organic compounds
(1R,2S,4aR,6S,8R,8aS)-1-(3-Hydroxypropanoyl)-1,3,6,8-tetramethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylic acid
aDepartment of Paraclinical Sciences, Faculty of Veterinary Science, Onderstepoort, University of Pretoria, Pretoria, South Africa, and bDepartment of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
*Correspondence e-mail: frikkie.malan@up.ac.za
This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.
The molecular structure of C18H28O4, (+)-diplodiatoxin, is described, whereby the of the structure of diplodiatoxin has been confirmed by single-crystal X-ray diffraction. Diplodiatoxin crystallizes in the chiral P43212 with one molecule in the asymmetric unit.
Keywords: crystal structure; diplodiatoxin; absolute configuration.
CCDC reference: 2383086
Structure description
Stenocarpella maydis, an important phytopathogen of maize, is the cause of diplodiosis, a neuromuscular disease of ruminants (Masango et al., 2015). Diplodiatoxin, a major metabolite isolated from S. maydis-infected maize cultures, contains a β-ketol side chain and a rare β,γ-unsaturated acid unit (Steyn et al., 1972). Studies in ducklings (Rabie et al., 1985) and rats (Rahman et al., 2002) have confirmed that it induces and liver degeneration as well as various other toxic effects, including decreased body weight, tremors and convulsions. The cytotoxicity of three S. maydis metabolites (diplodiatoxin, dipmatol and diplonine) was investigated on Neuro-2a, CHO-K1 and MDBK cell lines (Masango et al., 2014). Diplodiatoxin was the most cytotoxic metabolite and results obtained indicated that diplodiatoxin exerted its toxicity possibly via the necrotic cell death pathway.
The molecular structure of the title compound is shown in Fig. 1. The compound crystallizes in the chiral P43212 with Z = 8 and Z′ = 1. The molecule belongs to the class of phytotoxins featuring two fused six-membered carbocyclic rings and a β-ketol side chain. The relative stereochemistry of the previously determined of (+)-diplodiatoxin at room temperature (CSD refcode DIPLOD; Kruger et al., 1977) corresponds to the stereochemistry observed in this structure. However, a different was observed in DIPLOD (P41212) with unit-cell parameters [a = 7.400 (3), b = 7.400 (3), c = 65.110 (4), volume = 3565.424 Å3] that differ notably due to unit-cell contraction with the corresponding parameters from this structure [a = 7.3410 (1), b = 7.3410 (1), c = 64.8549 (13), volume = 3495.05 (10) Å3]. In addition, the paper of H. D. Flack that reports the use of the for the first time was only published in 1983 (Flack, 1983), and therefore there existed no direct or convenient way for (chirality) determination of a structure using crystallographic methods alone. The South Africa-based research groups originally studying diplodiatoxin made use of 1H NMR methods and extensive comparisons against closely related reference compounds of which the stereochemistry was known to propose the stereochemistry of diplodiatoxin. However, in terms of the determination using X-ray techniques, either of the enantiomorphous space groups P41212 (DIPLOD) and P43212 (this work) are plausible space groups as both exhibit the same However, since a single enantiomer of a chiral compound can only crystallize in one of the enantiomorphous space groups, and coupled with a of −0.02 (7), the proposal is made that the correct is indeed P43212.
In this structure, a positional disorder of half of a chair-conformation six-membered ring has been observed, that leads to a more `relaxed' chair conformation. This disorder has been modelled accordingly using free variables that refined to a 0.49:0.51 ratio (Fig. 2). All relevant bond lengths and angles observed in this structure correspond to those of DIPLOD, i.e. the carbonyl bond lengths of the COOH and COCH2 functional groups are observed to be 1.208 (3) and 1.222 (3) Å, respectively. The C—OH bond distances in CH2OH and COOH were found to be 1.429 (3) Å and 1.335 (3) Å, respectively. The presence of the alkene bond was also confirmed with a C=C bond length of 1.321 (4) Å (1.326 Å in DIPLOD). The supramolecular structure resulting from intermolecular hydrogen bond interactions reveals corrugated layers of diplodiatoxin molecules with each molecule linked to four different diplodiatoxin molecules via two strong O—H⋯O bonds of O1—H1⋯O2 (Fig. 3; Table 1).
Synthesis and crystallization
Diplodiatoxin was isolated, purified and characterized as previously described (Botha et al., 2020). Colourless single crystals suitable for X-ray diffraction was obtained by recrystallization using ethyl acetate as solvent (slow evaporation).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2383086
https://doi.org/10.1107/S241431462400885X/bv4052sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462400885X/bv4052Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S241431462400885X/bv4052Isup3.cdx
Supporting information file. DOI: https://doi.org/10.1107/S241431462400885X/bv4052Isup4.cml
C18H28O4 | Dx = 1.172 Mg m−3 |
Mr = 308.40 | Cu Kα radiation, λ = 1.54184 Å |
Tetragonal, P43212 | Cell parameters from 13711 reflections |
a = 7.3410 (1) Å | θ = 2.7–78.5° |
c = 64.8549 (13) Å | µ = 0.65 mm−1 |
V = 3495.05 (12) Å3 | T = 150 K |
Z = 8 | Plate, colourless |
F(000) = 1344 | 0.23 × 0.21 × 0.06 mm |
XtaLAB Synergy R, DW system, HyPix diffractometer | 3437 independent reflections |
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source | 3350 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.041 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 72.1°, θmin = 2.7° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −8→9 |
Tmin = 0.530, Tmax = 1.000 | l = −80→80 |
23874 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.044 | w = 1/[σ2(Fo2) + (0.0224P)2 + 1.8437P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.097 | (Δ/σ)max = 0.001 |
S = 1.13 | Δρmax = 0.14 e Å−3 |
3437 reflections | Δρmin = −0.17 e Å−3 |
243 parameters | Absolute structure: Flack x determined using 1195 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: −0.02 (7) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The structure was solved by direct methods with the SHELXTS-2016 program, refined using the SHELXL2016 algorithm, all using the OLEX2 interface. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms. The highest calculated residual electron density is 0.10 e.Å-3 at 1.07 Å from C16, which is insignificant in this case. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C15 | 0.4129 (4) | 0.9084 (3) | 0.34201 (4) | 0.0332 (5) | |
C14 | 0.2579 (3) | 0.4534 (4) | 0.31694 (4) | 0.0350 (6) | |
H14A | 0.1772 | 0.4962 | 0.3059 | 0.053* | |
H14B | 0.1852 | 0.4234 | 0.3292 | 0.053* | |
H14C | 0.3234 | 0.3446 | 0.3123 | 0.053* | |
C13 | 0.5014 (3) | 0.6691 (4) | 0.30311 (4) | 0.0343 (6) | |
H13 | 0.5875 | 0.7661 | 0.3078 | 0.041* | |
C8 | 0.3723 (4) | 0.7573 (5) | 0.28718 (4) | 0.0468 (8) | |
H8A | 0.3235 | 0.6632 | 0.2775 | 0.056* | 0.494 (10) |
H8B | 0.3082 | 0.6503 | 0.2810 | 0.056* | 0.506 (10) |
C7 | 0.2209 (4) | 0.8661 (4) | 0.29625 (4) | 0.0446 (7) | |
H7 | 0.1513 | 0.9392 | 0.2871 | 0.054* | |
C6 | 0.1752 (4) | 0.8697 (4) | 0.31595 (4) | 0.0372 (6) | |
C5 | 0.2884 (3) | 0.7690 (3) | 0.33183 (4) | 0.0298 (5) | |
H5 | 0.2038 | 0.7207 | 0.3426 | 0.036* | |
O4 | 0.5103 (3) | 1.0133 (3) | 0.33280 (3) | 0.0434 (5) | |
C4 | 0.3950 (3) | 0.6032 (3) | 0.32235 (3) | 0.0271 (5) | |
O3 | 0.3983 (3) | 0.9074 (3) | 0.36252 (2) | 0.0382 (4) | |
H3 | 0.4571 | 0.9954 | 0.3674 | 0.057* | |
C3 | 0.5263 (3) | 0.5462 (3) | 0.33960 (3) | 0.0260 (5) | |
C18 | 0.7363 (4) | 0.3999 (5) | 0.30382 (4) | 0.0468 (7) | |
H18A | 0.8232 | 0.4724 | 0.3118 | 0.070* | |
H18B | 0.8028 | 0.3185 | 0.2945 | 0.070* | |
H18C | 0.6608 | 0.3275 | 0.3132 | 0.070* | |
C16 | 0.0178 (4) | 0.9783 (4) | 0.32428 (5) | 0.0506 (8) | |
H16A | −0.0328 | 1.0548 | 0.3133 | 0.076* | |
H16B | 0.0602 | 1.0558 | 0.3356 | 0.076* | |
H16C | −0.0765 | 0.8952 | 0.3294 | 0.076* | |
O2 | 0.6696 (2) | 0.6285 (2) | 0.34185 (2) | 0.0344 (4) | |
C2 | 0.4710 (3) | 0.3998 (3) | 0.35434 (3) | 0.0295 (5) | |
H2A | 0.4303 | 0.2921 | 0.3464 | 0.035* | |
H2B | 0.3661 | 0.4435 | 0.3626 | 0.035* | |
O1 | 0.5583 (2) | 0.1903 (2) | 0.38058 (2) | 0.0304 (4) | |
H1 | 0.6375 | 0.1612 | 0.3893 | 0.046* | |
C1 | 0.6215 (3) | 0.3425 (4) | 0.36885 (4) | 0.0323 (5) | |
H1A | 0.7315 | 0.3083 | 0.3609 | 0.039* | |
H1B | 0.6534 | 0.4445 | 0.3782 | 0.039* | |
C12 | 0.6150 (4) | 0.5266 (5) | 0.29124 (4) | 0.0446 (7) | |
H12 | 0.5335 | 0.4532 | 0.2821 | 0.054* | 0.494 (10) |
H12A | 0.5228 | 0.4445 | 0.2847 | 0.054* | 0.506 (10) |
C9A | 0.4987 (12) | 0.9074 (14) | 0.27458 (14) | 0.042 (2) | 0.494 (10) |
H9AA | 0.4225 | 0.9794 | 0.2650 | 0.051* | 0.494 (10) |
H9AB | 0.5584 | 0.9919 | 0.2844 | 0.051* | 0.494 (10) |
C10A | 0.6394 (9) | 0.7995 (13) | 0.26283 (10) | 0.0426 (19) | 0.494 (10) |
H10A | 0.5750 | 0.7265 | 0.2521 | 0.051* | 0.494 (10) |
C11A | 0.7432 (14) | 0.6671 (14) | 0.27687 (17) | 0.040 (2) | 0.494 (10) |
H11A | 0.8215 | 0.7393 | 0.2862 | 0.048* | 0.494 (10) |
H11B | 0.8246 | 0.5920 | 0.2681 | 0.048* | 0.494 (10) |
C17A | 0.7749 (10) | 0.9272 (11) | 0.25190 (12) | 0.058 (2) | 0.494 (10) |
H17A | 0.7085 | 1.0082 | 0.2425 | 0.087* | 0.494 (10) |
H17B | 0.8625 | 0.8545 | 0.2440 | 0.087* | 0.494 (10) |
H17C | 0.8400 | 1.0000 | 0.2622 | 0.087* | 0.494 (10) |
C9B | 0.4775 (13) | 0.8310 (12) | 0.26980 (13) | 0.0384 (19) | 0.506 (10) |
H9BA | 0.5492 | 0.9359 | 0.2749 | 0.046* | 0.506 (10) |
H9BB | 0.3902 | 0.8787 | 0.2595 | 0.046* | 0.506 (10) |
C10B | 0.6078 (9) | 0.7018 (11) | 0.25875 (9) | 0.0357 (15) | 0.506 (10) |
H10B | 0.5316 | 0.6119 | 0.2510 | 0.043* | 0.506 (10) |
C11B | 0.7214 (13) | 0.5943 (13) | 0.27430 (16) | 0.0360 (19) | 0.506 (10) |
H11C | 0.7799 | 0.4904 | 0.2672 | 0.043* | 0.506 (10) |
H11D | 0.8192 | 0.6739 | 0.2797 | 0.043* | 0.506 (10) |
C17B | 0.7255 (9) | 0.8015 (11) | 0.24295 (10) | 0.053 (2) | 0.506 (10) |
H17D | 0.6476 | 0.8761 | 0.2340 | 0.079* | 0.506 (10) |
H17E | 0.7916 | 0.7124 | 0.2345 | 0.079* | 0.506 (10) |
H17F | 0.8128 | 0.8800 | 0.2501 | 0.079* | 0.506 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C15 | 0.0350 (14) | 0.0275 (12) | 0.0369 (12) | 0.0021 (10) | 0.0031 (11) | 0.0020 (10) |
C14 | 0.0293 (13) | 0.0416 (15) | 0.0342 (12) | −0.0039 (11) | −0.0065 (10) | −0.0013 (11) |
C13 | 0.0253 (13) | 0.0513 (16) | 0.0263 (11) | 0.0011 (11) | −0.0011 (10) | 0.0081 (11) |
C8 | 0.0271 (14) | 0.080 (2) | 0.0329 (13) | 0.0079 (14) | 0.0001 (11) | 0.0196 (14) |
C7 | 0.0273 (14) | 0.061 (2) | 0.0454 (15) | 0.0040 (13) | −0.0018 (12) | 0.0273 (14) |
C6 | 0.0277 (13) | 0.0373 (15) | 0.0466 (14) | 0.0001 (11) | −0.0003 (11) | 0.0141 (12) |
C5 | 0.0281 (12) | 0.0295 (13) | 0.0318 (11) | −0.0005 (10) | 0.0031 (10) | 0.0053 (10) |
O4 | 0.0506 (12) | 0.0335 (10) | 0.0461 (10) | −0.0104 (9) | 0.0129 (9) | 0.0014 (8) |
C4 | 0.0250 (11) | 0.0307 (12) | 0.0255 (10) | −0.0010 (10) | −0.0023 (9) | 0.0028 (9) |
O3 | 0.0428 (11) | 0.0368 (10) | 0.0349 (8) | −0.0075 (8) | 0.0019 (8) | −0.0019 (8) |
C3 | 0.0250 (12) | 0.0271 (12) | 0.0260 (10) | 0.0024 (9) | −0.0013 (9) | −0.0024 (9) |
C18 | 0.0399 (16) | 0.0577 (19) | 0.0429 (15) | 0.0137 (14) | 0.0068 (12) | −0.0039 (14) |
C16 | 0.0451 (17) | 0.0456 (17) | 0.0612 (17) | 0.0154 (14) | 0.0062 (14) | 0.0178 (14) |
O2 | 0.0322 (10) | 0.0385 (10) | 0.0326 (8) | −0.0072 (8) | −0.0088 (7) | 0.0060 (7) |
C2 | 0.0280 (12) | 0.0284 (12) | 0.0322 (11) | 0.0021 (10) | −0.0022 (10) | 0.0041 (10) |
O1 | 0.0325 (9) | 0.0288 (9) | 0.0300 (8) | −0.0001 (7) | −0.0063 (7) | 0.0067 (7) |
C1 | 0.0320 (13) | 0.0335 (13) | 0.0315 (11) | −0.0016 (10) | −0.0024 (10) | 0.0057 (10) |
C12 | 0.0329 (14) | 0.072 (2) | 0.0293 (12) | 0.0094 (14) | 0.0001 (11) | −0.0018 (13) |
C9A | 0.027 (3) | 0.060 (6) | 0.039 (4) | 0.002 (4) | 0.006 (3) | 0.023 (4) |
C10A | 0.042 (4) | 0.055 (5) | 0.030 (3) | −0.003 (3) | 0.003 (3) | 0.007 (3) |
C11A | 0.034 (4) | 0.048 (6) | 0.037 (4) | 0.000 (4) | 0.015 (3) | 0.004 (4) |
C17A | 0.058 (5) | 0.060 (5) | 0.056 (4) | 0.001 (4) | 0.024 (3) | 0.021 (4) |
C9B | 0.043 (4) | 0.040 (5) | 0.033 (3) | 0.001 (4) | −0.003 (3) | 0.009 (3) |
C10B | 0.037 (3) | 0.040 (4) | 0.029 (3) | 0.001 (3) | 0.005 (2) | 0.003 (3) |
C11B | 0.028 (4) | 0.041 (5) | 0.038 (4) | 0.003 (4) | 0.002 (3) | 0.001 (4) |
C17B | 0.049 (4) | 0.064 (5) | 0.045 (3) | −0.001 (3) | 0.010 (3) | 0.014 (3) |
C15—C5 | 1.523 (4) | C2—H2A | 0.9900 |
C15—O4 | 1.208 (3) | C2—H2B | 0.9900 |
C15—O3 | 1.335 (3) | C2—C1 | 1.511 (3) |
C14—H14A | 0.9800 | O1—H1 | 0.8400 |
C14—H14B | 0.9800 | O1—C1 | 1.429 (3) |
C14—H14C | 0.9800 | C1—H1A | 0.9900 |
C14—C4 | 1.532 (3) | C1—H1B | 0.9900 |
C13—H13 | 1.0000 | C12—H12 | 1.0000 |
C13—C8 | 1.544 (3) | C12—H12A | 1.0000 |
C13—C4 | 1.550 (3) | C12—C11A | 1.679 (11) |
C13—C12 | 1.543 (4) | C12—C11B | 1.437 (11) |
C8—H8A | 1.0000 | C9A—H9AA | 0.9900 |
C8—H8B | 1.0000 | C9A—H9AB | 0.9900 |
C8—C7 | 1.490 (4) | C9A—C10A | 1.509 (11) |
C8—C9A | 1.656 (9) | C10A—H10A | 1.0000 |
C8—C9B | 1.469 (9) | C10A—C11A | 1.534 (13) |
C7—H7 | 0.9500 | C10A—C17A | 1.539 (9) |
C7—C6 | 1.321 (4) | C11A—H11A | 0.9900 |
C6—C5 | 1.516 (3) | C11A—H11B | 0.9900 |
C6—C16 | 1.504 (4) | C17A—H17A | 0.9800 |
C5—H5 | 1.0000 | C17A—H17B | 0.9800 |
C5—C4 | 1.573 (3) | C17A—H17C | 0.9800 |
C4—C3 | 1.535 (3) | C9B—H9BA | 0.9900 |
O3—H3 | 0.8400 | C9B—H9BB | 0.9900 |
C3—O2 | 1.222 (3) | C9B—C10B | 1.526 (10) |
C3—C2 | 1.494 (3) | C10B—H10B | 1.0000 |
C18—H18A | 0.9800 | C10B—C11B | 1.528 (12) |
C18—H18B | 0.9800 | C10B—C17B | 1.527 (8) |
C18—H18C | 0.9800 | C11B—H11C | 0.9900 |
C18—C12 | 1.524 (4) | C11B—H11D | 0.9900 |
C16—H16A | 0.9800 | C17B—H17D | 0.9800 |
C16—H16B | 0.9800 | C17B—H17E | 0.9800 |
C16—H16C | 0.9800 | C17B—H17F | 0.9800 |
O4—C15—C5 | 124.7 (2) | C1—O1—H1 | 109.5 |
O4—C15—O3 | 122.9 (2) | C2—C1—H1A | 110.1 |
O3—C15—C5 | 112.3 (2) | C2—C1—H1B | 110.1 |
H14A—C14—H14B | 109.5 | O1—C1—C2 | 108.16 (19) |
H14A—C14—H14C | 109.5 | O1—C1—H1A | 110.1 |
H14B—C14—H14C | 109.5 | O1—C1—H1B | 110.1 |
C4—C14—H14A | 109.5 | H1A—C1—H1B | 108.4 |
C4—C14—H14B | 109.5 | C13—C12—H12 | 109.7 |
C4—C14—H14C | 109.5 | C13—C12—H12A | 104.7 |
C8—C13—H13 | 107.1 | C13—C12—C11A | 99.4 (4) |
C8—C13—C4 | 111.1 (2) | C18—C12—C13 | 117.5 (2) |
C4—C13—H13 | 107.1 | C18—C12—H12 | 109.7 |
C12—C13—H13 | 107.1 | C18—C12—H12A | 104.7 |
C12—C13—C8 | 106.4 (2) | C18—C12—C11A | 110.1 (4) |
C12—C13—C4 | 117.5 (2) | C11A—C12—H12 | 109.7 |
C13—C8—H8A | 110.5 | C11B—C12—C13 | 116.1 (5) |
C13—C8—H8B | 103.2 | C11B—C12—C18 | 107.6 (5) |
C13—C8—C9A | 105.4 (4) | C11B—C12—H12A | 104.7 |
C7—C8—C13 | 114.7 (2) | C8—C9A—H9AA | 110.4 |
C7—C8—H8A | 110.5 | C8—C9A—H9AB | 110.4 |
C7—C8—H8B | 103.2 | H9AA—C9A—H9AB | 108.6 |
C7—C8—C9A | 104.8 (4) | C10A—C9A—C8 | 106.5 (6) |
C9A—C8—H8A | 110.5 | C10A—C9A—H9AA | 110.4 |
C9B—C8—C13 | 110.2 (4) | C10A—C9A—H9AB | 110.4 |
C9B—C8—H8B | 103.2 | C9A—C10A—H10A | 108.1 |
C9B—C8—C7 | 119.8 (4) | C9A—C10A—C11A | 111.9 (6) |
C8—C7—H7 | 117.2 | C9A—C10A—C17A | 110.8 (6) |
C6—C7—C8 | 125.6 (2) | C11A—C10A—H10A | 108.1 |
C6—C7—H7 | 117.2 | C11A—C10A—C17A | 109.8 (6) |
C7—C6—C5 | 120.5 (2) | C17A—C10A—H10A | 108.1 |
C7—C6—C16 | 123.6 (2) | C12—C11A—H11A | 108.3 |
C16—C6—C5 | 115.8 (2) | C12—C11A—H11B | 108.3 |
C15—C5—H5 | 107.9 | C10A—C11A—C12 | 116.1 (7) |
C15—C5—C4 | 113.0 (2) | C10A—C11A—H11A | 108.3 |
C6—C5—C15 | 107.2 (2) | C10A—C11A—H11B | 108.3 |
C6—C5—H5 | 107.9 | H11A—C11A—H11B | 107.4 |
C6—C5—C4 | 112.6 (2) | C10A—C17A—H17A | 109.5 |
C4—C5—H5 | 107.9 | C10A—C17A—H17B | 109.5 |
C14—C4—C13 | 111.80 (19) | C10A—C17A—H17C | 109.5 |
C14—C4—C5 | 108.56 (19) | H17A—C17A—H17B | 109.5 |
C14—C4—C3 | 112.6 (2) | H17A—C17A—H17C | 109.5 |
C13—C4—C5 | 108.91 (19) | H17B—C17A—H17C | 109.5 |
C3—C4—C13 | 110.81 (19) | C8—C9B—H9BA | 107.9 |
C3—C4—C5 | 103.80 (17) | C8—C9B—H9BB | 107.9 |
C15—O3—H3 | 109.5 | C8—C9B—C10B | 117.4 (6) |
O2—C3—C4 | 119.5 (2) | H9BA—C9B—H9BB | 107.2 |
O2—C3—C2 | 120.9 (2) | C10B—C9B—H9BA | 107.9 |
C2—C3—C4 | 119.5 (2) | C10B—C9B—H9BB | 107.9 |
H18A—C18—H18B | 109.5 | C9B—C10B—H10B | 107.2 |
H18A—C18—H18C | 109.5 | C9B—C10B—C11B | 110.7 (6) |
H18B—C18—H18C | 109.5 | C9B—C10B—C17B | 111.8 (6) |
C12—C18—H18A | 109.5 | C11B—C10B—H10B | 107.2 |
C12—C18—H18B | 109.5 | C17B—C10B—H10B | 107.2 |
C12—C18—H18C | 109.5 | C17B—C10B—C11B | 112.4 (6) |
C6—C16—H16A | 109.5 | C12—C11B—C10B | 112.7 (7) |
C6—C16—H16B | 109.5 | C12—C11B—H11C | 109.0 |
C6—C16—H16C | 109.5 | C12—C11B—H11D | 109.0 |
H16A—C16—H16B | 109.5 | C10B—C11B—H11C | 109.0 |
H16A—C16—H16C | 109.5 | C10B—C11B—H11D | 109.0 |
H16B—C16—H16C | 109.5 | H11C—C11B—H11D | 107.8 |
C3—C2—H2A | 108.9 | C10B—C17B—H17D | 109.5 |
C3—C2—H2B | 108.9 | C10B—C17B—H17E | 109.5 |
C3—C2—C1 | 113.6 (2) | C10B—C17B—H17F | 109.5 |
H2A—C2—H2B | 107.7 | H17D—C17B—H17E | 109.5 |
C1—C2—H2A | 108.9 | H17D—C17B—H17F | 109.5 |
C1—C2—H2B | 108.9 | H17E—C17B—H17F | 109.5 |
C15—C5—C4—C14 | 167.55 (19) | O4—C15—C5—C6 | −51.3 (3) |
C15—C5—C4—C13 | −70.5 (2) | O4—C15—C5—C4 | 73.4 (3) |
C15—C5—C4—C3 | 47.6 (2) | C4—C13—C8—C7 | 37.0 (4) |
C14—C4—C3—O2 | 160.9 (2) | C4—C13—C8—C9A | 151.7 (4) |
C14—C4—C3—C2 | −23.5 (3) | C4—C13—C8—C9B | 175.8 (4) |
C13—C8—C7—C6 | −10.5 (5) | C4—C13—C12—C18 | −46.6 (4) |
C13—C8—C9A—C10A | 65.9 (6) | C4—C13—C12—C11A | −165.3 (4) |
C13—C8—C9B—C10B | 54.0 (7) | C4—C13—C12—C11B | −176.1 (5) |
C13—C4—C3—O2 | 34.8 (3) | C4—C3—C2—C1 | 173.2 (2) |
C13—C4—C3—C2 | −149.6 (2) | O3—C15—C5—C6 | 126.3 (2) |
C13—C12—C11A—C10A | −57.7 (7) | O3—C15—C5—C4 | −109.0 (2) |
C13—C12—C11B—C10B | −54.1 (7) | C3—C2—C1—O1 | −174.03 (19) |
C8—C13—C4—C14 | 63.3 (3) | C18—C12—C11A—C10A | 178.3 (6) |
C8—C13—C4—C5 | −56.7 (3) | C18—C12—C11B—C10B | 171.8 (5) |
C8—C13—C4—C3 | −170.3 (2) | C16—C6—C5—C15 | −78.0 (3) |
C8—C13—C12—C18 | −171.8 (3) | C16—C6—C5—C4 | 157.1 (2) |
C8—C13—C12—C11A | 69.5 (5) | O2—C3—C2—C1 | −11.3 (3) |
C8—C13—C12—C11B | 58.7 (5) | C12—C13—C8—C7 | 166.0 (3) |
C8—C7—C6—C5 | 4.9 (5) | C12—C13—C8—C9A | −79.3 (5) |
C8—C7—C6—C16 | −178.4 (3) | C12—C13—C8—C9B | −55.2 (5) |
C8—C9A—C10A—C11A | −52.5 (8) | C12—C13—C4—C14 | −59.5 (3) |
C8—C9A—C10A—C17A | −175.4 (5) | C12—C13—C4—C5 | −179.5 (2) |
C8—C9B—C10B—C11B | −46.5 (9) | C12—C13—C4—C3 | 66.9 (3) |
C8—C9B—C10B—C17B | −172.6 (6) | C9A—C8—C7—C6 | −125.6 (5) |
C7—C8—C9A—C10A | −172.7 (5) | C9A—C8—C9B—C10B | 136 (2) |
C7—C8—C9B—C10B | −169.6 (5) | C9A—C10A—C11A—C12 | 52.6 (9) |
C7—C6—C5—C15 | 99.0 (3) | C11A—C12—C11B—C10B | −88 (2) |
C7—C6—C5—C4 | −25.8 (4) | C17A—C10A—C11A—C12 | 176.0 (6) |
C6—C5—C4—C14 | −70.8 (2) | C9B—C8—C7—C6 | −145.1 (5) |
C6—C5—C4—C13 | 51.2 (3) | C9B—C8—C9A—C10A | −39.5 (13) |
C6—C5—C4—C3 | 169.3 (2) | C9B—C10B—C11B—C12 | 44.0 (8) |
C5—C4—C3—O2 | −81.9 (3) | C11B—C12—C11A—C10A | 92 (2) |
C5—C4—C3—C2 | 93.6 (2) | C17B—C10B—C11B—C12 | 169.8 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O1i | 1.00 | 2.60 | 3.571 (3) | 163 |
O3—H3···O1ii | 0.84 | 1.82 | 2.658 (2) | 172 |
C2—H2A···O4iii | 0.99 | 2.30 | 3.176 (3) | 146 |
C2—H2B···O3iv | 0.99 | 2.54 | 3.460 (3) | 155 |
O1—H1···O2v | 0.84 | 1.89 | 2.719 (2) | 172 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/4; (ii) x, y+1, z; (iii) x, y−1, z; (iv) −x+1/2, y−1/2, −z+3/4; (v) −x+3/2, y−1/2, −z+3/4. |
Acknowledgements
The authors would like to thank Professor Bradley Flett, Grain Crops Institute (ARC-GCI), for the culture material, and the late Dr Louis Ackerman for extraction, isolation and purification of diplodiatoxin.
Funding information
This work was supported by the Maize Trust of South Africa (Project No. MTM 15–10).
References
Botha, C. J., Ackerman, L. G. J., Masango, M. G. & Arnot, L. F. (2020). Onderstepoort J. Vet. Res. 87, a1712. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kruger, G. J., Weeks, C. M. & Hazel, J. P. (1977). Cryst. Struct. Comm. 6, 193–196. Google Scholar
Masango, M. G., Ferreira, G. C. H., Ellis, C. E., Elgorashi, E. E. & Botha, C. J. (2014). Toxicon, 82, 26–29. PubMed Google Scholar
Masango, M. G., Flett, B. C., Ellis, C. E. & Botha, C. J. (2015). World Mycotoxin J. 8, 341–350. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rabie, C. J., Kellerman, T. S., Kriek, N. P. J., van der Westhuizen, G. C. A. & de Wet, P. J. (1985). Fd Chem. Toxic. 23, 349–353. Google Scholar
Rahman, M. F., Rao, S. K. & Achar, P. N. (2002). Ecotoxicol. Environ. Saf. 52, 267–272. PubMed Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Steyn, P. S., Wessels, P. L., Holzapfel, C. W., Potgieter, D. J. J. & Louw, W. K. A. (1972). Tetrahedron, 28, 4775–4785. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.