metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[(8-amino­quinoline)­cobalt(II)]-di-μ-azido]

crossmark logo

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, cDepartment of Chemistry, SUNY-College at Geneseo, Geneseo, NY 14454, USA, and dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen
*Correspondence e-mail: fatima.setifi@univ-setif.dz, geiger@geneseo.edu

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 19 August 2024; accepted 27 August 2024; online 6 September 2024)

The title coordination polymer, [Co(N3)2(C9H8N2)]n, was synthesized solvothermally. The CoII atom exhibits a distorted octa­hedral [CoN6] coordination geometry with a bidentate 8-amino­quinoline ligand and four azide ligands. Bridging azide ligands result in chains extending along [100]. N—H⋯N hydrogen bonds join the chains to give an extended structure with sheets parallel to (002).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pseudohalide and polynitrile compounds derived from transition-metal ions are of great inter­est from the perspective of their magnetic properties, rich mol­ecular architectures and for their topologies (Atmani et al., 2008[Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921-924.]; Benmansour et al., 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255-262.], 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.], 2012[Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359-2365.]; Addala et al., 2015[Addala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307-310.]; Setifi et al., 2018[Setifi, Z., Geiger, D. K., Jelsch, C., Maris, T., Glidewell, C., Mirzaei, M., Arefian, M. & Setifi, F. (2018). J. Mol. Struct. 1173, 697-706.], 2019[Setifi, F., Setifi, Z., Konieczny, P., Glidewell, C., Benmansour, S., Gómez-García, C. J., Grandjean, F., Long, G. J., Pelka, R. & Reedijk, J. (2019). Polyhedron, 157, 558-566.]; Dmitrienko et al., 2020[Dmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084-7092.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]; Merabet et al., 2022[Merabet, L., Vologzhanina, A. V., Setifi, Z., Kaboub, L. & Setifi, F. (2022). CrystEngComm, 24, 4740-4747.]).

One of the pseudohalide ligands that has received much attention in the last decade is the azide [N3] ion, partly due to its ability to produce a wide variety of coordination compounds with different nuclearities ranging from simple mononuclear to polynuclear species. Different bonding modes are observed with the azide ion, which result in the formation of one-, two- and three-dimensional polymeric assemblies (Escuer et al., 2006[Escuer, A. & Aromí, G. (2006). Eur. J. Inorg. Chem. pp. 4721-4736.]).

As a part of our continuing study of the structural and magnetic properties of transition-metal complexes containing both azide and polypyridyl units (Setifi, Ghazzali et al., 2016[Setifi, Z., Ghazzali, M., Glidewell, C., Pérez, O., Setifi, F., Gómez-García, C. J. & Reedijk, J. (2016). Polyhedron, 117, 244-248.]; Setifi, Knaust et al., 2016[Setifi, F., Knaust, J. M., Setifi, Z. & Touzani, R. (2016). Acta Cryst. E72, 470-476.]; Setifi, Moon et al., 2016[Setifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488-1491.]; Benamara et al., 2021[Benamara, N., Setifi, Z., Yang, C.-I., Bernès, S., Geiger, D. K., Kürkçüoğlu, G. S., Setifi, F. & Reedijk, J. (2021). Magnetochemistry, 7, 50.]; Merabet et al., 2023[Merabet, L., Setifi, Z., Ferjani, H., Geiger, D. K., Glidewell, C., Kanmazalp, S. D., Setifi, F. & Kaboub, L. (2023). J. Chem. Crystallogr. 53, 209-216.]; Setifi, Setifi et al., 2022[Setifi, Z., Setifi, F., Benmansour, S., Liu, X., Mague, J. T., Gómez-García, C. J., Konieczny, P. & Reedijk, J. (2022). Dalton Trans. 51, 5617-5623.], 2023[Setifi, Z., Cubillán, N., Glidewell, C., Gil, D. M., Torabi, E., Morales-Toyo, M., Dege, N., Setifi, F. & Mirzaei, M. (2023). Polyhedron, 233, 116320.]), we report herein the crystal and mol­ecular structure of a one-dimensional coordination polymer, (I), based on 8-amino­quinoline (8-aquin) as co-ligand and the azide anion as ligand with two different coordination modes.

The asymmetric unit of (I) is composed of a CoII ion, a bidentate 8-aquin ligand and two azide ligands. The distorted octa­hedral coordination sphere is completed by two additional azide ligands. One of the azide anions binds to two Co centers in a 1,3 bidentate mode, whereas the other one connects two Co centers in a 1,1 bidentate mode. The resulting coordination geometry and supramolecular association is shown in Fig. 1[link]. Pertinent Co—N bond lengths are exhibited in Table 1[link].

Table 1
Selected bond lengths (Å)

Co1—N1 2.1020 (13) Co1—N8 2.1684 (13)
Co1—N7 2.1100 (12) Co1—N6i 2.1685 (15)
Co1—N4 2.1222 (17) Co1—N1ii 2.2047 (12)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x, -y+1, -z+1].
[Figure 1]
Figure 1
Representation of (the title compound showing the atom-labeling scheme. Non-H atom anisotropic displacement parameters are represented at the 50% probability level. Symmetry codes: (a) −x, −y + 1, −z + 1; (b) −x + 1, −y + 1, −z + 1.

The bridging ligands result in polymeric chains extending parallel to [100], as shown in Fig. 2[link]. The chains are composed of CoII ions joined by alternating bis μ-(1,1-N3) units and bis μ-(1,3-N3) units with corresponding Co⋯Co separations of 3.2817 (5) and 5.2427 (7) Å, respectively. The angle between the (N3)2 mean plane of the double end-to-end azide bridges and the plane defined by the CoII and the bonded Nazide atom is 20.20 (14)°, corresponding to a flattened chair configuration for the eight-membered ring. For a flat bridge, an angle of 0° would be observed. This angle compares to values of 8.2 (2) and 25.6 (1)° for the structurally similarly bridged polymorphic FeII complexes with a 5,5′-dimethyl-2,2′-bi­pyridine ligand (Setifi, Bernès et al., 2022[Setifi, Z., Bernès, S., Geiger, D. K., Setifi, F. & Reedijk, J. (2022). Acta Cryst. C78, 449-454.]). In the 8-acquin complexes of MnII and CoII, the comparable angles are 20.3 (6)° and 25.5 (4)°, respectively (Benamara et al., 2021[Benamara, N., Setifi, Z., Yang, C.-I., Bernès, S., Geiger, D. K., Kürkçüoğlu, G. S., Setifi, F. & Reedijk, J. (2021). Magnetochemistry, 7, 50.]).

[Figure 2]
Figure 2
Partial packing diagram showing the polymeric chain parallel to [100]. H atoms are not shown. Symmetry codes: (a) −x, −y + 1, −z + 1; (b) −x + 1, −y + 1, −z + 1.

N—H⋯N hydrogen-bonding inter­actions are observed in the extended structure (Table 2[link], Fig. 3[link]). Within individual chains, R22(8) hydrogen-bonded rings are observed (Fig. 4[link]). The polymeric chains are joined by hydrogen-bonding bridges involving the 8-amino substituent on the quinoline ligands and the terminal nitro­gen atom of the μ-(1,1-azide) ligands of adjacent chains, resulting in sheets parallel to (002) containing N—H⋯N hydrogen-bond-derived R22(12) inter­chain rings, as seen in Figs. 3[link] and 5[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8A⋯N3iii 0.84 (3) 2.46 (3) 3.218 (2) 151 (2)
N8—H8B⋯N4ii 0.88 (3) 2.73 (3) 3.502 (3) 148 (2)
Symmetry codes: (ii) [-x, -y+1, -z+1]; (iii) [-x, -y, -z+1].
[Figure 3]
Figure 3
Partial packing diagram showing sheets parallel to (002) formed by N—H⋯N bonds. Only H atoms involved in the inter­actions are represented. Symmetry codes: (a) −x, −y + 1, −z + 1; (b) −x + 1, −y + 1, −z + 1; (c) x, y + 1, z; (d) x + 1, y + 1, z; (e). −x, −y, −z + 1.
[Figure 4]
Figure 4
View of the intra­chain R22(8) N—H⋯N motif. Only H atoms involved in the hydrogen bonds are shown. Symmetry code: (a) −x, −y + 1, −z + 1.
[Figure 5]
Figure 5
View of the inter­chain R22(12) N—H⋯N motif. Only H atoms involved in hydrogen bonding are shown. Symmetry code: (a) −x, −y, −z + 1.

Synthesis and crystallization

The title compound was prepared solvothermally under autogenous pressure from a mixture of cobalt(II) sulfate hepta­hydrate (28 mg, 0.1 mmol), 8-amino­quinoline (14 mg, 0.1 mmol) and sodium azide (13 mg, 0.2 mmol) in a mixture of water and ethanol (3:1 v/v, 20 ml). This mixture was sealed in a Teflon-lined autoclave and held at 393 K for 2 days, and then cooled to ambient temperature at a rate of 10 K h−1 to give the product (yield 38%).

Refinement

Crystal data, data collection and refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Co(N3)2(C9H8N2)]
Mr 287.16
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 301
a, b, c (Å) 7.3526 (10), 8.3354 (13), 10.4053 (17)
α, β, γ (°) 97.221 (6), 102.413 (6), 111.334 (5)
V3) 565.36 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.51
Crystal size (mm) 0.35 × 0.30 × 0.22
 
Data collection
Diffractometer Xcalibur CCD Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.769, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 29909, 4356, 3882
Rint 0.033
(sin θ/λ)max−1) 0.773
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.088, 1.06
No. of reflections 4356
No. of parameters 171
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.33
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

catena-Poly[[(8-aminoquinoline)cobalt(II)]-di-µ-azido-κ4N1:N3-[(8-aminoquinoline)cobalt(II)]-di-µ-azido-κ4N1:N1] top
Crystal data top
[Co(N3)2(C9H8N2)]Z = 2
Mr = 287.16F(000) = 290
Triclinic, P1Dx = 1.687 Mg m3
a = 7.3526 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3354 (13) ÅCell parameters from 4847 reflections
c = 10.4053 (17) Åθ = 4.2–32.3°
α = 97.221 (6)°µ = 1.51 mm1
β = 102.413 (6)°T = 301 K
γ = 111.334 (5)°Block, purple
V = 565.36 (15) Å30.35 × 0.30 × 0.22 mm
Data collection top
Xcalibur CCD, Sapphire3
diffractometer
4356 independent reflections
Radiation source: fine-focus sealed tube3882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 33.3°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
h = 1111
Tmin = 0.769, Tmax = 1.000k = 1212
29909 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.1945P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4356 reflectionsΔρmax = 0.72 e Å3
171 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms bonded to C were refined using a riding model, H atoms bonded to N were freely refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.19673 (3)0.48517 (2)0.59913 (2)0.03117 (6)
N10.0070 (2)0.37549 (18)0.40029 (12)0.0377 (3)
N20.0569 (3)0.21922 (19)0.35544 (13)0.0432 (3)
N30.1176 (4)0.0705 (2)0.3110 (2)0.0744 (6)
N40.4085 (3)0.7020 (2)0.5489 (2)0.0668 (6)
N50.5181 (2)0.68214 (18)0.48714 (14)0.0386 (3)
N60.6244 (3)0.6686 (2)0.42249 (18)0.0515 (4)
N70.30637 (18)0.58191 (15)0.81040 (12)0.0309 (2)
N80.0067 (2)0.26670 (17)0.66848 (13)0.0351 (2)
H8A0.023 (4)0.175 (3)0.642 (2)0.057 (7)*
H8B0.122 (4)0.246 (4)0.635 (3)0.069 (8)*
C10.2139 (2)0.47062 (17)0.88451 (13)0.0291 (2)
C20.0569 (2)0.30410 (18)0.81392 (14)0.0313 (2)
C30.0357 (3)0.1882 (2)0.88582 (19)0.0423 (3)
H30.13790.07840.84020.051*
C40.0224 (3)0.2336 (3)1.0283 (2)0.0528 (5)
H40.04150.1531.07540.063*
C50.1714 (3)0.3946 (3)1.09811 (17)0.0485 (4)
H50.20720.42321.1920.058*
C60.2705 (2)0.5171 (2)1.02765 (14)0.0380 (3)
C70.4267 (3)0.6859 (3)1.09254 (17)0.0472 (4)
H70.46940.72091.18630.057*
C80.5135 (3)0.7961 (2)1.01716 (19)0.0477 (4)
H80.61430.90811.05870.057*
C90.4499 (2)0.7397 (2)0.87556 (17)0.0399 (3)
H90.51140.81660.82520.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03912 (11)0.03282 (10)0.02878 (9)0.01827 (8)0.01518 (7)0.01036 (7)
N10.0545 (7)0.0401 (6)0.0290 (5)0.0302 (6)0.0127 (5)0.0079 (4)
N20.0667 (9)0.0457 (7)0.0283 (5)0.0350 (7)0.0140 (6)0.0078 (5)
N30.1122 (18)0.0450 (9)0.0614 (11)0.0375 (10)0.0127 (11)0.0016 (8)
N40.0864 (13)0.0440 (8)0.0944 (14)0.0265 (8)0.0690 (12)0.0229 (9)
N50.0422 (6)0.0372 (6)0.0418 (6)0.0172 (5)0.0174 (5)0.0138 (5)
N60.0596 (9)0.0660 (10)0.0586 (9)0.0427 (8)0.0341 (8)0.0322 (8)
N70.0330 (5)0.0299 (5)0.0327 (5)0.0154 (4)0.0094 (4)0.0088 (4)
N80.0384 (6)0.0306 (5)0.0355 (6)0.0125 (5)0.0118 (5)0.0065 (4)
C10.0347 (6)0.0331 (6)0.0295 (5)0.0216 (5)0.0125 (4)0.0111 (4)
C20.0363 (6)0.0321 (6)0.0358 (6)0.0195 (5)0.0169 (5)0.0137 (5)
C30.0457 (8)0.0407 (7)0.0561 (9)0.0227 (6)0.0275 (7)0.0249 (7)
C40.0661 (11)0.0702 (12)0.0570 (10)0.0443 (10)0.0402 (9)0.0426 (10)
C50.0646 (10)0.0722 (12)0.0359 (7)0.0475 (10)0.0247 (7)0.0257 (8)
C60.0479 (8)0.0513 (8)0.0298 (6)0.0352 (7)0.0123 (5)0.0115 (6)
C70.0541 (9)0.0592 (10)0.0331 (7)0.0383 (8)0.0005 (6)0.0009 (6)
C80.0439 (8)0.0418 (8)0.0489 (9)0.0220 (7)0.0035 (7)0.0050 (7)
C90.0375 (7)0.0325 (6)0.0465 (8)0.0138 (5)0.0073 (6)0.0065 (6)
Geometric parameters (Å, º) top
Co1—N12.1020 (13)N8—H8B0.88 (3)
Co1—N72.1100 (12)C1—C21.418 (2)
Co1—N42.1222 (17)C1—C61.4186 (19)
Co1—N82.1684 (13)C2—C31.371 (2)
Co1—N6i2.1685 (15)C3—C41.411 (3)
Co1—N1ii2.2047 (12)C3—H30.93
N1—N21.2012 (19)C4—C51.368 (3)
N1—Co1ii2.2046 (12)C4—H40.93
N2—N31.147 (2)C5—C61.410 (3)
N4—N51.176 (2)C5—H50.93
N5—N61.161 (2)C6—C71.417 (3)
N6—Co1i2.1685 (15)C7—C81.355 (3)
N7—C91.3273 (19)C7—H70.93
N7—C11.3653 (18)C8—C91.407 (2)
N8—C21.4427 (19)C8—H80.93
N8—H8A0.84 (3)C9—H90.93
N1—Co1—N7163.50 (5)Co1—N8—H8B110.0 (18)
N1—Co1—N494.66 (8)H8A—N8—H8B108 (2)
N7—Co1—N496.60 (7)N7—C1—C2117.90 (12)
N1—Co1—N890.80 (5)N7—C1—C6122.02 (13)
N7—Co1—N878.65 (5)C2—C1—C6120.08 (13)
N4—Co1—N8173.93 (8)C3—C2—C1119.16 (14)
N1—Co1—N6i93.17 (6)C3—C2—N8123.91 (14)
N7—Co1—N6i98.59 (6)C1—C2—N8116.92 (12)
N4—Co1—N6i91.25 (7)C2—C3—C4120.74 (17)
N8—Co1—N6i85.77 (6)C2—C3—H3119.6
N1—Co1—N1ii80.75 (5)C4—C3—H3119.6
N7—Co1—N1ii87.21 (4)C5—C4—C3120.97 (16)
N4—Co1—N1ii90.05 (7)C5—C4—H4119.5
N8—Co1—N1ii93.47 (5)C3—C4—H4119.5
N6i—Co1—N1ii173.87 (6)C4—C5—C6119.92 (15)
N2—N1—Co1119.76 (10)C4—C5—H5120.0
N2—N1—Co1ii122.01 (12)C6—C5—H5120.0
Co1—N1—Co1ii99.25 (5)C5—C6—C7123.32 (15)
N3—N2—N1179.1 (2)C5—C6—C1119.12 (16)
N5—N4—Co1121.28 (13)C7—C6—C1117.56 (15)
N6—N5—N4176.53 (18)C8—C7—C6119.57 (15)
N5—N6—Co1i137.61 (13)C8—C7—H7120.2
C9—N7—C1118.25 (13)C6—C7—H7120.2
C9—N7—Co1126.30 (11)C7—C8—C9119.45 (16)
C1—N7—Co1115.42 (9)C7—C8—H8120.3
C2—N8—Co1111.12 (9)C9—C8—H8120.3
C2—N8—H8A108.7 (17)N7—C9—C8123.12 (16)
Co1—N8—H8A109.8 (17)N7—C9—H9118.4
C2—N8—H8B109.3 (18)C8—C9—H9118.4
C9—N7—C1—C2178.36 (12)C3—C4—C5—C60.6 (3)
Co1—N7—C1—C20.21 (14)C4—C5—C6—C7179.72 (15)
C9—N7—C1—C61.73 (19)C4—C5—C6—C10.1 (2)
Co1—N7—C1—C6179.88 (9)N7—C1—C6—C5178.82 (12)
N7—C1—C2—C3178.61 (12)C2—C1—C6—C51.10 (19)
C6—C1—C2—C31.30 (19)N7—C1—C6—C70.79 (19)
N7—C1—C2—N80.50 (17)C2—C1—C6—C7179.29 (12)
C6—C1—C2—N8179.58 (12)C5—C6—C7—C8179.68 (15)
Co1—N8—C2—C3178.54 (11)C1—C6—C7—C80.7 (2)
Co1—N8—C2—C10.52 (15)C6—C7—C8—C91.3 (2)
C1—C2—C3—C40.6 (2)C1—N7—C9—C81.2 (2)
N8—C2—C3—C4179.60 (14)Co1—N7—C9—C8179.11 (11)
C2—C3—C4—C50.4 (3)C7—C8—C9—N70.3 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8A···N3iii0.84 (3)2.46 (3)3.218 (2)151 (2)
N8—H8B···N4ii0.88 (3)2.73 (3)3.502 (3)148 (2)
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y, z+1.
 

Acknowledgements

The Service Commun de Diffraction X of the Université de Brest is thanked for the single-crystal X-ray crystallographic data collection and analysis.

Funding information

Funding for this research was provided by: the Algerian MESRS (Ministère de l'Enseignement Supérieur et de la Recherche Scientifique); the Algerian DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique); PRFU project (grant No. B00L01UN190120230003).

References

First citationAddala, A., Setifi, F., Kottrup, K. G., Glidewell, C., Setifi, Z., Smith, G. & Reedijk, J. (2015). Polyhedron, 87, 307–310.  Web of Science CSD CrossRef CAS Google Scholar
First citationAgilent (2014). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationAtmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenamara, N., Setifi, Z., Yang, C.-I., Bernès, S., Geiger, D. K., Kürkçüoğlu, G. S., Setifi, F. & Reedijk, J. (2021). Magnetochemistry, 7, 50.  Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255–262.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDmitrienko, A. O., Buzin, M. I., Setifi, Z., Setifi, F., Alexandrov, E. V., Voronova, E. D. & Vologzhanina, A. V. (2020). Dalton Trans. 49, 7084–7092.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEscuer, A. & Aromí, G. (2006). Eur. J. Inorg. Chem. pp. 4721–4736.  Web of Science CrossRef Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMerabet, L., Setifi, Z., Ferjani, H., Geiger, D. K., Glidewell, C., Kanmazalp, S. D., Setifi, F. & Kaboub, L. (2023). J. Chem. Crystallogr. 53, 209–216.  Web of Science CSD CrossRef CAS Google Scholar
First citationMerabet, L., Vologzhanina, A. V., Setifi, Z., Kaboub, L. & Setifi, F. (2022). CrystEngComm, 24, 4740–4747.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSetifi, F., Knaust, J. M., Setifi, Z. & Touzani, R. (2016). Acta Cryst. E72, 470–476.  CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, F., Moon, D., Koen, R., Setifi, Z., Lamsayah, M. & Touzani, R. (2016). Acta Cryst. E72, 1488–1491.  CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, F., Setifi, Z., Konieczny, P., Glidewell, C., Benmansour, S., Gómez-García, C. J., Grandjean, F., Long, G. J., Pelka, R. & Reedijk, J. (2019). Polyhedron, 157, 558–566.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Bernès, S., Geiger, D. K., Setifi, F. & Reedijk, J. (2022). Acta Cryst. C78, 449–454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Cubillán, N., Glidewell, C., Gil, D. M., Torabi, E., Morales-Toyo, M., Dege, N., Setifi, F. & Mirzaei, M. (2023). Polyhedron, 233, 116320.  Web of Science CSD CrossRef Google Scholar
First citationSetifi, Z., Geiger, D. K., Jelsch, C., Maris, T., Glidewell, C., Mirzaei, M., Arefian, M. & Setifi, F. (2018). J. Mol. Struct. 1173, 697–706.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Ghazzali, M., Glidewell, C., Pérez, O., Setifi, F., Gómez-García, C. J. & Reedijk, J. (2016). Polyhedron, 117, 244–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Setifi, F., Benmansour, S., Liu, X., Mague, J. T., Gómez-García, C. J., Konieczny, P. & Reedijk, J. (2022). Dalton Trans. 51, 5617–5623.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146