metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Chlorido­[5,10,15,20-tetra­kis­(quinoline-7-carboxamido)­porphinato]iron(III)

crossmark logo

aSchool of Chemical Sciences, University of Chinese Academy of Sciences, 101408, Beijing, People's Republic of China
*Correspondence e-mail: zhangcuijuan@ucas.ac.cn, chujx@ucas.ac.cn

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 25 April 2024; accepted 27 May 2024; online 4 June 2024)

The title compound, [Fe(C84H52N12O4)Cl], crystallizes in space group C2/c. The central FeIII cation (site symmetry 2) is coordinated in a fivefold manner, with four pyrrole N atoms of the porphyrin core in the basal sites and one Cl atom (site symmetry 2) in the apical position, which completes a slightly distorted square-pyramidal environment. The porphyrin macrocycle shows a characteristic ruffled-shape distortion and the iron atom is displaced out of the porphyrin plane by 0.42 Å with the average Fe—N distance being 2.054 (4) Å; the Fe—Cl bond length is 2.2042 (7) Å. Inter­molecular C—H⋯N and C—H⋯O hydrogen bonds occur in the crystal structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The relationship between the structural variations of iron porphyrins and the functional diversity of hemoproteins has been investigated extensively in the literature (Adam et al., 2018[Adam, S. M., Wijeratne, G. B., Rogler, P. J., Diaz, D. E., Quist, D. A., Liu, J. J. & Karlin, K. D. (2018). Chem. Rev. 118, 10840-11022.]). As an exemplar porphyrin model, the mol­ecular structure of the ‘picket-fence’ porphyrin, 5,10,15,20-tetra­kis­(o-pivalamido­phen­yl)porphyrin (referred to as TpivPP) has been thoroughly investigated. The Collman group first reported the crystal structure of a picket-fence metalloporphyrin, [Fe(TpivPP)(1-MeIm)(O2)] (1-MeIm = 1-methyl­imid­azole; Collman et al., 1975[Collman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427-1439.]). Subsequently, several analogues of picket-fence compounds have been synthesized. The Gunter group devised a model compound, 5,10,15,20-tetra­kis­(o-nicotinamido­phen­yl)porphyrin, modeled after the classical picket-fence porphyrin, with the substitution of the tert-butyl group at the terminus by a pyridine group (Gunter et al., 1980[Gunter, M. J., Mander, L. N., McLaughlin, G. M., Murray, K. S., Berry, K. J., Clark, P. E. & Buckingham, D. A. (1980). J. Am. Chem. Soc. 102, 1470-1473.]). Similarly, Yao and co-workers developed 5,10,15,20-tetra­kis­(5-imidazole­carboxyl­amino­phen­yl)porphyrin by substituting the tert-butyl group at the terminus with an imidazole group (Yao et al., 2020[Yao, Z., Schulz, C. E., Yang, J., Li, X. & Li, J. (2020). Inorg. Chem. 59, 1242-1255.]). In this study, we replaced the terminal tert-butyl group with a 7-quinoline group, and determined the crystal structure of the title compound [Fe(C84H52N12O4)Cl].

The asymmetric unit contains one Fe atom and one Cl atom (both site symmetry 2) and half of the porphyrin ligand, which is completed by crystallographic twofold symmetry. There are no solvent mol­ecules present in the crystal. As depicted in Fig. 1[link], the new crystal demonstrates a five-coordinate structure of the metal atom with a significant out-of-plane displacement. The axial chloride ligand is positioned within the mol­ecular cavity on the hindered porphyrin side. Further structural details are presented in supplementary Fig. 1[link], including the specific displacements of each porphyrin core atom from the 24-atom mean plane. Additionally, averaged values of the chemically unique bond lengths (Å) and angles (°) are provided. Notably, the porphyrin macrocycle exhibits a characteristic ruffled-shaped distortion, with the FeIII atom displaced out of the porphyrin plane by 0.42 Å, and an average Fe—Np distance of 2.054 (4) Å (Np represents a porphyrin N atom). The Fe—Cl bond length is 2.2042 (7) Å (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Fe1—Cl1 2.2042 (7) Fe1—N2 2.0581 (13)
Fe1—N1 2.0508 (13)    
       
N1—Fe1—Cl1 102.93 (4) N2—Fe1—Cl1 101.67 (4)
N1i—Fe1—N1 154.14 (8) N2i—Fe1—N2 156.66 (7)
N1—Fe1—N2i 87.60 (5)    
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity.

Several intra- and inter-mol­ecular inter­actions are identified in the title compound, as presented in Table 2[link] and Fig. 2[link]. The distance between C3 and N5 and the C3—H3A⋯N5 angle are 3.411 (2) Å and 166°, respectively. These value are consistent with literature data where the C⋯N separation of C—H⋯N hydrogen bonds ranges from 2.4–3.9 Å (Rabaça et al., 2022[Rabaça, S., Santos, I. C., Lopes, G., da Gama, V., Veiros, L. F. & Almeida, M. (2022). CrystEngComm, 24, 1145-1155.]) with angles of 100–171° (Shivakumar et al., 2012[Shivakumar, K., Vidyasagar, A., Naidu, A., Gonnade, R. G. & Sureshan, K. M. (2012). CrystEngComm, 14, 519-524.]). Furthermore, the distances between C15 and O2, and C31 and O1 are 2.871 (3) Å and 2.867 (2) Å, respectively, which align with literature data where the C⋯O separation of C—H⋯O bonds ranges from 3.00–4.00 Å (Desiraju, 1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]) with angles of 120–180° (Thakur et al., 2015[Thakur, T. S., Dubey, R. & Desiraju, G. R. (2015). IUCrJ, 2, 159-160.]). The mol­ecular packing arrangement is illustrated in Fig. 3[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O2 0.95 2.25 2.871 (3) 122
C31—H31⋯O1 0.95 2.25 2.867 (2) 122
C42—H42⋯Cl1 0.95 2.77 3.3596 (18) 121
C3—H3A⋯N5ii 0.95 2.48 3.411 (2) 166
C14—H14⋯O1iii 0.95 2.45 3.165 (2) 132
Symmetry codes: (ii) [-x+1, -y+1, -z+1]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Intra- and inter-mol­ecular inter­actions in the crystal structure of the title compound.
[Figure 3]
Figure 3
A view of the packing of the title compound. H atoms have been omitted for clarity.

Synthesis and crystallization

All experimental procedures were carried out under an argon atmosphere using a double-manifold vacuum line, Schlenkware, and cannula techniques. Except for the solvent employed in column chromatography, all solvents used in the experimental protocols underwent thorough drying and purging under anhydrous and anaerobic conditions. Solvents utilized within the anhydrous and anaerobic operations (Schlenk system) underwent the freeze–pump–thaw method three times prior to utilization.

The synthesis of the precursor 5,10,15,20-tetra­kis­(quinoline-7-carboxamide)­porphyrin followed the procedures outlined in a previous publication (Yao et al., 2020[Yao, Z., Schulz, C. E., Yang, J., Li, X. & Li, J. (2020). Inorg. Chem. 59, 1242-1255.]). Initially, oxalyl chloride (2.2 mmol) was added to a suspension of 7-quinoline­carb­oxy­lic acid (1 mmol) in a solvent mixture of 15 ml di­chloro­methane (DCM) and 10 µl N,N-di­methyl­formamide in a nitro­gen-protected atmosphere. The reaction mixture was stirred at room temperature for 1 h and concentrated in vacuo. The resulting solid was used in the subsequent step without further purification. Dry DCM (25 ml) containing 7-quinoline­carb­oxy­lic acid chloride was mixed with αααα-H2TamPP (0.2 mmol) and 2,6-lutidine (270 µmol). The resulting solution was refluxed for 90 minutes and concentrated to dryness. The obtained product was purified through chromatography on a silica gel column using an elution solvent mixture of CHCl3:CH3OH in a ratio of 12:1, resulting in a yield of 70%. Subsequently, the chloro-iron porphyrin compound was prepared. To a solution of the free base porphyrin (ca. 100 µmol) in tetra­hydro­furan (30 ml), FeCl2 (20 equiv) and 2,6-lutidine (50 µl) were added. The mixture was refluxed overnight and concentrated to dryness. The resulting product was purified through chromatography on a silica gel column using an elution solvent composed of CHCl3:CH3OH in a ratio of 9:1, resulting in a yield of 70%. To produce X-ray-quality crystals, we utilized a vapor diffusion technique, wherein n-hexane was introduced into a 3 mM di­chloro­methane (CH2Cl2) solution to initiate crystallization.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Fe(C84H52N12O4)Cl]
Mr 1384.68
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 23.1771 (19), 12.7959 (10), 22.5404 (16)
β (°) 100.332 (3)
V3) 6576.5 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.47 × 0.24 × 0.24
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 56518, 6685, 5979
Rint 0.041
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.07
No. of reflections 6685
No. of parameters 469
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.46
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Chlorido[5,10,15,20-tetrakis(quinoline-7-carboxamido)porphinato]iron(III) top
Crystal data top
[Fe(C84H52N12O4)Cl]F(000) = 2860
Mr = 1384.68Dx = 1.399 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 23.1771 (19) ÅCell parameters from 9906 reflections
b = 12.7959 (10) Åθ = 2.5–26.4°
c = 22.5404 (16) ŵ = 0.34 mm1
β = 100.332 (3)°T = 100 K
V = 6576.5 (9) Å3Block, black
Z = 40.47 × 0.24 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.041
φ and ω scansθmax = 26.4°, θmin = 2.3°
56518 measured reflectionsh = 2828
6685 independent reflectionsk = 1616
5979 reflections with I > 2σ(I)l = 2825
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0246P)2 + 12.3743P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6685 reflectionsΔρmax = 0.38 e Å3
469 parametersΔρmin = 0.46 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.5000000.19602 (2)0.2500000.01406 (8)
Cl10.5000000.36828 (5)0.2500000.03714 (17)
O10.41885 (5)0.50579 (9)0.49890 (5)0.0241 (3)
N10.41780 (6)0.16016 (10)0.26565 (6)0.0170 (3)
N30.43287 (6)0.37351 (11)0.43536 (6)0.0205 (3)
N20.53043 (5)0.16349 (10)0.33957 (6)0.0150 (3)
O20.22888 (6)0.45237 (12)0.08918 (6)0.0395 (3)
N60.30417 (7)0.79208 (13)0.18249 (7)0.0305 (3)
N50.48009 (7)0.83155 (12)0.40947 (7)0.0280 (3)
N40.29534 (7)0.33119 (13)0.13238 (7)0.0283 (3)
C50.43699 (7)0.17883 (12)0.37670 (7)0.0161 (3)
C270.40879 (7)0.19029 (13)0.43123 (7)0.0170 (3)
C40.49801 (7)0.17192 (12)0.38512 (7)0.0157 (3)
C330.43741 (7)0.47455 (13)0.45470 (7)0.0189 (3)
C30.53593 (7)0.16678 (12)0.44304 (7)0.0180 (3)
H3A0.5242660.1703620.4813030.022*
C60.39996 (7)0.17128 (12)0.32058 (7)0.0173 (3)
C90.36683 (7)0.15418 (13)0.22305 (7)0.0189 (3)
C400.51885 (7)0.69603 (13)0.35087 (7)0.0202 (3)
C320.40714 (7)0.28739 (13)0.46001 (7)0.0179 (3)
C360.48723 (7)0.72863 (13)0.39614 (7)0.0198 (3)
C10.58807 (7)0.15469 (12)0.36826 (7)0.0165 (3)
C100.36335 (7)0.14926 (13)0.16065 (7)0.0182 (3)
C110.30400 (7)0.14485 (14)0.12114 (7)0.0209 (3)
C390.54339 (8)0.77432 (14)0.31872 (8)0.0240 (4)
H390.5645630.7558480.2878690.029*
C20.59132 (7)0.15590 (13)0.43272 (7)0.0197 (3)
H20.6258870.1501270.4623950.024*
C350.46154 (7)0.65284 (13)0.42850 (7)0.0198 (3)
H350.4401720.6745350.4585790.024*
C340.46684 (7)0.54836 (13)0.41734 (7)0.0191 (3)
C280.38285 (8)0.10387 (14)0.45276 (8)0.0243 (4)
H280.3840450.0381610.4333940.029*
C180.30038 (7)0.50730 (15)0.17230 (8)0.0266 (4)
C310.38000 (7)0.29535 (14)0.51067 (7)0.0219 (3)
H310.3791830.3603780.5308410.026*
C130.22732 (8)0.04515 (16)0.05918 (8)0.0301 (4)
H130.2116260.0201470.0440430.036*
C80.31670 (7)0.15940 (15)0.25228 (8)0.0250 (4)
H80.2767450.1549200.2332260.030*
C260.29544 (7)0.61104 (15)0.15667 (8)0.0256 (4)
H260.2794650.6300380.1163200.031*
C410.52447 (8)0.58790 (14)0.34060 (8)0.0252 (4)
H410.5457740.5649050.3107480.030*
C250.31377 (7)0.68972 (15)0.19966 (8)0.0254 (4)
C120.28099 (7)0.04982 (15)0.09838 (7)0.0250 (4)
H120.3021420.0127950.1097110.030*
C380.53627 (8)0.87648 (14)0.33257 (8)0.0286 (4)
H380.5523890.9304640.3116430.034*
C290.35514 (8)0.11235 (15)0.50233 (8)0.0280 (4)
H290.3368360.0531190.5163640.034*
C300.35440 (8)0.20768 (14)0.53110 (8)0.0253 (4)
H300.3360370.2131610.5654230.030*
C210.33789 (7)0.66073 (15)0.25996 (8)0.0273 (4)
C70.33700 (7)0.17192 (15)0.31210 (8)0.0245 (4)
H70.3139430.1796630.3426720.029*
C160.27200 (7)0.23702 (15)0.10545 (8)0.0240 (4)
C150.21837 (7)0.23219 (16)0.06521 (8)0.0282 (4)
H150.1968220.2943120.0536550.034*
C240.31731 (9)0.86345 (17)0.22469 (9)0.0350 (4)
H240.3102550.9344470.2133520.042*
C420.49958 (8)0.51593 (14)0.37317 (8)0.0247 (4)
H420.5042880.4434900.3661170.030*
C140.19709 (8)0.13711 (17)0.04254 (8)0.0306 (4)
H140.1609620.1344360.0149360.037*
C190.32623 (8)0.47828 (16)0.23208 (9)0.0322 (4)
H190.3308840.4064880.2425820.039*
C170.27158 (8)0.42904 (15)0.12683 (8)0.0274 (4)
C200.34444 (8)0.55349 (16)0.27455 (9)0.0322 (4)
H200.3617040.5332860.3143360.039*
C220.35155 (8)0.74137 (17)0.30306 (9)0.0322 (4)
H220.3678410.7251870.3437480.039*
C230.34113 (9)0.84233 (17)0.28562 (9)0.0355 (4)
H230.3497140.8976590.3139300.043*
C370.50447 (9)0.90062 (15)0.37861 (9)0.0325 (4)
H370.5003830.9723060.3880100.039*
H30.4477 (10)0.3583 (18)0.4048 (11)0.037 (6)*
H40.3277 (12)0.325 (2)0.1580 (12)0.050 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01562 (15)0.01438 (16)0.01258 (15)0.0000.00360 (11)0.000
Cl10.0760 (5)0.0140 (3)0.0224 (3)0.0000.0114 (3)0.000
O10.0304 (6)0.0229 (6)0.0211 (6)0.0027 (5)0.0099 (5)0.0028 (5)
N10.0161 (6)0.0209 (7)0.0141 (6)0.0000 (5)0.0031 (5)0.0001 (5)
N30.0269 (7)0.0189 (7)0.0182 (7)0.0011 (6)0.0106 (6)0.0017 (5)
N20.0148 (6)0.0159 (6)0.0149 (6)0.0024 (5)0.0042 (5)0.0013 (5)
O20.0380 (8)0.0403 (8)0.0345 (8)0.0130 (6)0.0093 (6)0.0028 (6)
N60.0326 (8)0.0328 (9)0.0283 (8)0.0036 (7)0.0114 (6)0.0024 (7)
N50.0375 (9)0.0183 (7)0.0306 (8)0.0004 (6)0.0126 (7)0.0022 (6)
N40.0179 (7)0.0311 (8)0.0327 (8)0.0035 (6)0.0044 (6)0.0022 (7)
C50.0194 (7)0.0137 (7)0.0161 (7)0.0019 (6)0.0060 (6)0.0007 (6)
C270.0157 (7)0.0216 (8)0.0140 (7)0.0010 (6)0.0033 (6)0.0005 (6)
C40.0199 (8)0.0132 (7)0.0145 (7)0.0017 (6)0.0046 (6)0.0003 (5)
C330.0189 (7)0.0204 (8)0.0170 (7)0.0023 (6)0.0022 (6)0.0010 (6)
C30.0221 (8)0.0181 (8)0.0140 (7)0.0030 (6)0.0041 (6)0.0015 (6)
C60.0169 (7)0.0193 (8)0.0170 (7)0.0008 (6)0.0064 (6)0.0001 (6)
C90.0156 (7)0.0228 (8)0.0179 (8)0.0001 (6)0.0022 (6)0.0003 (6)
C400.0192 (8)0.0228 (8)0.0181 (8)0.0016 (6)0.0020 (6)0.0012 (6)
C320.0173 (7)0.0204 (8)0.0163 (7)0.0002 (6)0.0038 (6)0.0006 (6)
C360.0216 (8)0.0186 (8)0.0186 (8)0.0000 (6)0.0020 (6)0.0022 (6)
C10.0164 (7)0.0170 (7)0.0155 (7)0.0020 (6)0.0012 (6)0.0001 (6)
C100.0158 (7)0.0212 (8)0.0176 (7)0.0016 (6)0.0024 (6)0.0002 (6)
C110.0160 (7)0.0325 (9)0.0144 (7)0.0004 (7)0.0037 (6)0.0000 (7)
C390.0252 (8)0.0258 (9)0.0217 (8)0.0034 (7)0.0059 (7)0.0012 (7)
C20.0209 (8)0.0223 (8)0.0152 (7)0.0016 (6)0.0016 (6)0.0006 (6)
C350.0209 (8)0.0209 (8)0.0179 (8)0.0011 (6)0.0040 (6)0.0026 (6)
C340.0201 (8)0.0199 (8)0.0171 (7)0.0002 (6)0.0027 (6)0.0009 (6)
C280.0292 (9)0.0228 (8)0.0231 (8)0.0067 (7)0.0105 (7)0.0030 (7)
C180.0197 (8)0.0339 (10)0.0263 (9)0.0058 (7)0.0040 (7)0.0037 (7)
C310.0243 (8)0.0250 (9)0.0175 (8)0.0018 (7)0.0071 (6)0.0029 (6)
C130.0230 (9)0.0430 (11)0.0245 (9)0.0058 (8)0.0047 (7)0.0095 (8)
C80.0156 (8)0.0385 (10)0.0213 (8)0.0006 (7)0.0045 (6)0.0024 (7)
C260.0218 (8)0.0347 (10)0.0215 (8)0.0073 (7)0.0067 (7)0.0050 (7)
C410.0308 (9)0.0234 (9)0.0241 (9)0.0001 (7)0.0122 (7)0.0047 (7)
C250.0184 (8)0.0343 (10)0.0254 (9)0.0040 (7)0.0087 (7)0.0045 (7)
C120.0228 (8)0.0344 (10)0.0183 (8)0.0002 (7)0.0051 (6)0.0046 (7)
C380.0354 (10)0.0227 (9)0.0292 (9)0.0044 (7)0.0099 (8)0.0031 (7)
C290.0340 (10)0.0283 (9)0.0246 (9)0.0092 (8)0.0132 (7)0.0004 (7)
C300.0270 (9)0.0328 (10)0.0186 (8)0.0013 (7)0.0112 (7)0.0001 (7)
C210.0170 (8)0.0378 (10)0.0272 (9)0.0009 (7)0.0044 (7)0.0037 (8)
C70.0175 (8)0.0373 (10)0.0197 (8)0.0009 (7)0.0063 (6)0.0026 (7)
C160.0177 (8)0.0340 (10)0.0202 (8)0.0010 (7)0.0028 (6)0.0006 (7)
C150.0175 (8)0.0423 (11)0.0235 (9)0.0028 (7)0.0001 (7)0.0043 (8)
C240.0396 (11)0.0336 (11)0.0336 (10)0.0018 (9)0.0118 (9)0.0001 (8)
C420.0311 (9)0.0189 (8)0.0259 (9)0.0002 (7)0.0100 (7)0.0046 (7)
C140.0175 (8)0.0519 (12)0.0213 (9)0.0028 (8)0.0007 (7)0.0021 (8)
C190.0284 (9)0.0325 (10)0.0331 (10)0.0049 (8)0.0016 (8)0.0085 (8)
C170.0236 (9)0.0334 (10)0.0245 (9)0.0046 (7)0.0027 (7)0.0051 (7)
C200.0260 (9)0.0405 (11)0.0272 (9)0.0033 (8)0.0034 (7)0.0066 (8)
C220.0234 (9)0.0469 (12)0.0259 (9)0.0007 (8)0.0037 (7)0.0011 (8)
C230.0343 (10)0.0416 (11)0.0318 (10)0.0018 (9)0.0091 (8)0.0059 (9)
C370.0450 (11)0.0194 (9)0.0364 (10)0.0020 (8)0.0159 (9)0.0019 (7)
Geometric parameters (Å, º) top
Fe1—Cl12.2042 (7)C2—H20.9500
Fe1—N1i2.0508 (13)C35—H350.9500
Fe1—N12.0508 (13)C35—C341.370 (2)
Fe1—N22.0581 (13)C34—C421.418 (2)
Fe1—N2i2.0581 (13)C28—H280.9500
O1—C331.2212 (19)C28—C291.389 (2)
N1—C61.381 (2)C18—C261.373 (3)
N1—C91.384 (2)C18—C191.422 (3)
N3—C331.362 (2)C18—C171.501 (3)
N3—C321.413 (2)C31—H310.9500
N3—H30.85 (2)C31—C301.386 (2)
N2—C41.3811 (19)C13—H130.9500
N2—C11.381 (2)C13—C121.392 (2)
O2—C171.220 (2)C13—C141.386 (3)
N6—C251.373 (2)C8—H80.9500
N6—C241.314 (3)C8—C71.356 (2)
N5—C361.367 (2)C26—H260.9500
N5—C371.314 (2)C26—C251.409 (3)
N4—C161.413 (2)C41—H410.9500
N4—C171.365 (2)C41—C421.368 (2)
N4—H40.86 (3)C25—C211.423 (2)
C5—C271.499 (2)C12—H120.9500
C5—C41.396 (2)C38—H380.9500
C5—C61.399 (2)C38—C371.411 (3)
C27—C321.405 (2)C29—H290.9500
C27—C281.387 (2)C29—C301.383 (3)
C4—C31.439 (2)C30—H300.9500
C33—C341.507 (2)C21—C201.413 (3)
C3—H3A0.9500C21—C221.414 (3)
C3—C21.352 (2)C7—H70.9500
C6—C71.437 (2)C16—C151.402 (2)
C9—C101.396 (2)C15—H150.9500
C9—C81.436 (2)C15—C141.376 (3)
C40—C361.421 (2)C24—H240.9500
C40—C391.414 (2)C24—C231.411 (3)
C40—C411.413 (2)C42—H420.9500
C32—C311.403 (2)C14—H140.9500
C36—C351.408 (2)C19—H190.9500
C1—C10i1.400 (2)C19—C201.370 (3)
C1—C21.442 (2)C20—H200.9500
C10—C111.500 (2)C22—H220.9500
C11—C121.389 (2)C22—C231.359 (3)
C11—C161.404 (2)C23—H230.9500
C39—H390.9500C37—H370.9500
C39—C381.361 (3)
N1i—Fe1—Cl1102.93 (4)C27—C28—H28119.6
N1—Fe1—Cl1102.93 (4)C27—C28—C29120.72 (16)
N1i—Fe1—N1154.14 (8)C29—C28—H28119.6
N1—Fe1—N2i87.60 (5)C26—C18—C19119.81 (18)
N1i—Fe1—N2i87.22 (5)C26—C18—C17117.61 (16)
N1i—Fe1—N287.59 (5)C19—C18—C17122.20 (17)
N1—Fe1—N287.22 (5)C32—C31—H31120.2
N2—Fe1—Cl1101.67 (4)C30—C31—C32119.54 (15)
N2i—Fe1—Cl1101.67 (4)C30—C31—H31120.2
N2i—Fe1—N2156.66 (7)C12—C13—H13120.5
C6—N1—Fe1124.61 (10)C14—C13—H13120.5
C6—N1—C9105.79 (13)C14—C13—C12119.09 (18)
C9—N1—Fe1126.62 (10)C9—C8—H8126.4
C33—N3—C32128.91 (14)C7—C8—C9107.25 (15)
C33—N3—H3117.3 (16)C7—C8—H8126.4
C32—N3—H3113.8 (16)C18—C26—H26119.6
C4—N2—Fe1125.25 (10)C18—C26—C25120.89 (16)
C1—N2—Fe1127.49 (10)C25—C26—H26119.6
C1—N2—C4105.54 (12)C40—C41—H41119.6
C24—N6—C25117.01 (17)C42—C41—C40120.76 (16)
C37—N5—C36116.81 (15)C42—C41—H41119.6
C16—N4—H4115.2 (17)N6—C25—C26118.31 (16)
C17—N4—C16128.76 (15)N6—C25—C21122.29 (17)
C17—N4—H4115.8 (17)C26—C25—C21119.27 (17)
C4—C5—C27118.36 (14)C11—C12—C13120.82 (17)
C4—C5—C6124.14 (14)C11—C12—H12119.6
C6—C5—C27117.45 (13)C13—C12—H12119.6
C32—C27—C5121.12 (14)C39—C38—H38120.7
C28—C27—C5119.27 (14)C39—C38—C37118.69 (17)
C28—C27—C32119.60 (14)C37—C38—H38120.7
N2—C4—C5125.24 (14)C28—C29—H29120.3
N2—C4—C3110.24 (13)C30—C29—C28119.50 (16)
C5—C4—C3124.44 (14)C30—C29—H29120.3
O1—C33—N3123.59 (15)C31—C30—H30119.5
O1—C33—C34120.77 (15)C29—C30—C31121.07 (15)
N3—C33—C34115.64 (14)C29—C30—H30119.5
C4—C3—H3A126.5C20—C21—C25118.88 (17)
C2—C3—C4107.03 (14)C20—C21—C22123.20 (17)
C2—C3—H3A126.5C22—C21—C25117.86 (18)
N1—C6—C5125.72 (14)C6—C7—H7126.4
N1—C6—C7109.96 (14)C8—C7—C6107.14 (14)
C5—C6—C7124.31 (14)C8—C7—H7126.4
N1—C9—C10126.12 (14)C11—C16—N4117.64 (15)
N1—C9—C8109.83 (14)C15—C16—N4122.84 (17)
C10—C9—C8123.98 (15)C15—C16—C11119.52 (17)
C39—C40—C36117.80 (15)C16—C15—H15120.1
C41—C40—C36118.65 (15)C14—C15—C16119.74 (18)
C41—C40—C39123.54 (15)C14—C15—H15120.1
C27—C32—N3117.36 (14)N6—C24—H24117.6
C31—C32—N3123.08 (15)N6—C24—C23124.8 (2)
C31—C32—C27119.55 (15)C23—C24—H24117.6
N5—C36—C40122.59 (15)C34—C42—H42119.7
N5—C36—C35118.05 (15)C41—C42—C34120.66 (16)
C35—C36—C40119.35 (15)C41—C42—H42119.7
N2—C1—C10i125.27 (14)C13—C14—H14119.3
N2—C1—C2110.02 (13)C15—C14—C13121.31 (16)
C10i—C1—C2124.67 (14)C15—C14—H14119.3
C9—C10—C1i124.11 (14)C18—C19—H19119.9
C9—C10—C11118.76 (14)C20—C19—C18120.23 (18)
C1i—C10—C11117.00 (14)C20—C19—H19119.9
C12—C11—C10120.19 (15)O2—C17—N4123.52 (18)
C12—C11—C16119.47 (15)O2—C17—C18121.18 (17)
C16—C11—C10120.31 (15)N4—C17—C18115.26 (15)
C40—C39—H39120.4C21—C20—H20119.6
C38—C39—C40119.10 (16)C19—C20—C21120.86 (17)
C38—C39—H39120.4C19—C20—H20119.6
C3—C2—C1107.16 (14)C21—C22—H22120.4
C3—C2—H2126.4C23—C22—C21119.26 (18)
C1—C2—H2126.4C23—C22—H22120.4
C36—C35—H35119.4C24—C23—H23120.6
C34—C35—C36121.12 (15)C22—C23—C24118.78 (19)
C34—C35—H35119.4C22—C23—H23120.6
C35—C34—C33116.39 (14)N5—C37—C38124.99 (17)
C35—C34—C42119.43 (15)N5—C37—H37117.5
C42—C34—C33124.17 (15)C38—C37—H37117.5
Fe1—N1—C6—C519.5 (2)C32—C31—C30—C290.0 (3)
Fe1—N1—C6—C7161.64 (11)C36—N5—C37—C381.1 (3)
Fe1—N1—C9—C1014.7 (2)C36—C40—C39—C380.5 (2)
Fe1—N1—C9—C8162.24 (12)C36—C40—C41—C420.6 (3)
Fe1—N2—C4—C516.4 (2)C36—C35—C34—C33179.90 (14)
Fe1—N2—C4—C3166.77 (10)C36—C35—C34—C421.1 (2)
Fe1—N2—C1—C10i11.3 (2)C1—N2—C4—C5177.68 (15)
Fe1—N2—C1—C2166.51 (11)C1—N2—C4—C30.84 (17)
O1—C33—C34—C3512.0 (2)C1i—C10—C11—C1284.9 (2)
O1—C33—C34—C42166.96 (16)C1i—C10—C11—C1693.30 (19)
N1—C6—C7—C81.0 (2)C10—C9—C8—C7175.04 (17)
N1—C9—C10—C1i3.2 (3)C10i—C1—C2—C3177.04 (15)
N1—C9—C10—C11179.00 (15)C10—C11—C12—C13176.68 (15)
N1—C9—C8—C71.9 (2)C10—C11—C16—N45.5 (2)
N3—C33—C34—C35167.42 (15)C10—C11—C16—C15175.72 (15)
N3—C33—C34—C4213.6 (2)C11—C16—C15—C141.4 (3)
N3—C32—C31—C30178.28 (15)C39—C40—C36—N50.2 (2)
N2—C4—C3—C20.36 (18)C39—C40—C36—C35179.16 (15)
N2—C1—C2—C30.80 (18)C39—C40—C41—C42179.88 (17)
N6—C25—C21—C20177.71 (17)C39—C38—C37—N50.8 (3)
N6—C25—C21—C220.7 (3)C35—C34—C42—C411.8 (3)
N6—C24—C23—C220.1 (3)C28—C27—C32—N3178.40 (15)
N5—C36—C35—C34179.82 (16)C28—C27—C32—C310.9 (2)
N4—C16—C15—C14177.35 (16)C28—C29—C30—C311.1 (3)
C5—C27—C32—N30.2 (2)C18—C26—C25—N6175.69 (16)
C5—C27—C32—C31179.55 (14)C18—C26—C25—C210.3 (2)
C5—C27—C28—C29178.49 (16)C18—C19—C20—C210.1 (3)
C5—C4—C3—C2177.23 (15)C8—C9—C10—C1i173.32 (16)
C5—C6—C7—C8177.82 (16)C8—C9—C10—C112.5 (3)
C27—C5—C4—N2178.50 (14)C26—C18—C19—C202.1 (3)
C27—C5—C4—C35.1 (2)C26—C18—C17—O227.1 (3)
C27—C5—C6—N1179.83 (14)C26—C18—C17—N4155.05 (17)
C27—C5—C6—C71.2 (2)C26—C25—C21—C201.9 (2)
C27—C32—C31—C301.0 (2)C26—C25—C21—C22175.12 (16)
C27—C28—C29—C301.2 (3)C41—C40—C36—N5179.38 (16)
C4—N2—C1—C10i176.82 (15)C41—C40—C36—C351.3 (2)
C4—N2—C1—C20.99 (17)C41—C40—C39—C38179.03 (17)
C4—C5—C27—C3279.19 (19)C25—N6—C24—C230.9 (3)
C4—C5—C27—C28102.17 (18)C25—C21—C20—C192.1 (3)
C4—C5—C6—N12.7 (3)C25—C21—C22—C230.2 (3)
C4—C5—C6—C7176.00 (16)C12—C11—C16—N4176.33 (15)
C4—C3—C2—C10.25 (18)C12—C11—C16—C152.4 (2)
C33—N3—C32—C27179.50 (15)C12—C13—C14—C151.7 (3)
C33—N3—C32—C311.2 (3)C21—C22—C23—C240.5 (3)
C33—C34—C42—C41179.28 (16)C16—N4—C17—O211.7 (3)
C6—N1—C9—C10175.64 (16)C16—N4—C17—C18166.07 (17)
C6—N1—C9—C81.26 (18)C16—C11—C12—C131.5 (2)
C6—C5—C27—C32103.49 (18)C16—C15—C14—C130.7 (3)
C6—C5—C27—C2875.2 (2)C24—N6—C25—C26174.62 (16)
C6—C5—C4—N24.4 (2)C24—N6—C25—C211.2 (3)
C6—C5—C4—C3172.04 (15)C14—C13—C12—C110.6 (3)
C9—N1—C6—C5179.00 (15)C19—C18—C26—C252.3 (3)
C9—N1—C6—C70.17 (18)C19—C18—C17—O2145.79 (19)
C9—C10—C11—C1299.02 (19)C19—C18—C17—N432.1 (2)
C9—C10—C11—C1682.8 (2)C17—N4—C16—C11176.58 (17)
C9—C8—C7—C61.8 (2)C17—N4—C16—C152.1 (3)
C40—C36—C35—C340.4 (2)C17—C18—C26—C25170.75 (15)
C40—C39—C38—C370.1 (3)C17—C18—C19—C20170.57 (17)
C40—C41—C42—C341.0 (3)C20—C21—C22—C23176.70 (18)
C32—N3—C33—O10.4 (3)C22—C21—C20—C19174.78 (18)
C32—N3—C33—C34179.03 (15)C37—N5—C36—C400.6 (3)
C32—C27—C28—C290.2 (3)C37—N5—C36—C35179.97 (17)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O20.952.252.871 (3)122
C31—H31···O10.952.252.867 (2)122
C42—H42···Cl10.952.773.3596 (18)121
C3—H3A···N5ii0.952.483.411 (2)166
C14—H14···O1iii0.952.453.165 (2)132
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: University of Chinese Academy of Sciences.

References

First citationAdam, S. M., Wijeratne, G. B., Rogler, P. J., Diaz, D. E., Quist, D. A., Liu, J. J. & Karlin, K. D. (2018). Chem. Rev. 118, 10840–11022.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCollman, J. P., Gagne, R. R., Reed, C., Halbert, T. R., Lang, G. & Robinson, W. T. (1975). J. Am. Chem. Soc. 97, 1427–1439.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGunter, M. J., Mander, L. N., McLaughlin, G. M., Murray, K. S., Berry, K. J., Clark, P. E. & Buckingham, D. A. (1980). J. Am. Chem. Soc. 102, 1470–1473.  CSD CrossRef CAS Web of Science Google Scholar
First citationRabaça, S., Santos, I. C., Lopes, G., da Gama, V., Veiros, L. F. & Almeida, M. (2022). CrystEngComm, 24, 1145–1155.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShivakumar, K., Vidyasagar, A., Naidu, A., Gonnade, R. G. & Sureshan, K. M. (2012). CrystEngComm, 14, 519–524.  Web of Science CSD CrossRef CAS Google Scholar
First citationThakur, T. S., Dubey, R. & Desiraju, G. R. (2015). IUCrJ, 2, 159–160.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationYao, Z., Schulz, C. E., Yang, J., Li, X. & Li, J. (2020). Inorg. Chem. 59, 1242–1255.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146