metal-organic compounds
catena-Poly[[(8-aminoquinoline)cobalt(II)]-di-μ-azido]
aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA, and dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen
*Correspondence e-mail: fatima.setifi@univ-setif.dz, geiger@geneseo.edu
The title coordination polymer, [Co(N3)2(C9H8N2)]n, was synthesized solvothermally. The CoII atom exhibits a distorted octahedral [CoN6] coordination geometry with a bidentate 8-aminoquinoline ligand and four azide ligands. Bridging azide ligands result in chains extending along [100]. N—H⋯N hydrogen bonds join the chains to give an extended structure with sheets parallel to (002).
Keywords: crystal structure; cobalt(II); 8-aminoquinoline (8-aquin); azide anion.
CCDC reference: 2380120
Structure description
Pseudohalide and polynitrile compounds derived from transition-metal ions are of great interest from the perspective of their magnetic properties, rich molecular architectures and for their topologies (Atmani et al., 2008; Benmansour et al., 2008, 2010, 2012; Addala et al., 2015; Setifi et al., 2018, 2019; Dmitrienko et al., 2020; Yuste et al., 2009; Merabet et al., 2022).
One of the pseudohalide ligands that has received much attention in the last decade is the azide [N3−] ion, partly due to its ability to produce a wide variety of coordination compounds with different nuclearities ranging from simple mononuclear to polynuclear species. Different bonding modes are observed with the azide ion, which result in the formation of one-, two- and three-dimensional polymeric assemblies (Escuer et al., 2006).
As a part of our continuing study of the structural and magnetic properties of transition-metal complexes containing both azide and polypyridyl units (Setifi, Ghazzali et al., 2016; Setifi, Knaust et al., 2016; Setifi, Moon et al., 2016; Benamara et al., 2021; Merabet et al., 2023; Setifi, Setifi et al., 2022, 2023), we report herein the crystal and molecular structure of a one-dimensional coordination polymer, (I), based on 8-aminoquinoline (8-aquin) as co-ligand and the azide anion as ligand with two different coordination modes.
The II ion, a bidentate 8-aquin ligand and two azide ligands. The distorted octahedral coordination sphere is completed by two additional azide ligands. One of the azide anions binds to two Co centers in a 1,3 bidentate mode, whereas the other one connects two Co centers in a 1,1 bidentate mode. The resulting coordination geometry and supramolecular association is shown in Fig. 1. Pertinent Co—N bond lengths are exhibited in Table 1.
of (I) is composed of a Co
|
The bridging ligands result in polymeric chains extending parallel to [100], as shown in Fig. 2. The chains are composed of CoII ions joined by alternating bis μ-(1,1-N3) units and bis μ-(1,3-N3) units with corresponding Co⋯Co separations of 3.2817 (5) and 5.2427 (7) Å, respectively. The angle between the (N3)2 mean plane of the double end-to-end azide bridges and the plane defined by the CoII and the bonded Nazide atom is 20.20 (14)°, corresponding to a flattened chair configuration for the eight-membered ring. For a flat bridge, an angle of 0° would be observed. This angle compares to values of 8.2 (2) and 25.6 (1)° for the structurally similarly bridged polymorphic FeII complexes with a 5,5′-dimethyl-2,2′-bipyridine ligand (Setifi, Bernès et al., 2022). In the 8-acquin complexes of MnII and CoII, the comparable angles are 20.3 (6)° and 25.5 (4)°, respectively (Benamara et al., 2021).
N—H⋯N hydrogen-bonding interactions are observed in the extended structure (Table 2, Fig. 3). Within individual chains, R22(8) hydrogen-bonded rings are observed (Fig. 4). The polymeric chains are joined by hydrogen-bonding bridges involving the 8-amino substituent on the quinoline ligands and the terminal nitrogen atom of the μ-(1,1-azide) ligands of adjacent chains, resulting in sheets parallel to (002) containing N—H⋯N hydrogen-bond-derived R22(12) interchain rings, as seen in Figs. 3 and 5.
Synthesis and crystallization
The title compound was prepared solvothermally under autogenous pressure from a mixture of cobalt(II) sulfate heptahydrate (28 mg, 0.1 mmol), 8-aminoquinoline (14 mg, 0.1 mmol) and sodium azide (13 mg, 0.2 mmol) in a mixture of water and ethanol (3:1 v/v, 20 ml). This mixture was sealed in a Teflon-lined autoclave and held at 393 K for 2 days, and then cooled to ambient temperature at a rate of 10 K h−1 to give the product (yield 38%).
Refinement
Crystal data, data collection and .
details are summarized in Table 3Structural data
CCDC reference: 2380120
https://doi.org/10.1107/S2414314624008496/bt4154sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624008496/bt4154Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624008496/bt4154Isup3.mol
[Co(N3)2(C9H8N2)] | Z = 2 |
Mr = 287.16 | F(000) = 290 |
Triclinic, P1 | Dx = 1.687 Mg m−3 |
a = 7.3526 (10) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.3354 (13) Å | Cell parameters from 4847 reflections |
c = 10.4053 (17) Å | θ = 4.2–32.3° |
α = 97.221 (6)° | µ = 1.51 mm−1 |
β = 102.413 (6)° | T = 301 K |
γ = 111.334 (5)° | Block, purple |
V = 565.36 (15) Å3 | 0.35 × 0.30 × 0.22 mm |
Xcalibur CCD, Sapphire3 diffractometer | 4356 independent reflections |
Radiation source: fine-focus sealed tube | 3882 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ω scans | θmax = 33.3°, θmin = 2.7° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) | h = −11→11 |
Tmin = 0.769, Tmax = 1.000 | k = −12→12 |
29909 measured reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.031 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0409P)2 + 0.1945P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
4356 reflections | Δρmax = 0.72 e Å−3 |
171 parameters | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H atoms bonded to C were refined using a riding model, H atoms bonded to N were freely refined. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.19673 (3) | 0.48517 (2) | 0.59913 (2) | 0.03117 (6) | |
N1 | 0.0070 (2) | 0.37549 (18) | 0.40029 (12) | 0.0377 (3) | |
N2 | −0.0569 (3) | 0.21922 (19) | 0.35544 (13) | 0.0432 (3) | |
N3 | −0.1176 (4) | 0.0705 (2) | 0.3110 (2) | 0.0744 (6) | |
N4 | 0.4085 (3) | 0.7020 (2) | 0.5489 (2) | 0.0668 (6) | |
N5 | 0.5181 (2) | 0.68214 (18) | 0.48714 (14) | 0.0386 (3) | |
N6 | 0.6244 (3) | 0.6686 (2) | 0.42249 (18) | 0.0515 (4) | |
N7 | 0.30637 (18) | 0.58191 (15) | 0.81040 (12) | 0.0309 (2) | |
N8 | 0.0067 (2) | 0.26670 (17) | 0.66848 (13) | 0.0351 (2) | |
H8A | 0.023 (4) | 0.175 (3) | 0.642 (2) | 0.057 (7)* | |
H8B | −0.122 (4) | 0.246 (4) | 0.635 (3) | 0.069 (8)* | |
C1 | 0.2139 (2) | 0.47062 (17) | 0.88451 (13) | 0.0291 (2) | |
C2 | 0.0569 (2) | 0.30410 (18) | 0.81392 (14) | 0.0313 (2) | |
C3 | −0.0357 (3) | 0.1882 (2) | 0.88582 (19) | 0.0423 (3) | |
H3 | −0.1379 | 0.0784 | 0.8402 | 0.051* | |
C4 | 0.0224 (3) | 0.2336 (3) | 1.0283 (2) | 0.0528 (5) | |
H4 | −0.0415 | 0.153 | 1.0754 | 0.063* | |
C5 | 0.1714 (3) | 0.3946 (3) | 1.09811 (17) | 0.0485 (4) | |
H5 | 0.2072 | 0.4232 | 1.192 | 0.058* | |
C6 | 0.2705 (2) | 0.5171 (2) | 1.02765 (14) | 0.0380 (3) | |
C7 | 0.4267 (3) | 0.6859 (3) | 1.09254 (17) | 0.0472 (4) | |
H7 | 0.4694 | 0.7209 | 1.1863 | 0.057* | |
C8 | 0.5135 (3) | 0.7961 (2) | 1.01716 (19) | 0.0477 (4) | |
H8 | 0.6143 | 0.9081 | 1.0587 | 0.057* | |
C9 | 0.4499 (2) | 0.7397 (2) | 0.87556 (17) | 0.0399 (3) | |
H9 | 0.5114 | 0.8166 | 0.8252 | 0.048* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.03912 (11) | 0.03282 (10) | 0.02878 (9) | 0.01827 (8) | 0.01518 (7) | 0.01036 (7) |
N1 | 0.0545 (7) | 0.0401 (6) | 0.0290 (5) | 0.0302 (6) | 0.0127 (5) | 0.0079 (4) |
N2 | 0.0667 (9) | 0.0457 (7) | 0.0283 (5) | 0.0350 (7) | 0.0140 (6) | 0.0078 (5) |
N3 | 0.1122 (18) | 0.0450 (9) | 0.0614 (11) | 0.0375 (10) | 0.0127 (11) | −0.0016 (8) |
N4 | 0.0864 (13) | 0.0440 (8) | 0.0944 (14) | 0.0265 (8) | 0.0690 (12) | 0.0229 (9) |
N5 | 0.0422 (6) | 0.0372 (6) | 0.0418 (6) | 0.0172 (5) | 0.0174 (5) | 0.0138 (5) |
N6 | 0.0596 (9) | 0.0660 (10) | 0.0586 (9) | 0.0427 (8) | 0.0341 (8) | 0.0322 (8) |
N7 | 0.0330 (5) | 0.0299 (5) | 0.0327 (5) | 0.0154 (4) | 0.0094 (4) | 0.0088 (4) |
N8 | 0.0384 (6) | 0.0306 (5) | 0.0355 (6) | 0.0125 (5) | 0.0118 (5) | 0.0065 (4) |
C1 | 0.0347 (6) | 0.0331 (6) | 0.0295 (5) | 0.0216 (5) | 0.0125 (4) | 0.0111 (4) |
C2 | 0.0363 (6) | 0.0321 (6) | 0.0358 (6) | 0.0195 (5) | 0.0169 (5) | 0.0137 (5) |
C3 | 0.0457 (8) | 0.0407 (7) | 0.0561 (9) | 0.0227 (6) | 0.0275 (7) | 0.0249 (7) |
C4 | 0.0661 (11) | 0.0702 (12) | 0.0570 (10) | 0.0443 (10) | 0.0402 (9) | 0.0426 (10) |
C5 | 0.0646 (10) | 0.0722 (12) | 0.0359 (7) | 0.0475 (10) | 0.0247 (7) | 0.0257 (8) |
C6 | 0.0479 (8) | 0.0513 (8) | 0.0298 (6) | 0.0352 (7) | 0.0123 (5) | 0.0115 (6) |
C7 | 0.0541 (9) | 0.0592 (10) | 0.0331 (7) | 0.0383 (8) | 0.0005 (6) | −0.0009 (6) |
C8 | 0.0439 (8) | 0.0418 (8) | 0.0489 (9) | 0.0220 (7) | −0.0035 (7) | −0.0050 (7) |
C9 | 0.0375 (7) | 0.0325 (6) | 0.0465 (8) | 0.0138 (5) | 0.0073 (6) | 0.0065 (6) |
Co1—N1 | 2.1020 (13) | N8—H8B | 0.88 (3) |
Co1—N7 | 2.1100 (12) | C1—C2 | 1.418 (2) |
Co1—N4 | 2.1222 (17) | C1—C6 | 1.4186 (19) |
Co1—N8 | 2.1684 (13) | C2—C3 | 1.371 (2) |
Co1—N6i | 2.1685 (15) | C3—C4 | 1.411 (3) |
Co1—N1ii | 2.2047 (12) | C3—H3 | 0.93 |
N1—N2 | 1.2012 (19) | C4—C5 | 1.368 (3) |
N1—Co1ii | 2.2046 (12) | C4—H4 | 0.93 |
N2—N3 | 1.147 (2) | C5—C6 | 1.410 (3) |
N4—N5 | 1.176 (2) | C5—H5 | 0.93 |
N5—N6 | 1.161 (2) | C6—C7 | 1.417 (3) |
N6—Co1i | 2.1685 (15) | C7—C8 | 1.355 (3) |
N7—C9 | 1.3273 (19) | C7—H7 | 0.93 |
N7—C1 | 1.3653 (18) | C8—C9 | 1.407 (2) |
N8—C2 | 1.4427 (19) | C8—H8 | 0.93 |
N8—H8A | 0.84 (3) | C9—H9 | 0.93 |
N1—Co1—N7 | 163.50 (5) | Co1—N8—H8B | 110.0 (18) |
N1—Co1—N4 | 94.66 (8) | H8A—N8—H8B | 108 (2) |
N7—Co1—N4 | 96.60 (7) | N7—C1—C2 | 117.90 (12) |
N1—Co1—N8 | 90.80 (5) | N7—C1—C6 | 122.02 (13) |
N7—Co1—N8 | 78.65 (5) | C2—C1—C6 | 120.08 (13) |
N4—Co1—N8 | 173.93 (8) | C3—C2—C1 | 119.16 (14) |
N1—Co1—N6i | 93.17 (6) | C3—C2—N8 | 123.91 (14) |
N7—Co1—N6i | 98.59 (6) | C1—C2—N8 | 116.92 (12) |
N4—Co1—N6i | 91.25 (7) | C2—C3—C4 | 120.74 (17) |
N8—Co1—N6i | 85.77 (6) | C2—C3—H3 | 119.6 |
N1—Co1—N1ii | 80.75 (5) | C4—C3—H3 | 119.6 |
N7—Co1—N1ii | 87.21 (4) | C5—C4—C3 | 120.97 (16) |
N4—Co1—N1ii | 90.05 (7) | C5—C4—H4 | 119.5 |
N8—Co1—N1ii | 93.47 (5) | C3—C4—H4 | 119.5 |
N6i—Co1—N1ii | 173.87 (6) | C4—C5—C6 | 119.92 (15) |
N2—N1—Co1 | 119.76 (10) | C4—C5—H5 | 120.0 |
N2—N1—Co1ii | 122.01 (12) | C6—C5—H5 | 120.0 |
Co1—N1—Co1ii | 99.25 (5) | C5—C6—C7 | 123.32 (15) |
N3—N2—N1 | 179.1 (2) | C5—C6—C1 | 119.12 (16) |
N5—N4—Co1 | 121.28 (13) | C7—C6—C1 | 117.56 (15) |
N6—N5—N4 | 176.53 (18) | C8—C7—C6 | 119.57 (15) |
N5—N6—Co1i | 137.61 (13) | C8—C7—H7 | 120.2 |
C9—N7—C1 | 118.25 (13) | C6—C7—H7 | 120.2 |
C9—N7—Co1 | 126.30 (11) | C7—C8—C9 | 119.45 (16) |
C1—N7—Co1 | 115.42 (9) | C7—C8—H8 | 120.3 |
C2—N8—Co1 | 111.12 (9) | C9—C8—H8 | 120.3 |
C2—N8—H8A | 108.7 (17) | N7—C9—C8 | 123.12 (16) |
Co1—N8—H8A | 109.8 (17) | N7—C9—H9 | 118.4 |
C2—N8—H8B | 109.3 (18) | C8—C9—H9 | 118.4 |
C9—N7—C1—C2 | 178.36 (12) | C3—C4—C5—C6 | −0.6 (3) |
Co1—N7—C1—C2 | 0.21 (14) | C4—C5—C6—C7 | −179.72 (15) |
C9—N7—C1—C6 | −1.73 (19) | C4—C5—C6—C1 | −0.1 (2) |
Co1—N7—C1—C6 | −179.88 (9) | N7—C1—C6—C5 | −178.82 (12) |
N7—C1—C2—C3 | 178.61 (12) | C2—C1—C6—C5 | 1.10 (19) |
C6—C1—C2—C3 | −1.30 (19) | N7—C1—C6—C7 | 0.79 (19) |
N7—C1—C2—N8 | −0.50 (17) | C2—C1—C6—C7 | −179.29 (12) |
C6—C1—C2—N8 | 179.58 (12) | C5—C6—C7—C8 | −179.68 (15) |
Co1—N8—C2—C3 | −178.54 (11) | C1—C6—C7—C8 | 0.7 (2) |
Co1—N8—C2—C1 | 0.52 (15) | C6—C7—C8—C9 | −1.3 (2) |
C1—C2—C3—C4 | 0.6 (2) | C1—N7—C9—C8 | 1.2 (2) |
N8—C2—C3—C4 | 179.60 (14) | Co1—N7—C9—C8 | 179.11 (11) |
C2—C3—C4—C5 | 0.4 (3) | C7—C8—C9—N7 | 0.3 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N8—H8A···N3iii | 0.84 (3) | 2.46 (3) | 3.218 (2) | 151 (2) |
N8—H8B···N4ii | 0.88 (3) | 2.73 (3) | 3.502 (3) | 148 (2) |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x, −y, −z+1. |
Acknowledgements
The Service Commun de Diffraction X of the Université de Brest is thanked for the single-crystal X-ray crystallographic data collection and analysis.
Funding information
Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique); the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique); PRFU project (grant No. B00L01UN190120230003).
References
Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310. Web of Science CSD CrossRef CAS Google Scholar
Agilent (2014). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924. Web of Science CSD CrossRef CAS Google Scholar
Benamara, N., Setifi, Z., Yang, C.-I., Bernès, S., Geiger, D. K., Kürkçüoğlu, G. S., Setifi, F. & Reedijk, J. (2021). Magnetochemistry, 7, 50. Google Scholar
Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478. Web of Science CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255–262. Web of Science CSD CrossRef CAS Google Scholar
Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365. Web of Science CSD CrossRef CAS PubMed Google Scholar
Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084–7092. Web of Science CSD CrossRef CAS PubMed Google Scholar
Escuer, A. & Aromí, G. (2006). Eur. J. Inorg. Chem. pp. 4721–4736. Web of Science CrossRef Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Merabet, L., Setifi, Z., Ferjani, H., Geiger, D. K., Glidewell, C., Kanmazalp, S. D., Setifi, F. & Kaboub, L. (2023). J. Chem. Crystallogr. 53, 209–216. Web of Science CSD CrossRef CAS Google Scholar
Merabet, L., Vologzhanina, A. V., Setifi, Z., Kaboub, L. & Setifi, F. (2022). CrystEngComm, 24, 4740–4747. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Setifi, F., Knaust, J. M., Setifi, Z. & Touzani, R. (2016). Acta Cryst. E72, 470–476. CSD CrossRef IUCr Journals Google Scholar
Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488–1491. CSD CrossRef IUCr Journals Google Scholar
Setifi, F., Setifi, Z., Konieczny, P., Glidewell, C., Benmansour, S., Gómez-García, C. J., Grandjean, F., Long, G. J., Pelka, R. & Reedijk, J. (2019). Polyhedron, 157, 558–566. Web of Science CSD CrossRef CAS Google Scholar
Setifi, Z., Bernès, S., Geiger, D. K., Setifi, F. & Reedijk, J. (2022). Acta Cryst. C78, 449–454. Web of Science CSD CrossRef IUCr Journals Google Scholar
Setifi, Z., Cubillán, N., Glidewell, C., Gil, D. M., Torabi, E., Morales-Toyo, M., Dege, N., Setifi, F. & Mirzaei, M. (2023). Polyhedron, 233, 116320. Web of Science CSD CrossRef Google Scholar
Setifi, Z., Geiger, D. K., Jelsch, C., Maris, T., Glidewell, C., Mirzaei, M., Arefian, M. & Setifi, F. (2018). J. Mol. Struct. 1173, 697–706. Web of Science CSD CrossRef CAS Google Scholar
Setifi, Z., Ghazzali, M., Glidewell, C., Pérez, O., Setifi, F., Gómez-García, C. J. & Reedijk, J. (2016). Polyhedron, 117, 244–248. Web of Science CSD CrossRef CAS Google Scholar
Setifi, Z., Setifi, F., Benmansour, S., Liu, X., Mague, J. T., Gómez-García, C. J., Konieczny, P. & Reedijk, J. (2022). Dalton Trans. 51, 5617–5623. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.