metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[[{μ2-5-[(di­methyl­amino)(thioxo)meth­­oxy]benzene-1,3-di­carboxyl­ato-κ4O1,O1′:O3,O3′}(μ2-4,4′-di­pyridyl­amine-κ2N4:N4′)cobalt(II)] di­methyl­formamide hemisolvate monohydrate]

crossmark logo

aKey Laboratory of Catalysis and Materials Sciences of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Material Science, South-Central Minzu University, Wuhan, 430074, People's Republic of China, and bSchool of Materials Science and Engineering, Central South University, Changsha, 410083, People's Republic of China
*Correspondence e-mail: 3092809@mail.scuec.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 April 2024; accepted 24 May 2024; online 4 June 2024)

In the crystal structure of the title compound, {[Co(C11H9NSO5)(C10H9N3)]0.5C3H7NO·H2O}n or {[Co(dmtb)(dpa)]·0.5DMF·H2O}n (dmtb2– = 5-[(di­meth­yl­amino)­thioxometh­oxy]-1,3-benzene­dicarboxyl­ate and dpa = 4,4′-di­pyridyl­amine), an assembly of periodic [Co(C11H9NSO5)(C10H9N3)]n layers extending parallel to the bc plane is present. Each layer is constituted by distorted [CoO4N2] octa­hedra, which are connected through the μ2-coordination modes of both dmtb2– and dpa ligands. Occupationally disordered water and di­meth­yl­formamide (DMF) solvent mol­ecules are located in the voids of the network to which they are connected through hydrogen-bonding inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The controllable synthesis of coordination polymers with desired structures is always a challenging subject in crystal engineering (Chung et al., 2023[Chung, W. T., Mekhemer, I. M. A., Mohamed, M. G., Elewa, A. M., EL-Mahdy, A. F. M., Chou, H. H., Kuo, S. W. & Wu, K. C. W. (2023). Coord. Chem. Rev. 483, 215066.]; Li et al., 2021[Li, Y., Karimi, M., Gong, Y.-N., Dai, N., Safarifard, V. & Jiang, H. (2021). Matter, 4, 2230-2265.]; Yang et al., 2021[Yang, J., Ni, W., Ruan, B., Tsai, L.-C., Ma, N., Shi, D., Jiang, T. & Tsai, F.-C. (2021). ECS J. Solid State Sc. 10, 056003.]). In many cases, it is difficult to achieve due to the complex inter­play of different factors and synthesis parameters such as the preferred coordination environment of the central metal atom, the nature of ligand(s), reaction/incorporation of solvents, temperature, metal-to-ligand ratio, pH value, pressure etc. (Sun et al., 2016[Sun, Q.-Z., Yin, Y.-B., Pan, J.-Q., Chai, L.-Y., Su, N., Liu, H., Zhao, Y.-L. & Liu, X.-T. (2016). J. Mol. Struct. 1106, 64-69.], 2017[Sun, Q.-Z., Liu, N.-W., Pan, J.-Q., Zhang, B.-G. & Liu, H. (2017). Transit. Met. Chem. 42, 517-524.], 2018[Sun, Q.-Z., Lu, J.-F., Chai, L.-Y., Liu, N.-W., Zhu, X.-W., Kang, H.-Y. & Liu, H. (2018). Transit. Met. Chem. 43, 439-450.]; Vornholt et al., 2017[Vornholt, S. M., Henkelis, S. E. & Morris, R. (2017). Dalton Trans. 46, 8298-8303.]).

According to our previous studies (Gu et al., 2023[Gu, Y., Li, S., Sun, Q. & Zhang, B. (2023). J. Mol. Struct. 1274, 134598.]; Sun et al., 2019[Sun, Q., Zhu, X., Zhang, N., Zhang, B., Lu, J. & Liu, H. (2019). Inorg. Chem. Commun. 99, 172-175.]), the configuration of the secondary ligand can effectively adjust the steric hindrance within the crystal structure. When Zn2+ is coordinated by dmtb2− {5-[(di­methyl­amino)­thioxometh­oxy]-1,3-benzene­dicarboxyl­ate} and bipy (4,4′-bi­pyridine), the (di­methyl­amino)­thioxometh­oxy group of the dmtb2– ligand increases the steric hindrance, and a di-periodic, i.e. layered, arrangement results. The rigid bipy ligand acts as a pillar in the structural organization (Gu et al., 2023[Gu, Y., Li, S., Sun, Q. & Zhang, B. (2023). J. Mol. Struct. 1274, 134598.]). In this context and in comparison with the former synthesis, we used the slightly larger Co2+ cation and the more flexible 4,4′-di­pyridyl­amine (dpa) ligand for the current study. As a result, the title compound, (1), with a likewise layered structural arrangement, was obtained.

The asymmetric unit of (1) (Fig. 1[link]) comprises one cobalt(II) cation, one dmtb2− anion, one dpa ligand, two occupationally disordered solvent water and one DMF (di­methyl­formamide) solvent mol­ecules, with occupancies of 0.5 for the water mol­ecules and of 0.25 for the DMF solvent mol­ecule. The Co—O/N bond lengths are in the range 2.094 (3)–2.216 (3) Å, comparable with those reported for other related Co2+-polycarboxyl­ate compounds (Gu et al., 2022[Gu, Y.-N., Lu, J.-F., Liu, H., Zhao, B., Zhou, X.-H., Zhao, Y.-Q., Sun, Q.-Z. & Zhang, B.-G. (2022). Cryst. Growth Des. 22, 4874-4884.], 2023[Gu, Y., Li, S., Sun, Q. & Zhang, B. (2023). J. Mol. Struct. 1274, 134598.]; Zhao et al., 2024[Zhao, B., Lu, J., Liu, H., Li, S., Sun, Q. & Zhang, B. (2024). Cryst­EngComm, 26, 1319-1327.]). The Co2+ cation is six-coordinated by four oxygen atoms from two different dmtb2– anions and two nitro­gen atoms from two different dpa ligands, forming a distorted octa­hedral environment. The mean deviation of the equatorial plane constructed by atoms O1, O4A, O5A and N2 is 0.13 Å. The dmtb2– ligand bridges two Co2+ cations in a μ2-κ2: κ2 coord­in­ation mode, so that each carboxyl­ate group of the dmtb2– anion chelates one Co2+ cation. The dpa ligands connect the Co2+ cations as a ditopic linker. Accordingly, two dmtb2– and two dpa ligands bridge the Co2+ cations into four different directions into a layered arrangement extending parallel to the bc plane (Fig. 2[link]). The 5-(di­methyl­amino)­thioxometh­oxy groups dangling above and below a layer protrude into adjacent layers to display an inter­digitated motif (Fig. 3[link]). The disordered water and DMF mol­ecules are located in the voids of this arrangement. Without these solvent mol­ecules, the void volume in (1) is 19.4%. The solvent mol­ecules are linked to the layers by classical hydrogen-bonding inter­actions, which includes the amino group of the dpa ligand (entries 1 and 2 in Table 1[link]) and the water mol­ecules (entries 4–7 in Table 1[link]) as donor groups, and the O atoms of the DMF solvent, of the water mol­ecules and the carboxyl­ate O atoms as acceptor groups. A weaker non-classical hydrogen bond between a CH group of a pyridyl ring and a carb­oxy­ate O atom consolidates the crystal packing (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O6 0.86 1.86 2.700 (19) 164
N3—H3⋯O8 0.86 2.13 2.979 (17) 170
C13—H13⋯O2i 0.93 2.44 3.174 (5) 135
O7—H7D⋯O4 0.84 2.16 2.992 (7) 174
O7—H7E⋯O2ii 0.88 2.26 3.136 (7) 173
O8—H8A⋯O7iii 0.88 2.33 3.10 (2) 146
O8—H8B⋯O5iv 0.85 2.28 3.102 (17) 163
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+1, y, z+1]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The extended asymmetric unit of (1) showing the coordination environment of the Co2+ cation. Displacement ellipsoids are drawn at the 30% probability level. The solvent water and DMF mol­ecules are not shown for clarity. [Symmetry codes: (A) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (B) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (C) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (D) −x + [{3\over 2}], y − [{1\over 2}], –z + [{3\over 2}].]
[Figure 2]
Figure 2
The layered arrangement extending parallel to the bc plane in the crystal structure of (1).
[Figure 3]
Figure 3
5-(Di­methyl­amino)­thioxometh­oxy moieties of the dmtp2– ligand protruding into an adjacent layer.
[Figure 4]
Figure 4
Packing diagram of (1), showing hydrogen-bonding inter­actions (dashed lines).

Synthesis and crystallization

A mixture of Co(NO3)2·6H2O (29 mg, 0.1 mmol), H2dmtb (20 mg, 0.07 mmol) and dpa (17 mg, 0.1 mmol) in 4 ml DMF/H2O (v/v = 1:1) was sealed in a Teflon-lined autoclave and heated to 423 K for 72 h, then gradually cooled down to room temperature. Pink prismatic crystals were obtained. Yield: 24 mg (71%, based on H2dmtb).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The DMF mol­ecule was located near a symmetry center and its occupancy was fixed at 0.5. After refinement, some residual electron density peaks still existed near the DMF mol­ecule. They were assigned to the O atoms of water mol­ecules, both refined with occupancies of 0.5. ISOR and SIMU instructions in SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) were used for these solvent mol­ecules. Hydrogen atoms of the water mol­ecules were included in calculated positions for obtaining reasonable hydrogen bonds and were refined in a riding-model approximation with Uiso(H) = 1.5eq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Co(C11H9NO5S)(C10H9N3)]·0.5C3H7NO·H2O
Mr 551.95
Crystal system, space group Monoclinic, P21/n
Temperature (K) 298
a, b, c (Å) 11.2451 (14), 14.4734 (17), 15.232 (2)
β (°) 103.485 (4)
V3) 2410.7 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.85
Crystal size (mm) 0.32 × 0.20 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.643, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 21131, 4711, 3216
Rint 0.069
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.150, 1.04
No. of reflections 4711
No. of parameters 355
No. of restraints 64
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.76, −0.42
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Poly[[{µ2-5-[(dimethylamino)(thioxo)methoxy]benzene-1,3-dicarboxylato-κ4O1,O1':O3,O3'}(µ2-4,4'-dipyridylamine-κ2N4:N4')cobalt(II)] dimethylformamide hemisolvate monohydrate] top
Crystal data top
[Co(C11H9NO5S)(C10H9N3)]·0.5C3H7NO·H2OF(000) = 1140
Mr = 551.95Dx = 1.521 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.2451 (14) ÅCell parameters from 4852 reflections
b = 14.4734 (17) Åθ = 2.9–26.3°
c = 15.232 (2) ŵ = 0.85 mm1
β = 103.485 (4)°T = 298 K
V = 2410.7 (5) Å3Prism, purple
Z = 40.32 × 0.20 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
3216 reflections with I > 2σ(I)
φ and ω scansRint = 0.069
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.0°, θmin = 2.5°
Tmin = 0.643, Tmax = 0.745h = 1313
21131 measured reflectionsk = 1717
4711 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0742P)2 + 2.1129P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4711 reflectionsΔρmax = 0.76 e Å3
355 parametersΔρmin = 0.42 e Å3
64 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.73927 (5)0.60696 (3)0.44875 (3)0.03359 (18)
S10.21293 (14)0.44589 (10)0.06254 (10)0.0733 (4)
O10.5793 (2)0.53436 (19)0.38364 (19)0.0461 (7)
O20.7529 (3)0.4927 (2)0.3548 (2)0.0535 (8)
O30.2652 (2)0.32239 (19)0.19296 (19)0.0456 (7)
O40.5950 (3)0.18067 (18)0.05399 (18)0.0460 (7)
O50.7602 (3)0.2134 (2)0.15532 (19)0.0510 (8)
N10.0682 (3)0.3554 (2)0.1501 (2)0.0469 (9)
N20.8119 (3)0.5239 (2)0.5610 (2)0.0372 (7)
N30.9644 (3)0.3791 (2)0.8000 (2)0.0412 (8)
H31.0426570.3851810.8147260.049*
N40.8350 (3)0.2025 (2)0.9750 (2)0.0393 (8)
C10.6393 (4)0.4844 (2)0.3406 (2)0.0349 (8)
C20.5745 (3)0.4151 (2)0.2733 (2)0.0327 (8)
C30.4479 (4)0.4062 (2)0.2574 (3)0.0366 (9)
H3A0.4033550.4444950.2868600.044*
C40.3893 (3)0.3402 (3)0.1975 (3)0.0372 (9)
C50.1790 (4)0.3741 (3)0.1362 (3)0.0440 (10)
C60.0385 (4)0.4035 (3)0.0981 (3)0.0567 (12)
H6A0.0615940.4515050.1342990.085*
H6B0.1049110.3605780.0803580.085*
H6C0.0196400.4301040.0452320.085*
C70.0470 (4)0.2900 (4)0.2157 (4)0.0664 (14)
H7A0.0716090.2295710.2009460.100*
H7B0.0384190.2893310.2156020.100*
H7C0.0936320.3074150.2745330.100*
C80.4527 (4)0.2843 (3)0.1506 (3)0.0376 (9)
H80.4110670.2421450.1083530.045*
C90.5783 (3)0.2916 (2)0.1671 (2)0.0331 (8)
C100.6488 (4)0.2256 (2)0.1232 (2)0.0359 (9)
C110.6394 (3)0.3569 (2)0.2289 (2)0.0328 (8)
H110.7241320.3614670.2403030.039*
C120.9316 (4)0.5240 (3)0.6018 (3)0.0432 (10)
H120.9837550.5575850.5746630.052*
C130.9820 (4)0.4786 (3)0.6798 (3)0.0419 (9)
H131.0657190.4821830.7045350.050*
C140.9069 (4)0.4261 (2)0.7228 (2)0.0359 (9)
C150.9165 (4)0.3234 (2)0.8576 (2)0.0374 (9)
C160.7984 (4)0.3275 (3)0.8688 (2)0.0418 (9)
H160.7437520.3710280.8375990.050*
C170.7625 (4)0.2660 (3)0.9269 (2)0.0418 (9)
H170.6821310.2691810.9327040.050*
C180.9509 (4)0.2020 (3)0.9670 (3)0.0459 (10)
H181.0043110.1596591.0014100.055*
C190.9959 (4)0.2596 (3)0.9116 (3)0.0441 (10)
H191.0778470.2568150.9095750.053*
C200.7837 (4)0.4238 (3)0.6808 (3)0.0439 (10)
H200.7296630.3893570.7054900.053*
C210.7419 (4)0.4728 (3)0.6025 (3)0.0414 (9)
H210.6585010.4704150.5762670.050*
O61.2102 (17)0.3656 (14)0.8304 (14)0.116 (6)0.5
O70.3470 (7)0.2021 (5)0.0692 (5)0.090 (3)0.5
H7D0.4148310.1989150.0321120.135*0.5
H7E0.3178010.1467950.0865020.135*0.5
C231.4935 (17)0.4546 (13)0.9452 (13)0.199 (8)0.5
H23A1.4666190.5171200.9490260.298*0.5
H23B1.5613090.4537700.9168860.298*0.5
H23C1.5182690.4289401.0047460.298*0.5
N51.4060 (15)0.4024 (12)0.8994 (13)0.189 (6)0.5
C221.2767 (15)0.4296 (13)0.8683 (16)0.166 (6)0.5
H221.2478080.4885250.8761670.199*0.5
C241.424 (2)0.3087 (13)0.8792 (19)0.237 (9)0.5
H24A1.5092900.2974870.8842810.356*0.5
H24B1.3791600.2952450.8187440.356*0.5
H24C1.3949990.2696610.9208300.356*0.5
O81.2362 (15)0.3812 (15)0.8331 (9)0.109 (6)0.5
H8A1.2835500.3490240.8763650.164*0.5
H8B1.2555200.3635640.7850150.164*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0496 (3)0.0268 (3)0.0268 (3)0.0025 (2)0.0137 (2)0.0018 (2)
S10.0705 (9)0.0671 (9)0.0750 (9)0.0037 (7)0.0023 (7)0.0295 (7)
O10.0447 (16)0.0435 (16)0.0524 (17)0.0023 (13)0.0158 (14)0.0207 (13)
O20.0431 (18)0.071 (2)0.0508 (18)0.0167 (15)0.0189 (14)0.0265 (15)
O30.0296 (15)0.0517 (16)0.0523 (17)0.0015 (12)0.0033 (13)0.0137 (13)
O40.0552 (18)0.0390 (15)0.0452 (16)0.0038 (13)0.0146 (14)0.0154 (13)
O50.0505 (19)0.0645 (19)0.0398 (16)0.0128 (15)0.0140 (14)0.0109 (14)
N10.035 (2)0.049 (2)0.049 (2)0.0063 (16)0.0050 (16)0.0034 (17)
N20.053 (2)0.0305 (16)0.0321 (16)0.0019 (15)0.0178 (15)0.0024 (13)
N30.055 (2)0.0375 (18)0.0328 (17)0.0046 (15)0.0133 (15)0.0085 (14)
N40.062 (2)0.0301 (16)0.0278 (16)0.0028 (15)0.0155 (15)0.0016 (13)
C10.044 (2)0.0323 (19)0.0303 (19)0.0057 (17)0.0131 (17)0.0028 (15)
C20.035 (2)0.0322 (19)0.0317 (19)0.0007 (15)0.0100 (16)0.0002 (15)
C30.040 (2)0.033 (2)0.039 (2)0.0070 (16)0.0119 (17)0.0028 (16)
C40.034 (2)0.039 (2)0.037 (2)0.0013 (17)0.0052 (17)0.0078 (17)
C50.046 (3)0.037 (2)0.040 (2)0.0086 (18)0.0076 (19)0.0092 (17)
C60.043 (3)0.057 (3)0.059 (3)0.015 (2)0.010 (2)0.011 (2)
C70.045 (3)0.078 (3)0.076 (3)0.000 (2)0.013 (2)0.015 (3)
C80.042 (2)0.034 (2)0.034 (2)0.0048 (17)0.0021 (17)0.0014 (16)
C90.039 (2)0.0337 (19)0.0284 (18)0.0011 (16)0.0120 (16)0.0033 (15)
C100.046 (2)0.0316 (19)0.033 (2)0.0005 (17)0.0148 (18)0.0021 (16)
C110.032 (2)0.0368 (19)0.0307 (19)0.0009 (16)0.0091 (15)0.0024 (16)
C120.052 (3)0.042 (2)0.043 (2)0.0035 (19)0.025 (2)0.0106 (18)
C130.046 (2)0.043 (2)0.042 (2)0.0049 (18)0.0210 (19)0.0059 (18)
C140.053 (2)0.0265 (18)0.0313 (19)0.0003 (17)0.0167 (18)0.0002 (15)
C150.058 (3)0.0304 (19)0.0250 (18)0.0051 (18)0.0122 (17)0.0012 (15)
C160.059 (3)0.036 (2)0.031 (2)0.0003 (19)0.0096 (18)0.0046 (16)
C170.051 (3)0.040 (2)0.034 (2)0.0045 (19)0.0088 (18)0.0073 (17)
C180.066 (3)0.034 (2)0.040 (2)0.015 (2)0.018 (2)0.0077 (17)
C190.057 (3)0.041 (2)0.040 (2)0.007 (2)0.022 (2)0.0036 (18)
C200.058 (3)0.041 (2)0.036 (2)0.014 (2)0.0167 (19)0.0061 (17)
C210.049 (2)0.039 (2)0.036 (2)0.0113 (18)0.0098 (18)0.0028 (17)
O60.134 (10)0.108 (8)0.110 (9)0.001 (7)0.031 (7)0.003 (6)
O70.085 (6)0.075 (5)0.084 (5)0.023 (4)0.034 (4)0.032 (4)
C230.166 (13)0.206 (13)0.211 (14)0.064 (11)0.018 (11)0.087 (11)
N50.190 (8)0.193 (8)0.179 (8)0.003 (7)0.031 (7)0.030 (7)
C220.168 (9)0.169 (8)0.161 (8)0.002 (7)0.040 (7)0.020 (7)
C240.233 (14)0.249 (15)0.219 (14)0.067 (13)0.034 (12)0.036 (13)
O80.100 (9)0.192 (16)0.034 (5)0.055 (9)0.013 (5)0.020 (7)
Geometric parameters (Å, º) top
Co1—O12.119 (3)C8—C91.380 (5)
Co1—O22.216 (3)C9—C101.496 (5)
Co1—O4i2.156 (3)C9—C111.395 (5)
Co1—O5i2.211 (3)C11—H110.9300
Co1—N22.094 (3)C12—H120.9300
Co1—N4ii2.100 (3)C12—C131.361 (5)
Co1—C12.502 (4)C13—H130.9300
S1—C51.638 (5)C13—C141.406 (5)
O1—C11.271 (4)C14—C201.385 (6)
O2—C11.251 (5)C15—C161.378 (6)
O3—C41.404 (4)C15—C191.409 (5)
O3—C51.363 (4)C16—H160.9300
O4—C101.266 (4)C16—C171.380 (5)
O5—C101.247 (5)C17—H170.9300
N1—C51.339 (6)C18—H180.9300
N1—C61.451 (5)C18—C191.364 (6)
N1—C71.437 (6)C19—H190.9300
N2—C121.345 (5)C20—H200.9300
N2—C211.341 (5)C20—C211.373 (5)
N3—H30.8600C21—H210.9300
N3—C141.382 (5)O6—C221.245 (17)
N3—C151.390 (5)O7—H7D0.8380
N4—C171.330 (5)O7—H7E0.8812
N4—C181.337 (5)C23—H23A0.9598
C1—C21.496 (5)C23—H23B0.9600
C2—C31.393 (5)C23—H23C0.9595
C2—C111.390 (5)C23—N51.306 (14)
C3—H3A0.9300N5—C221.474 (15)
C3—C41.379 (5)N5—C241.416 (15)
C4—C81.381 (5)C22—H220.9300
C6—H6A0.9600C22—O80.93 (3)
C6—H6B0.9600C24—H24A0.9600
C6—H6C0.9600C24—H24B0.9600
C7—H7A0.9600C24—H24C0.9600
C7—H7B0.9600O8—H8A0.8784
C7—H7C0.9600O8—H8B0.8500
C8—H80.9300
O1—Co1—O260.43 (10)C4—C8—H8120.3
O1—Co1—O4i151.57 (11)C9—C8—C4119.4 (3)
O1—Co1—O5i98.85 (11)C9—C8—H8120.3
O1—Co1—C130.50 (11)C8—C9—C10119.8 (3)
O2—Co1—C129.96 (11)C8—C9—C11119.8 (3)
O4i—Co1—O299.60 (11)C11—C9—C10120.3 (3)
O4i—Co1—O5i59.65 (10)O4—C10—C9120.0 (4)
O4i—Co1—C1126.57 (12)O5—C10—O4119.7 (4)
O5i—Co1—O292.57 (12)O5—C10—C9120.3 (3)
O5i—Co1—C195.62 (11)C2—C11—C9120.4 (3)
N2—Co1—O1102.95 (12)C2—C11—H11119.8
N2—Co1—O291.51 (12)C9—C11—H11119.8
N2—Co1—O4i97.23 (12)N2—C12—H12117.6
N2—Co1—O5i156.87 (12)N2—C12—C13124.9 (4)
N2—Co1—N4ii93.24 (12)C13—C12—H12117.6
N2—Co1—C199.22 (12)C12—C13—H13120.2
N4ii—Co1—O1100.46 (12)C12—C13—C14119.6 (4)
N4ii—Co1—O2160.89 (13)C14—C13—H13120.2
N4ii—Co1—O4i98.15 (12)N3—C14—C13116.7 (4)
N4ii—Co1—O5i90.30 (11)N3—C14—C20126.9 (4)
N4ii—Co1—C1130.93 (14)C20—C14—C13116.3 (4)
C1—O1—Co191.7 (2)N3—C15—C19117.5 (4)
C1—O2—Co187.8 (2)C16—C15—N3125.5 (4)
C5—O3—C4118.8 (3)C16—C15—C19117.0 (3)
C10—O4—Co1iii91.3 (2)C15—C16—H16120.5
C10—O5—Co1iii89.3 (2)C15—C16—C17119.1 (4)
C5—N1—C6119.9 (4)C17—C16—H16120.5
C5—N1—C7123.6 (3)N4—C17—C16124.5 (4)
C7—N1—C6116.4 (4)N4—C17—H17117.8
C12—N2—Co1122.3 (2)C16—C17—H17117.8
C21—N2—Co1122.8 (3)N4—C18—H18117.9
C21—N2—C12114.6 (3)N4—C18—C19124.3 (4)
C14—N3—H3114.8C19—C18—H18117.9
C14—N3—C15130.5 (4)C15—C19—H19120.5
C15—N3—H3114.8C18—C19—C15119.0 (4)
C17—N4—Co1iv119.2 (3)C18—C19—H19120.5
C17—N4—C18116.0 (3)C14—C20—H20120.3
C18—N4—Co1iv124.7 (3)C21—C20—C14119.5 (4)
O1—C1—Co157.84 (18)C21—C20—H20120.3
O1—C1—C2120.2 (3)N2—C21—C20125.1 (4)
O2—C1—Co162.2 (2)N2—C21—H21117.5
O2—C1—O1120.0 (3)C20—C21—H21117.5
O2—C1—C2119.8 (3)H7D—O7—H7E111.7
C2—C1—Co1176.8 (3)H23A—C23—H23B109.5
C3—C2—C1119.7 (3)H23A—C23—H23C109.5
C11—C2—C1120.9 (3)H23B—C23—H23C109.5
C11—C2—C3119.4 (3)N5—C23—H23A111.7
C2—C3—H3A120.3N5—C23—H23B109.3
C4—C3—C2119.4 (3)N5—C23—H23C107.3
C4—C3—H3A120.3C23—N5—C22125.5 (15)
C3—C4—O3118.4 (3)C23—N5—C24122.9 (15)
C3—C4—C8121.6 (4)C24—N5—C22111.4 (13)
C8—C4—O3119.6 (3)O6—C22—N5113.0 (15)
O3—C5—S1122.5 (3)O6—C22—H22123.5
N1—C5—S1127.6 (3)N5—C22—H22123.5
N1—C5—O3109.9 (4)O8—C22—O610.1 (19)
N1—C6—H6A109.5O8—C22—N5107 (2)
N1—C6—H6B109.5O8—C22—H22128.6
N1—C6—H6C109.5N5—C24—H24A109.5
H6A—C6—H6B109.5N5—C24—H24B109.5
H6A—C6—H6C109.5N5—C24—H24C109.5
H6B—C6—H6C109.5H24A—C24—H24B109.5
N1—C7—H7A109.5H24A—C24—H24C109.5
N1—C7—H7B109.5H24B—C24—H24C109.5
N1—C7—H7C109.5C22—O8—H8A80.7
H7A—C7—H7B109.5C22—O8—H8B122.1
H7A—C7—H7C109.5H8A—O8—H8B104.8
H7B—C7—H7C109.5
Co1—O1—C1—O23.4 (4)C5—O3—C4—C387.8 (4)
Co1—O1—C1—C2177.0 (3)C5—O3—C4—C8100.0 (4)
Co1—O2—C1—O13.2 (4)C6—N1—C5—S11.8 (6)
Co1—O2—C1—C2177.2 (3)C6—N1—C5—O3179.0 (3)
Co1iii—O4—C10—O52.2 (4)C7—N1—C5—S1179.1 (4)
Co1iii—O4—C10—C9176.6 (3)C7—N1—C5—O30.1 (6)
Co1iii—O5—C10—O42.1 (4)C8—C9—C10—O419.2 (5)
Co1iii—O5—C10—C9176.7 (3)C8—C9—C10—O5159.6 (4)
Co1—N2—C12—C13173.3 (3)C8—C9—C11—C20.5 (5)
Co1—N2—C21—C20173.9 (3)C10—C9—C11—C2176.6 (3)
Co1iv—N4—C17—C16174.6 (3)C11—C2—C3—C40.3 (5)
Co1iv—N4—C18—C19174.4 (3)C11—C9—C10—O4164.7 (3)
O1—C1—C2—C30.7 (5)C11—C9—C10—O516.5 (5)
O1—C1—C2—C11176.9 (3)C12—N2—C21—C200.5 (6)
O2—C1—C2—C3179.7 (4)C12—C13—C14—N3177.7 (4)
O2—C1—C2—C112.7 (5)C12—C13—C14—C200.6 (6)
O3—C4—C8—C9169.0 (3)C13—C14—C20—C211.2 (6)
N2—C12—C13—C140.6 (6)C14—N3—C15—C1623.9 (6)
N3—C14—C20—C21178.0 (4)C14—N3—C15—C19158.4 (4)
N3—C15—C16—C17178.3 (4)C14—C20—C21—N20.6 (6)
N3—C15—C19—C18178.0 (4)C15—N3—C14—C13178.9 (4)
N4—C18—C19—C151.1 (6)C15—N3—C14—C204.3 (6)
C1—C2—C3—C4177.9 (3)C15—C16—C17—N41.0 (6)
C1—C2—C11—C9179.1 (3)C16—C15—C19—C184.1 (6)
C2—C3—C4—O3170.1 (3)C17—N4—C18—C192.0 (6)
C2—C3—C4—C82.0 (6)C18—N4—C17—C162.0 (6)
C3—C2—C11—C91.5 (5)C19—C15—C16—C174.0 (5)
C3—C4—C8—C93.1 (6)C21—N2—C12—C131.2 (6)
C4—O3—C5—S18.9 (5)C23—N5—C22—O6176 (2)
C4—O3—C5—N1171.9 (3)C23—N5—C22—O8175 (2)
C4—C8—C9—C10174.4 (3)C24—N5—C22—O61 (3)
C4—C8—C9—C111.8 (5)C24—N5—C22—O89 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O60.861.862.700 (19)164
N3—H3···O80.862.132.979 (17)170
C13—H13···O2v0.932.443.174 (5)135
O7—H7D···O40.842.162.992 (7)174
O7—H7E···O2vi0.882.263.136 (7)173
O8—H8A···O7vii0.882.333.10 (2)146
O8—H8B···O5viii0.852.283.102 (17)163
Symmetry codes: (v) x+2, y+1, z+1; (vi) x1/2, y+1/2, z1/2; (vii) x+1, y, z+1; (viii) x+1/2, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award No. 21271189); Natural Science Foundation of Hunan Province of China (award No. 2023JJ30685).

References

First citationBruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChung, W. T., Mekhemer, I. M. A., Mohamed, M. G., Elewa, A. M., EL-Mahdy, A. F. M., Chou, H. H., Kuo, S. W. & Wu, K. C. W. (2023). Coord. Chem. Rev. 483, 215066.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGu, Y., Li, S., Sun, Q. & Zhang, B. (2023). J. Mol. Struct. 1274, 134598.  Web of Science CSD CrossRef Google Scholar
First citationGu, Y.-N., Lu, J.-F., Liu, H., Zhao, B., Zhou, X.-H., Zhao, Y.-Q., Sun, Q.-Z. & Zhang, B.-G. (2022). Cryst. Growth Des. 22, 4874–4884.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, Y., Karimi, M., Gong, Y.-N., Dai, N., Safarifard, V. & Jiang, H. (2021). Matter, 4, 2230–2265.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, Q., Zhu, X., Zhang, N., Zhang, B., Lu, J. & Liu, H. (2019). Inorg. Chem. Commun. 99, 172–175.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, Q.-Z., Liu, N.-W., Pan, J.-Q., Zhang, B.-G. & Liu, H. (2017). Transit. Met. Chem. 42, 517–524.  Web of Science CSD CrossRef CAS Google Scholar
First citationSun, Q.-Z., Lu, J.-F., Chai, L.-Y., Liu, N.-W., Zhu, X.-W., Kang, H.-Y. & Liu, H. (2018). Transit. Met. Chem. 43, 439–450.  Web of Science CrossRef CAS Google Scholar
First citationSun, Q.-Z., Yin, Y.-B., Pan, J.-Q., Chai, L.-Y., Su, N., Liu, H., Zhao, Y.-L. & Liu, X.-T. (2016). J. Mol. Struct. 1106, 64–69.  Web of Science CSD CrossRef CAS Google Scholar
First citationVornholt, S. M., Henkelis, S. E. & Morris, R. (2017). Dalton Trans. 46, 8298–8303.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ni, W., Ruan, B., Tsai, L.-C., Ma, N., Shi, D., Jiang, T. & Tsai, F.-C. (2021). ECS J. Solid State Sc. 10, 056003.  Google Scholar
First citationZhao, B., Lu, J., Liu, H., Li, S., Sun, Q. & Zhang, B. (2024). Cryst­EngComm, 26, 1319–1327.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146