organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Bromo­acetamide

crossmark logo

aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: Manuel.Stapf@chemie.tu-freiberg.de

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 1 August 2024; accepted 2 September 2024; online 30 September 2024)

The title compound, C2H4BrNO, crystallizes in the monoclinic space group P21/c with one mol­ecule in the asymmetric unit. The almost planar mol­ecules are organized via N—H⋯O hydrogen bonds into a ladder-type network, which can be characterized by the graph sets R22(8) and R24(8). In addition, the mol­ecules are connected by C—H⋯O and C—H⋯Br contacts.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

2-Bromo­acetamide described here is isostructural to 2-chloro­acetamide (Kalyanaraman et al., 1978[Kalyanaraman, B., Kispert, L. D. & Atwood, J. L. (1978). J. Cryst. Mol. Struct. 8, 175-181.]; Rheingold, 2021[Rheingold, A. L. (2021). CSD Communication (CCDC 2058975). CCDC, Cambridge, England]), but not to 2-fluoro­acetamide (Hughes & Small, 1962[Hughes, D. O. & Small, R. W. H. (1962). Acta Cryst. 15, 933-940.]; Jeffrey et al., 1981[Jeffrey, G. A., Ruble, J. R., McMullan, R. K., DeFrees, D. J. & Pople, J. A. (1981). Acta Cryst. B37, 1885-1890.]).

The mol­ecular structure of the title compound is almost planar, with the bromine atom lying only slightly out of the amide plane [distance = 0.374 (3) Å] and orientated in the opposite direction to the carbonyl oxygen atom (Fig. 1[link]). This is reflected in the torsion angles (O1/N1)—C1—C2—Br1 with values of −166.7 (2) and 14.4 (4)°, respectively. Furthermore, an intra­molecular N—H⋯Br contact of 2.69 (4) Å is observed. The crystal structure consists of layers that extend parallel to the (102) plane and are composed of centrosymmetric dimers of the title compound as the smallest supra­molecular unit (Fig. 2[link]). Within these dimers, the mol­ecules are held together by N—H⋯O hydrogen bonds [N1—H2N⋯O1, 2.17 (5) Å; Table 1[link]]. The resulting hydrogen-bonding motif, which can be described by the graph set R22(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.], 1991[Etter, M. C. (1991). J. Phys. Chem. 95, 4601-4610.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), is characteristic of primary carboxamides (Leiserowitz & Schmidt, 1969[Leiserowitz, L. & Schmidt, G. M. J. (1969). J. Chem. Soc. A, 2372-2382.]; Leiserowitz & Hagler, 1983[Leiserowitz, L. & Hagler, A. T. (1983). Proc. R. Soc. Lond. A, 388, 133-175.]; Aakeröy et al., 2007[Aakeröy, C. B., Scott, B. M. T. & Desper, J. (2007). New J. Chem. 31, 2044-2051.]) and has been observed by us previously, e.g., for formamide mol­ecules contained in the crystal structure of a solvate of 1-{[2,6-bis­(hy­droxy­meth­yl)-4-methyl­phen­oxy]meth­yl}-3,5-bis­{[(4,6-di­methyl­pyridin-2-yl)amino]­meth­yl}-2,4,6-tri­ethyl­benzene (Stapf et al., 2023[Stapf, M., Schmidt, U., Seichter, W. & Mazik, M. (2023). Acta Cryst. E79, 1067-1071.]). This motif is also found for isomorphous 2-chloro­acetamide and in the structure of 2-fluoro­acetamide. As in these, the dimers in the present structure are connected by N—H⋯O bonds to form a ladder-type network. Here, the carbonyl oxygen atom additionally inter­acts with the H1N atom of a neighbouring mol­ecule [N1—H1N⋯O1, 2.29 (4) Å] and acts as a double acceptor for strong hydrogen bonds. This forms a further motif of the graph set R42(8), as depicted in Fig. 2[link]. The association of the dimers is supported by C—H⋯Br contacts [d(H⋯Br) = 2.98 Å], whereas the layers are only linked to each other via C—H⋯O inter­actions [d(H⋯O) = 2.55 Å, see Table 1[link]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Br1 0.82 (4) 2.69 (4) 3.120 (3) 115 (3)
N1—H1N⋯O1i 0.82 (4) 2.29 (4) 2.955 (4) 140 (4)
N1—H2N⋯O1ii 0.75 (5) 2.17 (5) 2.915 (5) 172 (5)
C2—H2B⋯Br1iii 0.99 2.98 3.610 (3) 122
C2—H2A⋯O1iv 0.99 2.55 3.462 (4) 153
Symmetry codes: (i) [x, y+1, z]; (ii) [-x+2, -y+1, -z+1]; (iii) [x, y-1, z]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
Mol­ecular structure of the title compound including the numbering scheme. Atoms are drawn with displacement ellipsoids at the 50% probability level. The intra­molecular N—H⋯Br contact is shown as dashed line.
[Figure 2]
Figure 2
Excerpt of the crystal packing showing the R22(8) and R42(8) motifs of the N—H⋯O=C inter­actions, as well as the C—H⋯Br contact within one layer of amide mol­ecules. These inter­actions are drawn as dashed lines.

Synthesis and crystallization

2-Bromo­acetamide was used as purchased from Fluka. Single crystals suitable for X-ray analysis were obtained by crystallization from petroleum ether (boiling range 313–333 K) according to a literature known procedure for purification of the title compound (Halpern & Maher, 1965[Halpern, J. & Maher, J. P. (1965). J. Am. Chem. Soc. 87, 5361-5366.]). 1H NMR (500 MHz, DMSO-d6, 298 K), δ: 3.81 (s, 2H, CH2), 7.29 (br, 1H, NH), 7.66 (br, 1H, NH) p.p.m. 13C NMR (125 MHz, DMSO-d6, 298 K), δ: 29.63 (CH2), 167.92 (C=O) p.p.m. MS (ESI): m/z calcd. for C2H4BrNONa: 159.94 [M + Na]+, found 159.94.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C2H4BrNO
Mr 137.97
Crystal system, space group Monoclinic, P21/c
Temperature (K) 93
a, b, c (Å) 10.373 (4), 5.1899 (14), 7.557 (3)
β (°) 99.94 (3)
V3) 400.7 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 10.06
Crystal size (mm) 0.11 × 0.09 × 0.04
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan [X-RED32 (Stoe & Cie, 2023[Stoe & Cie (2023). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.]; Koziskova et al., 2016[Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136-140.])]
Tmin, Tmax 0.330, 0.668
No. of measured, independent and observed [I > 2σ(I)] reflections 4506, 879, 731
Rint 0.036
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.068, 1.04
No. of reflections 879
No. of parameters 52
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.58, −0.51
Computer programs: X-AREA (Stoe & Cie, 2023[Stoe & Cie (2023). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Structural data


Computing details top

2-Bromoacetamide top
Crystal data top
C2H4BrNOF(000) = 264
Mr = 137.97Dx = 2.287 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.373 (4) ÅCell parameters from 1778 reflections
b = 5.1899 (14) Åθ = 1.7–22.5°
c = 7.557 (3) ŵ = 10.06 mm1
β = 99.94 (3)°T = 93 K
V = 400.7 (3) Å3Plate, colorless
Z = 40.11 × 0.09 × 0.04 mm
Data collection top
Stoe Stadivari
diffractometer
879 independent reflections
Radiation source: Primux 50 Mo731 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.036
Detector resolution: 5.81 pixels mm-1θmax = 27.0°, θmin = 2.0°
rotation method, ω scansh = 1313
Absorption correction: multi-scan
[X-Red32 (Stoe & Cie, 2023; Koziskova et al., 2016]
k = 66
Tmin = 0.330, Tmax = 0.668l = 99
4506 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: mixed
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.0569P]
where P = (Fo2 + 2Fc2)/3
879 reflections(Δ/σ)max = 0.001
52 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.51 e Å3
Special details top

Refinement. The hydrogen atoms at N1 were located in a difference Fourier map and refined with free coordinates, and with the Uiso(H) values fixed at 1.5 times the equivalent Ueq value of the parent nitrogen atom (N1). The H atoms at the methylene carbon atom (C2) were included using a riding model with C—H = 0.99 Å, and the Uiso(H) values were fixed at 1.2 times the equivalent Ueq value of C2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.61180 (3)0.82582 (6)0.68653 (4)0.01566 (15)
O10.8681 (3)0.2945 (4)0.5541 (3)0.0181 (6)
N10.8855 (3)0.7271 (6)0.5813 (4)0.0174 (7)
H1N0.854 (4)0.863 (7)0.608 (6)0.026*
H2N0.950 (5)0.735 (8)0.550 (6)0.026*
C10.8257 (3)0.5060 (7)0.5962 (4)0.0140 (7)
C20.6997 (3)0.4974 (6)0.6709 (5)0.0160 (7)
H2A0.7186820.4213320.7927270.019*
H2B0.6382760.3800450.5949150.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0141 (2)0.0146 (2)0.0191 (2)0.00213 (14)0.00526 (14)0.00064 (14)
O10.0169 (14)0.0129 (12)0.0260 (15)0.0002 (10)0.0078 (12)0.0005 (10)
N10.0135 (16)0.0153 (14)0.0251 (18)0.0008 (13)0.0081 (14)0.0024 (13)
C10.0114 (18)0.0167 (16)0.0135 (16)0.0029 (14)0.0013 (13)0.0034 (14)
C20.0147 (19)0.0128 (15)0.0216 (17)0.0012 (15)0.0063 (14)0.0006 (15)
Geometric parameters (Å, º) top
Br1—C21.946 (3)N1—H2N0.75 (5)
O1—C11.244 (4)C1—C21.512 (5)
N1—C11.318 (5)C2—H2A0.9900
N1—H1N0.82 (4)C2—H2B0.9900
C1—N1—H1N121 (3)C1—C2—Br1116.2 (2)
C1—N1—H2N122 (3)C1—C2—H2A108.2
H1N—N1—H2N117 (5)Br1—C2—H2A108.2
O1—C1—N1123.7 (3)C1—C2—H2B108.2
O1—C1—C2115.8 (3)Br1—C2—H2B108.2
N1—C1—C2120.5 (3)H2A—C2—H2B107.4
O1—C1—C2—Br1166.7 (2)N1—C1—C2—Br114.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Br10.82 (4)2.69 (4)3.120 (3)115 (3)
N1—H1N···O1i0.82 (4)2.29 (4)2.955 (4)140 (4)
N1—H2N···O1ii0.75 (5)2.17 (5)2.915 (5)172 (5)
C2—H2B···Br1iii0.992.983.610 (3)122
C2—H2A···O1iv0.992.553.462 (4)153
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1; (iii) x, y1, z; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to thank Professor Dr Monika Mazik (Technische Universität Bergakademie Freiberg) for her general support.

Funding information

Funding for this research was provided by: Open Access Funding by the Publication Fund of the TU Bergakademie Freiberg.

References

First citationAakeröy, C. B., Scott, B. M. T. & Desper, J. (2007). New J. Chem. 31, 2044–2051.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1991). J. Phys. Chem. 95, 4601–4610.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHalpern, J. & Maher, J. P. (1965). J. Am. Chem. Soc. 87, 5361–5366.  CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHughes, D. O. & Small, R. W. H. (1962). Acta Cryst. 15, 933–940.  CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A., Ruble, J. R., McMullan, R. K., DeFrees, D. J. & Pople, J. A. (1981). Acta Cryst. B37, 1885–1890.  CrossRef CAS IUCr Journals Google Scholar
First citationKalyanaraman, B., Kispert, L. D. & Atwood, J. L. (1978). J. Cryst. Mol. Struct. 8, 175–181.  CSD CrossRef CAS Web of Science Google Scholar
First citationKoziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136–140.  Web of Science CrossRef CAS Google Scholar
First citationLeiserowitz, L. & Hagler, A. T. (1983). Proc. R. Soc. Lond. A, 388, 133–175.  CAS Google Scholar
First citationLeiserowitz, L. & Schmidt, G. M. J. (1969). J. Chem. Soc. A, 2372–2382.  CrossRef Google Scholar
First citationRheingold, A. L. (2021). CSD Communication (CCDC 2058975). CCDC, Cambridge, England  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStapf, M., Schmidt, U., Seichter, W. & Mazik, M. (2023). Acta Cryst. E79, 1067–1071.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2023). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146