organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-(Pyridin-4-yl)-2,3-di­hydro-1H-naphtho­[1,8-de][1,3,2]di­aza­borinine

crossmark logo

aDepartment of Systems Engineering, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@wakayama-u.ac.jp

Edited by I. Brito, University of Antofagasta, Chile (Received 11 June 2024; accepted 24 June 2024; online 28 June 2024)

4-PyBdan

The title compound, C15H12BN3, is a type of di­aza­borinane featuring substitution at 1, 2, and 3 positions in the nitro­gen–boron six-membered heterocycle. It is comprised of two almost planar units, the pyridyl ring and the Bdan (dan = 1,8-di­aminona­phtho) group, which subtend a dihedral angle of 24.57 (5)°. In the crystal, the mol­ecules are linked into R44(28) hydrogen-bonding networks around the fourfold inversion axis, giving cyclic tetra­mers. The mol­ecules form columnar stacks along the c axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C15H12BN3, is a type of di­aza­borinane that is substituted at the 1, 2, and 3 positions in the nitro­gen–boron six-membered heterocycle. Recently, di­aza­borinanes have been found to stabilize organic radicals (LaPorte et al., 2023[LaPorte, A. J., Feldner, J. E., Spies, J. C., Maher, T. J. & Burke, M. D. (2023). Angew. Chem. Int. Ed. 62, e202309566.]).

The title mol­ecule (Fig. 1[link]) is comprised of two almost planar units, the N1/C1–C5 pyridyl ring and the N2/N3/C6–C15/B1 group, which subtend a dihedral angle of 24.57 (5)°. This is slightly larger than those in related compounds that have almost planar structures (Akerman et al., 2011[Akerman, M. P., Robinson, R. S. & Slabber, C. A. (2011). Acta Cryst. E67, o1873.]; Slabber et al., 2011[Slabber, C. A., Grimmer, C., Akerman, M. P. & Robinson, R. S. (2011). Acta Cryst. E67, o1995.]).

[Figure 1]
Figure 1
The title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

In the crystal, the mol­ecules make [R_{4}^{4}](28) hydrogen-bonding (Table 1[link]) networks around the fourfold inversion axis, giving a cyclic tetra­mer as shown in Fig. 2[link]. The formation of this tetra­meric structure is thought to increase the dihedral angle. The mol­ecules also stack along the c axis, as shown in Fig. 3[link], forming columnar stacks in which the B1⋯C6ii, B1⋯C7ii, and B1⋯C8ii distances are 3.656 (3), 3.513 (3) and 3.573 (3) Å, respectively [symmetry code:(ii) x, y, z − 1].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N1i 0.93 (2) 2.21 (2) 3.113 (2) 162 (2)
Symmetry code: (i) [y+{\script{1\over 2}}, -x+{\script{1\over 2}}, -z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The hydrogen-bonding network of the title compound. [Symmetry code: (i) y + [{1\over 2}], −x + [{1\over 2}], −z − [{1\over 2}].]
[Figure 3]
Figure 3
The stacking structure along the c axis. [Symmetry codes:(ii) x, y, z − 1; (iii) x, y, z + 1.]

Synthesis and crystallization

The title compound was prepared according to the literature method (Hashimoto & Okuno, 2024[Hashimoto, S. & Okuno, T. (2024). IUCrData, 9, x240362.]). Single crystals of sufficient quality were obtained by recrystallization from chloro­form solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H12BN3
Mr 245.09
Crystal system, space group Tetragonal, I[\overline{4}]
Temperature (K) 100
a, c (Å) 21.5659 (3), 5.0863 (1)
V3) 2365.58 (8)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.65
Crystal size (mm) 0.20 × 0.05 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.807, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7772, 2268, 2125
Rint 0.036
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.083, 1.06
No. of reflections 2268
No. of parameters 180
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.15, −0.16
Absolute structure Flack x determined using 840 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.2 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

\ 2-(Pyridin-4-yl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]\ diazaborinine top
Crystal data top
C15H12BN3Dx = 1.376 Mg m3
Mr = 245.09Cu Kα radiation, λ = 1.54184 Å
Tetragonal, I4Cell parameters from 5132 reflections
a = 21.5659 (3) Åθ = 2.9–75.0°
c = 5.0863 (1) ŵ = 0.65 mm1
V = 2365.58 (8) Å3T = 100 K
Z = 8Block, clear colourless
F(000) = 10240.2 × 0.05 × 0.05 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix
diffractometer
2268 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source2125 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.0000 pixels mm-1θmax = 75.0°, θmin = 2.9°
ω scansh = 2526
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2024)
k = 2627
Tmin = 0.807, Tmax = 1.000l = 56
7772 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.1789P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.083(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.15 e Å3
2268 reflectionsΔρmin = 0.15 e Å3
180 parametersAbsolute structure: Flack x determined using 840 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.2 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The positions of the N-bound H atoms were obtained from difference Fourier maps and were refined isotropically. The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom for Csp2).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.20041 (7)0.03150 (8)0.0041 (4)0.0233 (4)
C70.28868 (9)0.15497 (9)0.5132 (4)0.0252 (4)
H70.33240.16040.50710.030*
C10.39265 (9)0.01777 (9)0.5063 (4)0.0270 (4)
H10.43150.00320.56890.032*
N20.29394 (8)0.07934 (7)0.1587 (3)0.0217 (3)
C130.10022 (9)0.05895 (9)0.1820 (4)0.0267 (4)
H130.07970.03240.06110.032*
C100.15895 (9)0.14042 (9)0.5376 (4)0.0255 (4)
C150.19455 (9)0.10642 (8)0.3491 (4)0.0219 (4)
C50.31573 (9)0.08947 (9)0.5129 (4)0.0273 (4)
H50.29890.12700.57960.033*
C60.26012 (9)0.11421 (8)0.3414 (4)0.0218 (4)
C140.16387 (9)0.06513 (9)0.1728 (4)0.0231 (4)
C110.09363 (10)0.13134 (9)0.5452 (4)0.0288 (5)
H110.06930.15270.67210.035*
B10.26579 (10)0.03753 (10)0.0181 (4)0.0220 (4)
C30.30411 (9)0.00146 (9)0.2242 (4)0.0220 (4)
C40.28147 (9)0.05701 (9)0.3271 (4)0.0262 (4)
H40.24260.07270.27000.031*
C120.06564 (9)0.09191 (9)0.3700 (4)0.0286 (5)
H120.02190.08680.37580.034*
N10.37087 (8)0.07118 (8)0.6036 (3)0.0268 (4)
C20.36184 (9)0.01756 (9)0.3191 (4)0.0246 (4)
H2A0.38010.05470.25550.030*
C90.19006 (10)0.18127 (9)0.7109 (4)0.0277 (5)
H90.16700.20390.83800.033*
C80.25310 (10)0.18841 (9)0.6969 (4)0.0279 (4)
H80.27320.21640.81320.033*
H30.1804 (12)0.0058 (12)0.125 (6)0.042 (7)*
H20.3364 (11)0.0870 (10)0.167 (5)0.028 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0236 (8)0.0238 (8)0.0225 (8)0.0017 (6)0.0004 (7)0.0003 (7)
C70.0272 (9)0.0252 (9)0.0233 (10)0.0016 (8)0.0001 (8)0.0025 (8)
C10.0229 (9)0.0263 (9)0.0317 (10)0.0004 (8)0.0016 (9)0.0004 (9)
N20.0203 (8)0.0225 (7)0.0223 (8)0.0012 (6)0.0012 (7)0.0008 (7)
C130.0254 (10)0.0260 (9)0.0287 (10)0.0001 (8)0.0002 (9)0.0042 (9)
C100.0313 (10)0.0235 (9)0.0216 (10)0.0058 (8)0.0042 (8)0.0068 (8)
C150.0262 (9)0.0202 (8)0.0193 (9)0.0045 (7)0.0022 (8)0.0053 (7)
C50.0272 (10)0.0245 (9)0.0301 (10)0.0008 (8)0.0020 (9)0.0043 (8)
C60.0270 (9)0.0200 (8)0.0183 (9)0.0027 (7)0.0016 (8)0.0050 (8)
C140.0271 (9)0.0209 (9)0.0214 (9)0.0025 (7)0.0018 (8)0.0057 (8)
C110.0301 (10)0.0283 (10)0.0278 (11)0.0088 (8)0.0094 (9)0.0068 (8)
B10.0254 (10)0.0194 (9)0.0212 (10)0.0027 (8)0.0001 (9)0.0041 (9)
C30.0227 (9)0.0228 (9)0.0204 (9)0.0030 (7)0.0033 (7)0.0017 (7)
C40.0223 (9)0.0274 (9)0.0290 (10)0.0008 (8)0.0003 (8)0.0000 (9)
C120.0248 (9)0.0290 (10)0.0319 (11)0.0044 (8)0.0051 (9)0.0092 (9)
N10.0272 (9)0.0263 (8)0.0270 (9)0.0038 (7)0.0015 (7)0.0034 (7)
C20.0253 (9)0.0210 (9)0.0276 (10)0.0009 (8)0.0009 (8)0.0012 (8)
C90.0383 (11)0.0243 (10)0.0205 (10)0.0092 (8)0.0042 (9)0.0014 (8)
C80.0387 (11)0.0223 (9)0.0226 (10)0.0035 (8)0.0019 (9)0.0010 (8)
Geometric parameters (Å, º) top
N3—C141.399 (3)C10—C91.416 (3)
N3—B11.418 (3)C15—C61.425 (3)
N3—H30.93 (3)C15—C141.426 (3)
C7—H70.9500C5—H50.9500
C7—C61.384 (3)C5—C41.389 (3)
C7—C81.408 (3)C5—N11.335 (3)
C1—H10.9500C11—H110.9500
C1—N11.339 (3)C11—C121.372 (3)
C1—C21.389 (3)B1—C31.578 (3)
N2—C61.401 (2)C3—C41.396 (3)
N2—B11.411 (3)C3—C21.397 (3)
N2—H20.93 (2)C4—H40.9500
C13—H130.9500C12—H120.9500
C13—C141.380 (3)C2—H2A0.9500
C13—C121.405 (3)C9—H90.9500
C10—C151.431 (3)C9—C81.370 (3)
C10—C111.423 (3)C8—H80.9500
C14—N3—B1123.02 (17)C13—C14—N3122.15 (18)
C14—N3—H3118.1 (17)C13—C14—C15120.03 (18)
B1—N3—H3118.8 (17)C10—C11—H11119.9
C6—C7—H7119.9C12—C11—C10120.23 (18)
C6—C7—C8120.13 (18)C12—C11—H11119.9
C8—C7—H7119.9N3—B1—C3120.36 (18)
N1—C1—H1118.0N2—B1—N3117.04 (18)
N1—C1—C2123.90 (18)N2—B1—C3122.60 (17)
C2—C1—H1118.0C4—C3—B1121.57 (17)
C6—N2—B1122.82 (16)C4—C3—C2115.74 (18)
C6—N2—H2112.8 (15)C2—C3—B1122.68 (17)
B1—N2—H2124.4 (15)C5—C4—C3120.12 (18)
C14—C13—H13119.9C5—C4—H4119.9
C14—C13—C12120.1 (2)C3—C4—H4119.9
C12—C13—H13119.9C13—C12—H12119.3
C11—C10—C15118.62 (19)C11—C12—C13121.46 (18)
C9—C10—C15118.83 (18)C11—C12—H12119.3
C9—C10—C11122.54 (18)C5—N1—C1116.03 (17)
C6—C15—C10119.37 (18)C1—C2—C3120.15 (17)
C6—C15—C14121.14 (17)C1—C2—H2A119.9
C14—C15—C10119.49 (17)C3—C2—H2A119.9
C4—C5—H5118.0C10—C9—H9119.7
N1—C5—H5118.0C8—C9—C10120.51 (19)
N1—C5—C4124.06 (18)C8—C9—H9119.7
C7—C6—N2121.89 (17)C7—C8—H8119.4
C7—C6—C15119.97 (17)C9—C8—C7121.19 (19)
N2—C6—C15118.14 (16)C9—C8—H8119.4
N3—C14—C15117.81 (16)
N3—B1—C3—C423.9 (3)C11—C10—C15—C6179.01 (17)
N3—B1—C3—C2154.92 (19)C11—C10—C15—C140.7 (3)
N2—B1—C3—C4156.09 (19)C11—C10—C9—C8179.81 (19)
N2—B1—C3—C225.1 (3)B1—N3—C14—C13179.50 (19)
C10—C15—C6—C70.8 (3)B1—N3—C14—C151.1 (3)
C10—C15—C6—N2178.65 (16)B1—N2—C6—C7179.99 (18)
C10—C15—C14—N3178.38 (17)B1—N2—C6—C150.5 (3)
C10—C15—C14—C131.0 (3)B1—C3—C4—C5178.49 (18)
C10—C11—C12—C130.9 (3)B1—C3—C2—C1178.13 (18)
C10—C9—C8—C70.8 (3)C4—C5—N1—C10.6 (3)
C15—C10—C11—C121.7 (3)C4—C3—C2—C10.7 (3)
C15—C10—C9—C80.5 (3)C12—C13—C14—N3177.53 (17)
C6—C7—C8—C90.3 (3)C12—C13—C14—C151.8 (3)
C6—N2—B1—N30.3 (3)N1—C1—C2—C31.1 (3)
C6—N2—B1—C3179.77 (16)N1—C5—C4—C30.3 (3)
C6—C15—C14—N31.4 (3)C2—C1—N1—C50.9 (3)
C6—C15—C14—C13179.24 (18)C2—C3—C4—C50.4 (3)
C14—N3—B1—N20.6 (3)C9—C10—C15—C60.3 (3)
C14—N3—B1—C3179.47 (17)C9—C10—C15—C14179.93 (16)
C14—C13—C12—C110.9 (3)C9—C10—C11—C12179.00 (18)
C14—C15—C6—C7179.45 (17)C8—C7—C6—N2178.96 (17)
C14—C15—C6—N21.1 (3)C8—C7—C6—C150.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N1i0.93 (2)2.21 (2)3.113 (2)162 (2)
Symmetry code: (i) y+1/2, x+1/2, z1/2.
 

References

First citationAkerman, M. P., Robinson, R. S. & Slabber, C. A. (2011). Acta Cryst. E67, o1873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHashimoto, S. & Okuno, T. (2024). IUCrData, 9, x240362.  Google Scholar
First citationLaPorte, A. J., Feldner, J. E., Spies, J. C., Maher, T. J. & Burke, M. D. (2023). Angew. Chem. Int. Ed. 62, e202309566.  Web of Science CSD CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlabber, C. A., Grimmer, C., Akerman, M. P. & Robinson, R. S. (2011). Acta Cryst. E67, o1995.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146