.76 (12)C14—N2—N1104.55 (10)
N1—C13—H13126.1C4—O2—C10117.79 (11)
C12—C13—H13126.1C5—O3—C11117.12 (11)
O1—C1—C2—C7160.59 (16)C16—C17—C18—C190.8 (2)
C8—C1—C2—C719.1 (2)C17—C18—C19—C200.7 (3)
O1—C1—C2—C317.8 (2)C18—C19—C20—C150.1 (2)
C8—C1—C2—C3162.53 (13)C16—C15—C20—C190.8 (2)
C7—C2—C3—C40.3 (2)N1—C15—C20—C19177.60 (14)
C1—C2—C3—C4178.78 (12)N2—C14—C21—C2639.32 (19)
C2—C3—C4—O2179.35 (12)C12—C14—C21—C26143.64 (14)
C2—C3—C4—C51.0 (2)N2—C14—C21—C22137.32 (14)
O2—C4—C5—O30.76 (17)C12—C14—C21—C2239.7 (2)
C3—C4—C5—O3179.53 (12)C26—C21—C22—C230.7 (2)
O2—C4—C5—C6179.67 (13)C14—C21—C22—C23176.01 (13)
C3—C4—C5—C60.6 (2)C21—C22—C23—C240.2 (2)
O3—C5—C6—C7178.41 (14)C22—C23—C24—C250.2 (2)
C4—C5—C6—C70.4 (2)C23—C24—C25—C260.0 (2)
C3—C2—C7—C60.7 (2)C24—C25—C26—C210.5 (2)
C1—C2—C7—C6177.69 (14)C22—C21—C26—C250.8 (2)
C5—C6—C7—C21.1 (2)C14—C21—C26—C25175.86 (13)
O1—C1—C8—C917.3 (2)C12—C13—N1—N20.22 (16)
C2—C1—C8—C9162.38 (14)C12—C13—N1—C15176.70 (13)
C1—C8—C9—C12177.91 (13)C16—C15—N1—C1321.0 (2)
C8—C9—C12—C1328.4 (2)C20—C15—N1—C13160.54 (14)
C8—C9—C12—C14154.16 (15)C16—C15—N1—N2155.67 (12)
C14—C12—C13—N10.05 (15)C20—C15—N1—N222.77 (19)
C9—C12—C13—N1178.01 (13)C12—C14—N2—N10.43 (15)
C13—C12—C14—N20.31 (16)C21—C14—N2—N1177.95 (11)
C9—C12—C14—N2178.22 (13)C13—N1—N2—C140.40 (15)
C13—C12—C14—C21177.54 (13)C15—N1—N2—C14176.77 (12)
C9—C12—C14—C214.5 (2)C3—C4—O2—C106.1 (2)
C20—C15—C16—C170.7 (2)C5—C4—O2—C10174.22 (14)
N1—C15—C16—C17177.73 (13)C6—C5—O3—C117.3 (2)
C15—C16—C17—C180.2 (2)C4—C5—O3—C11171.50 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.942.343.2648 (19)169
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by a Dongduk Women's University grant.

References

First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBrullo, C., Rapetti, F. & Bruno, O. (2020). Molecules, 25, 3457.  Web of Science CrossRef PubMed Google Scholar
First citationEbenezer, O., Shapi, M. & Tuszynski, J. (2022). Biomedicines, 10, 1124.  Web of Science CrossRef PubMed Google Scholar
First citationElkanzi, N. A. A., Hrichi, H., Alolayan, R. A., Derafa, W., Zahou, F. M. & Bakr, R. B. (2022). ACS Omega, 7, 27769–27786.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivaramakarthikeyan, R., Iniyaval, S., Saravanan, V., Lim, W.-M., Mai, C.-W. & Ramalingan, C. (2020). ACS Omega, 5, 10089–10098.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSung, J. (2019). IUCrData, 4, x191281.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146