organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(1R,2S,4aR,6S,8R,8aS)-1-(3-Hy­dr­oxy­propano­yl)-1,3,6,8-tetra­methyl-1,2,4a,5,6,7,8,8a-octa­hydro­naphthalene-2-carb­­oxy­lic acid

crossmark logo

aDepartment of Paraclinical Sciences, Faculty of Veterinary Science, Onderstepoort, University of Pretoria, Pretoria, South Africa, and bDepartment of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
*Correspondence e-mail: frikkie.malan@up.ac.za

Edited by R. J. Butcher, Howard University, USA (Received 15 May 2024; accepted 10 September 2024; online 17 September 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The mol­ecular structure of C18H28O4, (+)-diplodiatoxin, is described, whereby the absolute configuration of the structure of diplodiatoxin has been confirmed by single-crystal X-ray diffraction. Diplodiatoxin crystallizes in the chiral P43212 space group with one mol­ecule in the asymmetric unit.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Stenocarpella maydis, an important phytopathogen of maize, is the cause of diplodiosis, a neuromuscular disease of ruminants (Masango et al., 2015[Masango, M. G., Flett, B. C., Ellis, C. E. & Botha, C. J. (2015). World Mycotoxin J. 8, 341-350.]). Diplodiatoxin, a major metabolite isolated from S. maydis-infected maize cultures, contains a β-ketol side chain and a rare β,γ-unsaturated acid unit (Steyn et al., 1972[Steyn, P. S., Wessels, P. L., Holzapfel, C. W., Potgieter, D. J. J. & Louw, W. K. A. (1972). Tetrahedron, 28, 4775-4785.]). Studies in ducklings (Rabie et al., 1985[Rabie, C. J., Kellerman, T. S., Kriek, N. P. J., van der Westhuizen, G. C. A. & de Wet, P. J. (1985). Fd Chem. Toxic. 23, 349-353.]) and rats (Rahman et al., 2002[Rahman, M. F., Rao, S. K. & Achar, P. N. (2002). Ecotoxicol. Environ. Saf. 52, 267-272.]) have confirmed that it induces acute toxicity and liver degeneration as well as various other toxic effects, including decreased body weight, tremors and convulsions. The cytotoxicity of three S. maydis metabolites (diplodiatoxin, dipmatol and diplonine) was investigated on Neuro-2a, CHO-K1 and MDBK cell lines (Masango et al., 2014[Masango, M. G., Ferreira, G. C. H., Ellis, C. E., Elgorashi, E. E. & Botha, C. J. (2014). Toxicon, 82, 26-29.]). Diplodiatoxin was the most cytotoxic metabolite and results obtained indicated that diplodiatoxin exerted its toxicity possibly via the necrotic cell death pathway.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The compound crystallizes in the chiral P43212 space group with Z = 8 and Z′ = 1. The mol­ecule belongs to the class of phytotoxins featuring two fused six-membered carbocyclic rings and a β-ketol side chain. The relative stereochemistry of the previously determined crystal structure of (+)-diplodiatoxin at room temperature (CSD refcode DIPLOD; Kruger et al., 1977[Kruger, G. J., Weeks, C. M. & Hazel, J. P. (1977). Cryst. Struct. Comm. 6, 193-196.]) corresponds to the stereochemistry observed in this structure. However, a different space group was observed in DIPLOD (P41212) with unit-cell parameters [a = 7.400 (3), b = 7.400 (3), c = 65.110 (4), volume = 3565.424 Å3] that differ notably due to unit-cell contraction with the corresponding parameters from this structure [a = 7.3410 (1), b = 7.3410 (1), c = 64.8549 (13), volume = 3495.05 (10) Å3]. In addition, the paper of H. D. Flack that reports the use of the Flack parameter for the first time was only published in 1983 (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), and therefore there existed no direct or convenient way for absolute configuration (chirality) determination of a structure using crystallographic methods alone. The South Africa-based research groups originally studying diplodiatoxin made use of 1H NMR methods and extensive comparisons against closely related reference compounds of which the stereochemistry was known to propose the stereochemistry of diplodiatoxin. However, in terms of the absolute configuration determination using X-ray techniques, either of the enanti­omorphous space groups P41212 (DIPLOD) and P43212 (this work) are plausible space groups as both exhibit the same systematic absences. However, since a single enanti­omer of a chiral compound can only crystallize in one of the enanti­omorphous space groups, and coupled with a Flack parameter of −0.02 (7), the proposal is made that the correct space group is indeed P43212.

[Figure 1]
Figure 1
Perspective view of the mol­ecular structure of the title compound showing displacement ellipsoids at the 50% probability level. Only one disorder component is shown.

In this structure, a positional disorder of half of a chair-conformation six-membered ring has been observed, that leads to a more `relaxed' chair conformation. This disorder has been modelled accordingly using free variables that refined to a 0.49:0.51 ratio (Fig. 2[link]). All relevant bond lengths and angles observed in this structure correspond to those of DIPLOD, i.e. the carbonyl bond lengths of the COOH and COCH2 functional groups are observed to be 1.208 (3) and 1.222 (3) Å, respectively. The C—OH bond distances in CH2OH and COOH were found to be 1.429 (3) Å and 1.335 (3) Å, respectively. The presence of the alkene bond was also confirmed with a C=C bond length of 1.321 (4) Å (1.326 Å in DIPLOD). The supramolecular structure resulting from inter­molecular hydrogen bond inter­actions reveals corrugated layers of diplodiatoxin mol­ecules with each mol­ecule linked to four different diplodiatoxin mol­ecules via two strong O—H⋯O bonds of O1—H1⋯O2 (Fig. 3[link]; Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 1.00 2.60 3.571 (3) 163
O3—H3⋯O1ii 0.84 1.82 2.658 (2) 172
C2—H2A⋯O4iii 0.99 2.30 3.176 (3) 146
C2—H2B⋯O3iv 0.99 2.54 3.460 (3) 155
O1—H1⋯O2v 0.84 1.89 2.719 (2) 172
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 4}}]; (ii) [x, y+1, z]; (iii) [x, y-1, z]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 4}}]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 4}}].
[Figure 2]
Figure 2
Perspective view of diplodiatoxin indicating the modelled disorder. Displacement ellipsoids are displayed at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 3]
Figure 3
Packing diagram viewed along the a axis, indicating hydrogen bonds by cyan lines.

Synthesis and crystallization

Diplodiatoxin was isolated, purified and characterized as previously described (Botha et al., 2020[Botha, C. J., Ackerman, L. G. J., Masango, M. G. & Arnot, L. F. (2020). Onderstepoort J. Vet. Res. 87, a1712.]). Colourless single crystals suitable for X-ray diffraction was obtained by recrystallization using ethyl acetate as solvent (slow evaporation).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C18H28O4
Mr 308.40
Crystal system, space group Tetragonal, P43212
Temperature (K) 150
a, c (Å) 7.3410 (1), 64.8549 (13)
V3) 3495.05 (12)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.65
Crystal size (mm) 0.23 × 0.21 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.530, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23874, 3437, 3350
Rint 0.041
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.097, 1.13
No. of reflections 3437
No. of parameters 243
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.14, −0.17
Absolute structure Flack x determined using 1195 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

(1R,2S,4aR,6S,8R,8aS)-1-(3-Hydroxypropanoyl)-1,3,6,8-tetramethyl-1,2,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylic acid top
Crystal data top
C18H28O4Dx = 1.172 Mg m3
Mr = 308.40Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P43212Cell parameters from 13711 reflections
a = 7.3410 (1) Åθ = 2.7–78.5°
c = 64.8549 (13) ŵ = 0.65 mm1
V = 3495.05 (12) Å3T = 150 K
Z = 8Plate, colourless
F(000) = 13440.23 × 0.21 × 0.06 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
3437 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source3350 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.0000 pixels mm-1θmax = 72.1°, θmin = 2.7°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 89
Tmin = 0.530, Tmax = 1.000l = 8080
23874 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0224P)2 + 1.8437P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max = 0.001
S = 1.13Δρmax = 0.14 e Å3
3437 reflectionsΔρmin = 0.17 e Å3
243 parametersAbsolute structure: Flack x determined using 1195 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.02 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The structure was solved by direct methods with the SHELXTS-2016 program, refined using the SHELXL2016 algorithm, all using the OLEX2 interface. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms. The highest calculated residual electron density is 0.10 e.Å-3 at 1.07 Å from C16, which is insignificant in this case.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C150.4129 (4)0.9084 (3)0.34201 (4)0.0332 (5)
C140.2579 (3)0.4534 (4)0.31694 (4)0.0350 (6)
H14A0.17720.49620.30590.053*
H14B0.18520.42340.32920.053*
H14C0.32340.34460.31230.053*
C130.5014 (3)0.6691 (4)0.30311 (4)0.0343 (6)
H130.58750.76610.30780.041*
C80.3723 (4)0.7573 (5)0.28718 (4)0.0468 (8)
H8A0.32350.66320.27750.056*0.494 (10)
H8B0.30820.65030.28100.056*0.506 (10)
C70.2209 (4)0.8661 (4)0.29625 (4)0.0446 (7)
H70.15130.93920.28710.054*
C60.1752 (4)0.8697 (4)0.31595 (4)0.0372 (6)
C50.2884 (3)0.7690 (3)0.33183 (4)0.0298 (5)
H50.20380.72070.34260.036*
O40.5103 (3)1.0133 (3)0.33280 (3)0.0434 (5)
C40.3950 (3)0.6032 (3)0.32235 (3)0.0271 (5)
O30.3983 (3)0.9074 (3)0.36252 (2)0.0382 (4)
H30.45710.99540.36740.057*
C30.5263 (3)0.5462 (3)0.33960 (3)0.0260 (5)
C180.7363 (4)0.3999 (5)0.30382 (4)0.0468 (7)
H18A0.82320.47240.31180.070*
H18B0.80280.31850.29450.070*
H18C0.66080.32750.31320.070*
C160.0178 (4)0.9783 (4)0.32428 (5)0.0506 (8)
H16A0.03281.05480.31330.076*
H16B0.06021.05580.33560.076*
H16C0.07650.89520.32940.076*
O20.6696 (2)0.6285 (2)0.34185 (2)0.0344 (4)
C20.4710 (3)0.3998 (3)0.35434 (3)0.0295 (5)
H2A0.43030.29210.34640.035*
H2B0.36610.44350.36260.035*
O10.5583 (2)0.1903 (2)0.38058 (2)0.0304 (4)
H10.63750.16120.38930.046*
C10.6215 (3)0.3425 (4)0.36885 (4)0.0323 (5)
H1A0.73150.30830.36090.039*
H1B0.65340.44450.37820.039*
C120.6150 (4)0.5266 (5)0.29124 (4)0.0446 (7)
H120.53350.45320.28210.054*0.494 (10)
H12A0.52280.44450.28470.054*0.506 (10)
C9A0.4987 (12)0.9074 (14)0.27458 (14)0.042 (2)0.494 (10)
H9AA0.42250.97940.26500.051*0.494 (10)
H9AB0.55840.99190.28440.051*0.494 (10)
C10A0.6394 (9)0.7995 (13)0.26283 (10)0.0426 (19)0.494 (10)
H10A0.57500.72650.25210.051*0.494 (10)
C11A0.7432 (14)0.6671 (14)0.27687 (17)0.040 (2)0.494 (10)
H11A0.82150.73930.28620.048*0.494 (10)
H11B0.82460.59200.26810.048*0.494 (10)
C17A0.7749 (10)0.9272 (11)0.25190 (12)0.058 (2)0.494 (10)
H17A0.70851.00820.24250.087*0.494 (10)
H17B0.86250.85450.24400.087*0.494 (10)
H17C0.84001.00000.26220.087*0.494 (10)
C9B0.4775 (13)0.8310 (12)0.26980 (13)0.0384 (19)0.506 (10)
H9BA0.54920.93590.27490.046*0.506 (10)
H9BB0.39020.87870.25950.046*0.506 (10)
C10B0.6078 (9)0.7018 (11)0.25875 (9)0.0357 (15)0.506 (10)
H10B0.53160.61190.25100.043*0.506 (10)
C11B0.7214 (13)0.5943 (13)0.27430 (16)0.0360 (19)0.506 (10)
H11C0.77990.49040.26720.043*0.506 (10)
H11D0.81920.67390.27970.043*0.506 (10)
C17B0.7255 (9)0.8015 (11)0.24295 (10)0.053 (2)0.506 (10)
H17D0.64760.87610.23400.079*0.506 (10)
H17E0.79160.71240.23450.079*0.506 (10)
H17F0.81280.88000.25010.079*0.506 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C150.0350 (14)0.0275 (12)0.0369 (12)0.0021 (10)0.0031 (11)0.0020 (10)
C140.0293 (13)0.0416 (15)0.0342 (12)0.0039 (11)0.0065 (10)0.0013 (11)
C130.0253 (13)0.0513 (16)0.0263 (11)0.0011 (11)0.0011 (10)0.0081 (11)
C80.0271 (14)0.080 (2)0.0329 (13)0.0079 (14)0.0001 (11)0.0196 (14)
C70.0273 (14)0.061 (2)0.0454 (15)0.0040 (13)0.0018 (12)0.0273 (14)
C60.0277 (13)0.0373 (15)0.0466 (14)0.0001 (11)0.0003 (11)0.0141 (12)
C50.0281 (12)0.0295 (13)0.0318 (11)0.0005 (10)0.0031 (10)0.0053 (10)
O40.0506 (12)0.0335 (10)0.0461 (10)0.0104 (9)0.0129 (9)0.0014 (8)
C40.0250 (11)0.0307 (12)0.0255 (10)0.0010 (10)0.0023 (9)0.0028 (9)
O30.0428 (11)0.0368 (10)0.0349 (8)0.0075 (8)0.0019 (8)0.0019 (8)
C30.0250 (12)0.0271 (12)0.0260 (10)0.0024 (9)0.0013 (9)0.0024 (9)
C180.0399 (16)0.0577 (19)0.0429 (15)0.0137 (14)0.0068 (12)0.0039 (14)
C160.0451 (17)0.0456 (17)0.0612 (17)0.0154 (14)0.0062 (14)0.0178 (14)
O20.0322 (10)0.0385 (10)0.0326 (8)0.0072 (8)0.0088 (7)0.0060 (7)
C20.0280 (12)0.0284 (12)0.0322 (11)0.0021 (10)0.0022 (10)0.0041 (10)
O10.0325 (9)0.0288 (9)0.0300 (8)0.0001 (7)0.0063 (7)0.0067 (7)
C10.0320 (13)0.0335 (13)0.0315 (11)0.0016 (10)0.0024 (10)0.0057 (10)
C120.0329 (14)0.072 (2)0.0293 (12)0.0094 (14)0.0001 (11)0.0018 (13)
C9A0.027 (3)0.060 (6)0.039 (4)0.002 (4)0.006 (3)0.023 (4)
C10A0.042 (4)0.055 (5)0.030 (3)0.003 (3)0.003 (3)0.007 (3)
C11A0.034 (4)0.048 (6)0.037 (4)0.000 (4)0.015 (3)0.004 (4)
C17A0.058 (5)0.060 (5)0.056 (4)0.001 (4)0.024 (3)0.021 (4)
C9B0.043 (4)0.040 (5)0.033 (3)0.001 (4)0.003 (3)0.009 (3)
C10B0.037 (3)0.040 (4)0.029 (3)0.001 (3)0.005 (2)0.003 (3)
C11B0.028 (4)0.041 (5)0.038 (4)0.003 (4)0.002 (3)0.001 (4)
C17B0.049 (4)0.064 (5)0.045 (3)0.001 (3)0.010 (3)0.014 (3)
Geometric parameters (Å, º) top
C15—C51.523 (4)C2—H2A0.9900
C15—O41.208 (3)C2—H2B0.9900
C15—O31.335 (3)C2—C11.511 (3)
C14—H14A0.9800O1—H10.8400
C14—H14B0.9800O1—C11.429 (3)
C14—H14C0.9800C1—H1A0.9900
C14—C41.532 (3)C1—H1B0.9900
C13—H131.0000C12—H121.0000
C13—C81.544 (3)C12—H12A1.0000
C13—C41.550 (3)C12—C11A1.679 (11)
C13—C121.543 (4)C12—C11B1.437 (11)
C8—H8A1.0000C9A—H9AA0.9900
C8—H8B1.0000C9A—H9AB0.9900
C8—C71.490 (4)C9A—C10A1.509 (11)
C8—C9A1.656 (9)C10A—H10A1.0000
C8—C9B1.469 (9)C10A—C11A1.534 (13)
C7—H70.9500C10A—C17A1.539 (9)
C7—C61.321 (4)C11A—H11A0.9900
C6—C51.516 (3)C11A—H11B0.9900
C6—C161.504 (4)C17A—H17A0.9800
C5—H51.0000C17A—H17B0.9800
C5—C41.573 (3)C17A—H17C0.9800
C4—C31.535 (3)C9B—H9BA0.9900
O3—H30.8400C9B—H9BB0.9900
C3—O21.222 (3)C9B—C10B1.526 (10)
C3—C21.494 (3)C10B—H10B1.0000
C18—H18A0.9800C10B—C11B1.528 (12)
C18—H18B0.9800C10B—C17B1.527 (8)
C18—H18C0.9800C11B—H11C0.9900
C18—C121.524 (4)C11B—H11D0.9900
C16—H16A0.9800C17B—H17D0.9800
C16—H16B0.9800C17B—H17E0.9800
C16—H16C0.9800C17B—H17F0.9800
O4—C15—C5124.7 (2)C1—O1—H1109.5
O4—C15—O3122.9 (2)C2—C1—H1A110.1
O3—C15—C5112.3 (2)C2—C1—H1B110.1
H14A—C14—H14B109.5O1—C1—C2108.16 (19)
H14A—C14—H14C109.5O1—C1—H1A110.1
H14B—C14—H14C109.5O1—C1—H1B110.1
C4—C14—H14A109.5H1A—C1—H1B108.4
C4—C14—H14B109.5C13—C12—H12109.7
C4—C14—H14C109.5C13—C12—H12A104.7
C8—C13—H13107.1C13—C12—C11A99.4 (4)
C8—C13—C4111.1 (2)C18—C12—C13117.5 (2)
C4—C13—H13107.1C18—C12—H12109.7
C12—C13—H13107.1C18—C12—H12A104.7
C12—C13—C8106.4 (2)C18—C12—C11A110.1 (4)
C12—C13—C4117.5 (2)C11A—C12—H12109.7
C13—C8—H8A110.5C11B—C12—C13116.1 (5)
C13—C8—H8B103.2C11B—C12—C18107.6 (5)
C13—C8—C9A105.4 (4)C11B—C12—H12A104.7
C7—C8—C13114.7 (2)C8—C9A—H9AA110.4
C7—C8—H8A110.5C8—C9A—H9AB110.4
C7—C8—H8B103.2H9AA—C9A—H9AB108.6
C7—C8—C9A104.8 (4)C10A—C9A—C8106.5 (6)
C9A—C8—H8A110.5C10A—C9A—H9AA110.4
C9B—C8—C13110.2 (4)C10A—C9A—H9AB110.4
C9B—C8—H8B103.2C9A—C10A—H10A108.1
C9B—C8—C7119.8 (4)C9A—C10A—C11A111.9 (6)
C8—C7—H7117.2C9A—C10A—C17A110.8 (6)
C6—C7—C8125.6 (2)C11A—C10A—H10A108.1
C6—C7—H7117.2C11A—C10A—C17A109.8 (6)
C7—C6—C5120.5 (2)C17A—C10A—H10A108.1
C7—C6—C16123.6 (2)C12—C11A—H11A108.3
C16—C6—C5115.8 (2)C12—C11A—H11B108.3
C15—C5—H5107.9C10A—C11A—C12116.1 (7)
C15—C5—C4113.0 (2)C10A—C11A—H11A108.3
C6—C5—C15107.2 (2)C10A—C11A—H11B108.3
C6—C5—H5107.9H11A—C11A—H11B107.4
C6—C5—C4112.6 (2)C10A—C17A—H17A109.5
C4—C5—H5107.9C10A—C17A—H17B109.5
C14—C4—C13111.80 (19)C10A—C17A—H17C109.5
C14—C4—C5108.56 (19)H17A—C17A—H17B109.5
C14—C4—C3112.6 (2)H17A—C17A—H17C109.5
C13—C4—C5108.91 (19)H17B—C17A—H17C109.5
C3—C4—C13110.81 (19)C8—C9B—H9BA107.9
C3—C4—C5103.80 (17)C8—C9B—H9BB107.9
C15—O3—H3109.5C8—C9B—C10B117.4 (6)
O2—C3—C4119.5 (2)H9BA—C9B—H9BB107.2
O2—C3—C2120.9 (2)C10B—C9B—H9BA107.9
C2—C3—C4119.5 (2)C10B—C9B—H9BB107.9
H18A—C18—H18B109.5C9B—C10B—H10B107.2
H18A—C18—H18C109.5C9B—C10B—C11B110.7 (6)
H18B—C18—H18C109.5C9B—C10B—C17B111.8 (6)
C12—C18—H18A109.5C11B—C10B—H10B107.2
C12—C18—H18B109.5C17B—C10B—H10B107.2
C12—C18—H18C109.5C17B—C10B—C11B112.4 (6)
C6—C16—H16A109.5C12—C11B—C10B112.7 (7)
C6—C16—H16B109.5C12—C11B—H11C109.0
C6—C16—H16C109.5C12—C11B—H11D109.0
H16A—C16—H16B109.5C10B—C11B—H11C109.0
H16A—C16—H16C109.5C10B—C11B—H11D109.0
H16B—C16—H16C109.5H11C—C11B—H11D107.8
C3—C2—H2A108.9C10B—C17B—H17D109.5
C3—C2—H2B108.9C10B—C17B—H17E109.5
C3—C2—C1113.6 (2)C10B—C17B—H17F109.5
H2A—C2—H2B107.7H17D—C17B—H17E109.5
C1—C2—H2A108.9H17D—C17B—H17F109.5
C1—C2—H2B108.9H17E—C17B—H17F109.5
C15—C5—C4—C14167.55 (19)O4—C15—C5—C651.3 (3)
C15—C5—C4—C1370.5 (2)O4—C15—C5—C473.4 (3)
C15—C5—C4—C347.6 (2)C4—C13—C8—C737.0 (4)
C14—C4—C3—O2160.9 (2)C4—C13—C8—C9A151.7 (4)
C14—C4—C3—C223.5 (3)C4—C13—C8—C9B175.8 (4)
C13—C8—C7—C610.5 (5)C4—C13—C12—C1846.6 (4)
C13—C8—C9A—C10A65.9 (6)C4—C13—C12—C11A165.3 (4)
C13—C8—C9B—C10B54.0 (7)C4—C13—C12—C11B176.1 (5)
C13—C4—C3—O234.8 (3)C4—C3—C2—C1173.2 (2)
C13—C4—C3—C2149.6 (2)O3—C15—C5—C6126.3 (2)
C13—C12—C11A—C10A57.7 (7)O3—C15—C5—C4109.0 (2)
C13—C12—C11B—C10B54.1 (7)C3—C2—C1—O1174.03 (19)
C8—C13—C4—C1463.3 (3)C18—C12—C11A—C10A178.3 (6)
C8—C13—C4—C556.7 (3)C18—C12—C11B—C10B171.8 (5)
C8—C13—C4—C3170.3 (2)C16—C6—C5—C1578.0 (3)
C8—C13—C12—C18171.8 (3)C16—C6—C5—C4157.1 (2)
C8—C13—C12—C11A69.5 (5)O2—C3—C2—C111.3 (3)
C8—C13—C12—C11B58.7 (5)C12—C13—C8—C7166.0 (3)
C8—C7—C6—C54.9 (5)C12—C13—C8—C9A79.3 (5)
C8—C7—C6—C16178.4 (3)C12—C13—C8—C9B55.2 (5)
C8—C9A—C10A—C11A52.5 (8)C12—C13—C4—C1459.5 (3)
C8—C9A—C10A—C17A175.4 (5)C12—C13—C4—C5179.5 (2)
C8—C9B—C10B—C11B46.5 (9)C12—C13—C4—C366.9 (3)
C8—C9B—C10B—C17B172.6 (6)C9A—C8—C7—C6125.6 (5)
C7—C8—C9A—C10A172.7 (5)C9A—C8—C9B—C10B136 (2)
C7—C8—C9B—C10B169.6 (5)C9A—C10A—C11A—C1252.6 (9)
C7—C6—C5—C1599.0 (3)C11A—C12—C11B—C10B88 (2)
C7—C6—C5—C425.8 (4)C17A—C10A—C11A—C12176.0 (6)
C6—C5—C4—C1470.8 (2)C9B—C8—C7—C6145.1 (5)
C6—C5—C4—C1351.2 (3)C9B—C8—C9A—C10A39.5 (13)
C6—C5—C4—C3169.3 (2)C9B—C10B—C11B—C1244.0 (8)
C5—C4—C3—O281.9 (3)C11B—C12—C11A—C10A92 (2)
C5—C4—C3—C293.6 (2)C17B—C10B—C11B—C12169.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i1.002.603.571 (3)163
O3—H3···O1ii0.841.822.658 (2)172
C2—H2A···O4iii0.992.303.176 (3)146
C2—H2B···O3iv0.992.543.460 (3)155
O1—H1···O2v0.841.892.719 (2)172
Symmetry codes: (i) x+1/2, y+1/2, z+3/4; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1/2, y1/2, z+3/4; (v) x+3/2, y1/2, z+3/4.
 

Acknowledgements

The authors would like to thank Professor Bradley Flett, Grain Crops Institute (ARC-GCI), for the culture material, and the late Dr Louis Ackerman for extraction, isolation and purification of diplodiatoxin.

Funding information

This work was supported by the Maize Trust of South Africa (Project No. MTM 15–10).

References

First citationBotha, C. J., Ackerman, L. G. J., Masango, M. G. & Arnot, L. F. (2020). Onderstepoort J. Vet. Res. 87, a1712.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKruger, G. J., Weeks, C. M. & Hazel, J. P. (1977). Cryst. Struct. Comm. 6, 193–196.  Google Scholar
First citationMasango, M. G., Ferreira, G. C. H., Ellis, C. E., Elgorashi, E. E. & Botha, C. J. (2014). Toxicon, 82, 26–29.  PubMed Google Scholar
First citationMasango, M. G., Flett, B. C., Ellis, C. E. & Botha, C. J. (2015). World Mycotoxin J. 8, 341–350.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRabie, C. J., Kellerman, T. S., Kriek, N. P. J., van der Westhuizen, G. C. A. & de Wet, P. J. (1985). Fd Chem. Toxic. 23, 349–353.  Google Scholar
First citationRahman, M. F., Rao, S. K. & Achar, P. N. (2002). Ecotoxicol. Environ. Saf. 52, 267–272.  PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteyn, P. S., Wessels, P. L., Holzapfel, C. W., Potgieter, D. J. J. & Louw, W. K. A. (1972). Tetrahedron, 28, 4775–4785.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146