organic compounds
2-Bromoacetamide
aInstitut für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: Manuel.Stapf@chemie.tu-freiberg.de
The title compound, C2H4BrNO, crystallizes in the monoclinic P21/c with one molecule in the The almost planar molecules are organized via N—H⋯O hydrogen bonds into a ladder-type network, which can be characterized by the graph sets R22(8) and R24(8). In addition, the molecules are connected by C—H⋯O and C—H⋯Br contacts.
Keywords: crystal structure; hydrogen bonding; C—H⋯Br interaction; acetamide; carbamoyl group; carboxamide dimer.
CCDC reference: 2381424
Structure description
2-Bromoacetamide described here is isostructural to 2-chloroacetamide (Kalyanaraman et al., 1978; Rheingold, 2021), but not to 2-fluoroacetamide (Hughes & Small, 1962; Jeffrey et al., 1981).
The molecular structure of the title compound is almost planar, with the bromine atom lying only slightly out of the amide plane [distance = 0.374 (3) Å] and orientated in the opposite direction to the carbonyl oxygen atom (Fig. 1). This is reflected in the torsion angles (O1/N1)—C1—C2—Br1 with values of −166.7 (2) and 14.4 (4)°, respectively. Furthermore, an intramolecular N—H⋯Br contact of 2.69 (4) Å is observed. The consists of layers that extend parallel to the (102) plane and are composed of centrosymmetric dimers of the title compound as the smallest supramolecular unit (Fig. 2). Within these dimers, the molecules are held together by N—H⋯O hydrogen bonds [N1—H2N⋯O1, 2.17 (5) Å; Table 1]. The resulting hydrogen-bonding motif, which can be described by the graph set R22(8) (Etter, 1990, 1991; Bernstein et al., 1995), is characteristic of primary (Leiserowitz & Schmidt, 1969; Leiserowitz & Hagler, 1983; Aakeröy et al., 2007) and has been observed by us previously, e.g., for formamide molecules contained in the of a solvate of 1-{[2,6-bis(hydroxymethyl)-4-methylphenoxy]methyl}-3,5-bis{[(4,6-dimethylpyridin-2-yl)amino]methyl}-2,4,6-triethylbenzene (Stapf et al., 2023). This motif is also found for isomorphous 2-chloroacetamide and in the structure of 2-fluoroacetamide. As in these, the dimers in the present structure are connected by N—H⋯O bonds to form a ladder-type network. Here, the carbonyl oxygen atom additionally interacts with the H1N atom of a neighbouring molecule [N1—H1N⋯O1, 2.29 (4) Å] and acts as a double acceptor for strong hydrogen bonds. This forms a further motif of the graph set R42(8), as depicted in Fig. 2. The association of the dimers is supported by C—H⋯Br contacts [d(H⋯Br) = 2.98 Å], whereas the layers are only linked to each other via C—H⋯O interactions [d(H⋯O) = 2.55 Å, see Table 1].
Synthesis and crystallization
2-Bromoacetamide was used as purchased from Fluka. Single crystals suitable for X-ray analysis were obtained by crystallization from petroleum ether (boiling range 313–333 K) according to a literature known procedure for purification of the title compound (Halpern & Maher, 1965). 1H NMR (500 MHz, DMSO-d6, 298 K), δ: 3.81 (s, 2H, CH2), 7.29 (br, 1H, NH), 7.66 (br, 1H, NH) p.p.m. 13C NMR (125 MHz, DMSO-d6, 298 K), δ: 29.63 (CH2), 167.92 (C=O) p.p.m. MS (ESI): m/z calcd. for C2H4BrNONa: 159.94 [M + Na]+, found 159.94.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2381424
https://doi.org/10.1107/S2414314624008630/bh4089sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624008630/bh4089Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314624008630/bh4089Isup3.cml
C2H4BrNO | F(000) = 264 |
Mr = 137.97 | Dx = 2.287 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.373 (4) Å | Cell parameters from 1778 reflections |
b = 5.1899 (14) Å | θ = 1.7–22.5° |
c = 7.557 (3) Å | µ = 10.06 mm−1 |
β = 99.94 (3)° | T = 93 K |
V = 400.7 (3) Å3 | Plate, colorless |
Z = 4 | 0.11 × 0.09 × 0.04 mm |
Stoe Stadivari diffractometer | 879 independent reflections |
Radiation source: Primux 50 Mo | 731 reflections with I > 2σ(I) |
Graded multilayer mirror monochromator | Rint = 0.036 |
Detector resolution: 5.81 pixels mm-1 | θmax = 27.0°, θmin = 2.0° |
rotation method, ω scans | h = −13→13 |
Absorption correction: multi-scan [X-Red32 (Stoe & Cie, 2023; Koziskova et al., 2016] | k = −6→6 |
Tmin = 0.330, Tmax = 0.668 | l = −9→9 |
4506 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: mixed |
wR(F2) = 0.068 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0417P)2 + 0.0569P] where P = (Fo2 + 2Fc2)/3 |
879 reflections | (Δ/σ)max = 0.001 |
52 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
Refinement. The hydrogen atoms at N1 were located in a difference Fourier map and refined with free coordinates, and with the Uiso(H) values fixed at 1.5 times the equivalent Ueq value of the parent nitrogen atom (N1). The H atoms at the methylene carbon atom (C2) were included using a riding model with C—H = 0.99 Å, and the Uiso(H) values were fixed at 1.2 times the equivalent Ueq value of C2. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.61180 (3) | 0.82582 (6) | 0.68653 (4) | 0.01566 (15) | |
O1 | 0.8681 (3) | 0.2945 (4) | 0.5541 (3) | 0.0181 (6) | |
N1 | 0.8855 (3) | 0.7271 (6) | 0.5813 (4) | 0.0174 (7) | |
H1N | 0.854 (4) | 0.863 (7) | 0.608 (6) | 0.026* | |
H2N | 0.950 (5) | 0.735 (8) | 0.550 (6) | 0.026* | |
C1 | 0.8257 (3) | 0.5060 (7) | 0.5962 (4) | 0.0140 (7) | |
C2 | 0.6997 (3) | 0.4974 (6) | 0.6709 (5) | 0.0160 (7) | |
H2A | 0.718682 | 0.421332 | 0.792727 | 0.019* | |
H2B | 0.638276 | 0.380045 | 0.594915 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0141 (2) | 0.0146 (2) | 0.0191 (2) | 0.00213 (14) | 0.00526 (14) | 0.00064 (14) |
O1 | 0.0169 (14) | 0.0129 (12) | 0.0260 (15) | 0.0002 (10) | 0.0078 (12) | −0.0005 (10) |
N1 | 0.0135 (16) | 0.0153 (14) | 0.0251 (18) | 0.0008 (13) | 0.0081 (14) | −0.0024 (13) |
C1 | 0.0114 (18) | 0.0167 (16) | 0.0135 (16) | 0.0029 (14) | 0.0013 (13) | 0.0034 (14) |
C2 | 0.0147 (19) | 0.0128 (15) | 0.0216 (17) | 0.0012 (15) | 0.0063 (14) | 0.0006 (15) |
Br1—C2 | 1.946 (3) | N1—H2N | 0.75 (5) |
O1—C1 | 1.244 (4) | C1—C2 | 1.512 (5) |
N1—C1 | 1.318 (5) | C2—H2A | 0.9900 |
N1—H1N | 0.82 (4) | C2—H2B | 0.9900 |
C1—N1—H1N | 121 (3) | C1—C2—Br1 | 116.2 (2) |
C1—N1—H2N | 122 (3) | C1—C2—H2A | 108.2 |
H1N—N1—H2N | 117 (5) | Br1—C2—H2A | 108.2 |
O1—C1—N1 | 123.7 (3) | C1—C2—H2B | 108.2 |
O1—C1—C2 | 115.8 (3) | Br1—C2—H2B | 108.2 |
N1—C1—C2 | 120.5 (3) | H2A—C2—H2B | 107.4 |
O1—C1—C2—Br1 | −166.7 (2) | N1—C1—C2—Br1 | 14.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···Br1 | 0.82 (4) | 2.69 (4) | 3.120 (3) | 115 (3) |
N1—H1N···O1i | 0.82 (4) | 2.29 (4) | 2.955 (4) | 140 (4) |
N1—H2N···O1ii | 0.75 (5) | 2.17 (5) | 2.915 (5) | 172 (5) |
C2—H2B···Br1iii | 0.99 | 2.98 | 3.610 (3) | 122 |
C2—H2A···O1iv | 0.99 | 2.55 | 3.462 (4) | 153 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) x, y−1, z; (iv) x, −y+1/2, z+1/2. |
Acknowledgements
The authors would like to thank Professor Dr Monika Mazik (Technische Universität Bergakademie Freiberg) for her general support.
Funding information
Funding for this research was provided by: Open Access Funding by the Publication Fund of the TU Bergakademie Freiberg.
References
Aakeröy, C. B., Scott, B. M. T. & Desper, J. (2007). New J. Chem. 31, 2044–2051. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Etter, M. C. (1991). J. Phys. Chem. 95, 4601–4610. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Halpern, J. & Maher, J. P. (1965). J. Am. Chem. Soc. 87, 5361–5366. CrossRef CAS Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Hughes, D. O. & Small, R. W. H. (1962). Acta Cryst. 15, 933–940. CrossRef IUCr Journals Google Scholar
Jeffrey, G. A., Ruble, J. R., McMullan, R. K., DeFrees, D. J. & Pople, J. A. (1981). Acta Cryst. B37, 1885–1890. CrossRef CAS IUCr Journals Google Scholar
Kalyanaraman, B., Kispert, L. D. & Atwood, J. L. (1978). J. Cryst. Mol. Struct. 8, 175–181. CSD CrossRef CAS Web of Science Google Scholar
Koziskova, J., Hahn, F., Richter, J. & Kožíšek, J. (2016). Acta Chim. Slov. 9, 136–140. Web of Science CrossRef CAS Google Scholar
Leiserowitz, L. & Hagler, A. T. (1983). Proc. R. Soc. Lond. A, 388, 133–175. CAS Google Scholar
Leiserowitz, L. & Schmidt, G. M. J. (1969). J. Chem. Soc. A, 2372–2382. CrossRef Google Scholar
Rheingold, A. L. (2021). CSD Communication (CCDC 2058975). CCDC, Cambridge, England Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stapf, M., Schmidt, U., Seichter, W. & Mazik, M. (2023). Acta Cryst. E79, 1067–1071. Web of Science CSD CrossRef IUCr Journals Google Scholar
Stoe & Cie (2023). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.