organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Benzene-1,2,4,5-tetrol

crossmark logo

aNanoscale and Microscale Research Centre, University of Nottingham, Nottingham, NG7 2RD, United Kingdom, bSchool of Chemistry, University of Nottingham, Nottingham, NG7 2RD, United Kingdom, and cDepartment of Mechanical, Materials, & Manufacturing Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
*Correspondence e-mail: benjamin.weare1@nottingham.ac.uk

Edited by I. Brito, University of Antofagasta, Chile (Received 4 June 2024; accepted 24 June 2024; online 28 June 2024)

The crystal structure of the title compound was determined at 120 K. It crystallizes in the triclinic space group P[\overline{1}] with four independent mol­ecules in the asymmetric unit. In the crystal, each symmetry-unique mol­ecule forms ππ stacks on itself, giving four unique ππ stacking inter­actions. Inter­molecular hydrogen bonding is observed between each pair of independent mol­ecules, where each hy­droxy group can act as a hydrogen-bond donor and acceptor.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Benzene-1,2,4,5-tetrol, a derivative of 2,5-dihy­droxy-1,4-benzo­quinone, has seen extensive use as a precursor to functionalized benzenes as well as more complex mol­ecules and ligands. It has been used to access a number of more complex organic structures, such as phospho­rous-containing ligands for transition-metal complexes (Pandey et al., 2019[Pandey, M. K., Kunchur, H. S., Ananthnag, G. S., Mague, J. T. & Balakrishna, M. S. (2019). Dalton Trans. 48, 3610-3624.]) or to bridge metal centres in complexes (Wellala et al., 2018[Wellala, N. P. N., Dong, H. T., Krause, J. A. & Guan, H. (2018). Organometallics, 37, 4031-4039.]). In recent years benzene-1,2,4,5-tetrol has found a niche as a monomer for the synthesis of polymers, coordination polymers, covalent organic frameworks, and a variety of other supra­molecular structures. It has seen extensive use in the synthesis of framework polymers where it acts as a linear monomer linking other structural units. Recent examples include combining benzene-1,2,4,5-tetrol with a boronic acid-containing porphyrin, a two-dimensional square-pored boronate ester covalent organic framework (COF), creating a thin film that could be integrated into a field-effect transistor (Park et al., 2020[Park, S. W., Liao, Z., Ibarlucea, B., Qi, H., Lin, H. H., Becker, D., Melidonie, J., Zhang, T., Sahabudeen, H., Baraban, L., Baek, C. K., Zheng, Z., Zschech, E., Fery, A., Heine, T., Kaiser, U., Cuniberti, G., Dong, R. & Feng, X. (2020). Angew. Chem. Int. Ed. 59, 8218-8224.]), as well as the creation of hafnium- and zirconium-containing coordination polymers with water sorption properties, using benzene-1,2,4,5-tetrol as a linker (Poschmann et al., 2021[Poschmann, M. P. M., Reinsch, H. & Stock, N. (2021). Z. Anorg. Allg. Chem. 647, 436-441.]). Benzene-1,2,4,5-tetrol has also been used in the synthesis of a variety of other COFs (Rondelli et al., 2023[Rondelli, M., Daranas, A. H. & Martín, T. (2023). J. Org. Chem. 88, 2113-2121.]; Dalapati et al., 2015[Dalapati, S., Addicoat, M., Jin, S., Sakurai, T., Gao, J., Xu, H., Irle, S., Seki, S. & Jiang, D. (2015). Nat. Commun. 6, 7786.]; Ma et al., 2013[Ma, H., Ren, H., Meng, S., Yan, Z., Zhao, H., Sun, F. & Zhu, G. (2013). Chem. Commun. 49, 9773.]; Lanni et al., 2011[Lanni, L. M., Tilford, R. W., Bharathy, M. & Lavigne, J. J. (2011). J. Am. Chem. Soc. 133, 13975-13983.]), coordination polymers (Abrahams et al., 2016[Abrahams, B. F., Dharma, A. D., Dyett, B., Hudson, T. A., Maynard-Casely, H., Kingsbury, C. J., McCormick, L. J., Robson, R., Sutton, A. L. & White, K. F. (2016). Dalton Trans. 45, 1339-1344.]), supra­molecular structures (Jia et al., 2015[Jia, S.-H., Ding, X., Yu, H.-T. & Han, B.-H. (2015). RSC Adv. 5, 71095-71101.]; Niu et al., 2006[Niu, W., Smith, M. D. & Lavigne, J. J. (2006). Cryst. Growth Des. 6, 1274-1277.]; Nakabayashi & Ohkoshi, 2009[Nakabayashi, K. & Ohkoshi, S. (2009). Inorg. Chem. 48, 8647-8649.]; Yuan et al., 2012[Yuan, Y., Liu, J., Ren, H., Jing, X., Wang, W., Ma, H., Sun, F. & Zhao, H. (2012). J. Mater. Res. 27, 1417-1420.]), and polymers (Christinat et al., 2007[Christinat, N., Croisier, E., Scopelliti, R., Cascella, M., Röthlisberger, U. & Severin, K. (2007). Eur. J. Inorg. Chem. pp. 5177-5181.]; Rambo & Lavigne, 2007[Rambo, B. M. & Lavigne, J. J. (2007). Chem. Mater. 19, 3732-3739.]; Nishiyabu et al., 2012[Nishiyabu, R., Teraoka, S., Matsushima, Y. & Kubo, Y. (2012). ChemPlusChem 77, 201-209.]).

Despite of the ongoing inter­est in benzene-1,2,4,5-tetrol as a reagent, which stretches back at least a century (Mukerji, 1922[Mukerji, D. N. (1922). J. Chem. Soc. Trans. 121, 545-552.]), the crystal structure has only been solved as a water solvate and a co-crystal with 2,5-dihy­droxy-1,4-benzo­quinone (Jene et al., 2001[Jene, P. G., Pernin, C. G. & Ibers, J. A. (2001). Acta Cryst. C57, 730-734.]). A search of the Cambridge Structure Database (WebCSD, December 2023) for the mol­ecular structure of 1,2,4,5-benzene­tetrol gave three results: 1,2,4,5-tetra­hydroxy­benzene monohydrate (QOGMAA; Jene et al., 2001[Jene, P. G., Pernin, C. G. & Ibers, J. A. (2001). Acta Cryst. C57, 730-734.]); and 1,2,4,5-tetra­hydroxy­benzene 2,5-dihy­droxy-1,4-benzo­quinone (QOGMII, QOGMII01; Jene et al., 2001[Jene, P. G., Pernin, C. G. & Ibers, J. A. (2001). Acta Cryst. C57, 730-734.]). Here we present the crystal structure of benzene-1,2,4,5-tetrol for the first time, which we anti­cipate will be of use for the synthetic chemical community in future endeavours.

At 120 K the structure was found to crystallize in the triclinic space group P[\overline{1}] with the asymmetric unit containing four independent mol­ecules of benzene-1,2,4,5-tetrol labelled A, B, C and D (Figs. 1[link], 2a[link]). Each symmetry unique mol­ecule forms ππ stacks on itself, i.e. mol­ecule A forms a stack consisting entirely of mol­ecule A (Fig. 2[link]b). This gives four unique ππ stacking inter­actions with centroid-to-distances of 3.7474 (11) Å, while the perpendicular centroid-to-plane distances are 3.4457 (7) Å (mol­ecule A), 3.5166 (8) Å (mol­ecule B), 3.5653 (8) Å (mol­ecule C), and 3.5653 (8) Å (mol­ecule D). Inter­molecular hydrogen bonding is observed between each pair of mol­ecules, where each hy­droxy group can act as a hydrogen-bond donor and acceptor (Table 1[link]). This creates an extended hydrogen-bond network, which can be described as a series of rings consisting of three mol­ecules – the edges of two mol­ecules make up the perimeter of the ring, and a single hy­droxy group of a third mol­ecule links the first two mol­ecules into a continuous ring. There are two unique rings comprised of mol­ecules A, B, and C, and of mol­ecules C, B, and D, both of which exhibit an R22(14) graph-set motif, and the remaining hydrogen-bonded rings are symmetry-related. All of the hydrogen bonds in the structure can thus be accounted for.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4A—H4A⋯O4Ci 0.85 (2) 1.89 (2) 2.715 (2) 163 (2)
O4B—H4B⋯O4Dii 0.86 (2) 1.88 (2) 2.708 (2) 163 (3)
O4B—H4B⋯O5B 0.86 (2) 2.45 (2) 2.764 (2) 102 (2)
O4C—H4C⋯O4B 0.86 (2) 1.85 (2) 2.702 (2) 167 (2)
O4D—H4D⋯O5B 0.86 (2) 1.85 (2) 2.6425 (19) 154 (2)
O4D—H4D⋯O5D 0.86 (2) 2.34 (2) 2.789 (2) 113 (2)
O5A—H5A⋯O4A 0.83 (2) 2.40 (2) 2.711 (2) 103 (2)
O5A—H5A⋯O5Dii 0.83 (2) 1.95 (2) 2.7562 (18) 162 (2)
O5B—H5B⋯O5A 0.84 (2) 1.80 (2) 2.633 (2) 169 (2)
O5C—H5C⋯O4Aiii 0.83 (2) 2.04 (2) 2.8376 (16) 161 (2)
O5C—H5C⋯O4C 0.83 (2) 2.38 (2) 2.734 (2) 107 (2)
O5D—H5D⋯O5Civ 0.85 (2) 2.03 (2) 2.8796 (19) 175 (2)
Symmetry codes: (i) [x-1, y+1, z]; (ii) [x-1, y, z]; (iii) [x, y-1, z]; (iv) [x, y+1, z].
[Figure 1]
Figure 1
The asymmetric unit of the title compound showing the atom labelling with 50% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry operations −x, −y + 2, −z for mol­ecule A, −x + 1, −y + 1, −z for mol­ecule B, −x + 1, −y, −z + 1 for mol­ecule C and −x + 2, −y + 1, −z + 1 for mol­ecule D.
[Figure 2]
Figure 2
(a) View of unit cell along the crystallographic a-axis. Dashed lines represent hydrogen bonding between mol­ecules. R22(14) rings are indicated with purple and green polygons; hydrogen bonds not lying on the indicated rings form the same class of ring with mol­ecules not rendered in this diagram. (b) View approximately along the (001) axis, showing how mol­ecules form ππ stacks. Some mol­ecules have been removed for clarity.

Synthesis and crystallization

Following a literature procedure (Weider et al., 1985[Weider, P. R., Hegedus, L. S. & Asada, H. (1985). J. Org. Chem. 50, 4276-4281.]), 2,5-dihy­droxy-1,4-benzo­quinone (2.428 g, 17.3 mmol) was mixed with conc. hydro­chloric acid (54 ml) under an inert atmosphere and stirred for 30 min to form a gold-coloured suspension. Addition of tin metal powder (2.1885 g, 18.4 mmol) caused vigorous effervescence and a grey suspension. The mixture was stirred for 10 min until cessation of bubbling then heated to 100° C for 1 h, during which time the mixture became dark and bubbled vigorously. The mixture was allowed to cool briefly, then hot filtered under reduced pressure to give a yellow filtrate. The filtrate was cooled on ice for 30 min to give white crystals of benzene-1,2,4,5-tetrol (0.786 g, 5.54 mmol, 32%). The crude product was dissolved in a minimum of hot tetra­hydro­furan, filtered, then cooled on ice. The resulting white crystals were collected via filtration then washed with ice-cold THF and dried in a vacuum to give benzene-1,2,4,5-tetrol (0.735 g, 5.17 mmol, 30%). IR (ATR) νmax /cm−1: 3146.01 br (OH), 1551.54 s (Ar C—C), 1155.90 w (C—O) MS (ESI) m/z: 165.02 (M+Na). 1H NMR (400 MHz, DMSO-d6, p.p.m., δ): 9.66 (s, 4H, OH), 5.94 (s, 2H, Ar H); 13C NMR (400 MHz, DMSO-d6, p.p.m., δ): 138.46, 104.81. CNH analysis found: C, 50.6; H, 4.1; N, 0. Calculated for C6H6O4: C, 50.7; H, 4.3; N, 0%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H6O4
Mr 142.11
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 3.7474 (2), 11.6254 (6), 13.7771 (8)
α, β, γ (°) 68.407 (5), 85.779 (4), 89.843 (4)
V3) 556.37 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.27
Crystal size (mm) 0.07 × 0.05 × 0.02
 
Data collection
Diffractometer XtalLAB PRO MM007, PILATUS3 R 200K
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.927, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8096, 2185, 1842
Rint 0.063
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.133, 1.09
No. of reflections 2185
No. of parameters 205
No. of restraints 8
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.34
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Benzene-1,2,4,5-tetrol top
Crystal data top
C6H6O4Z = 4
Mr = 142.11F(000) = 296
Triclinic, P1Dx = 1.697 Mg m3
a = 3.7474 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.6254 (6) ÅCell parameters from 4683 reflections
c = 13.7771 (8) Åθ = 3.4–75.6°
α = 68.407 (5)°µ = 1.26 mm1
β = 85.779 (4)°T = 120 K
γ = 89.843 (4)°Block, colourless
V = 556.37 (6) Å30.07 × 0.05 × 0.02 mm
Data collection top
XtalLAB PRO MM007, PILATUS3 R 200K
diffractometer
2185 independent reflections
Radiation source: rotating anode, MicroMax 007 HF1842 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.063
Detector resolution: 5.8140 pixels mm-1θmax = 76.2°, θmin = 3.5°
ω scansh = 44
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
k = 1414
Tmin = 0.927, Tmax = 1.000l = 1717
8096 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: mixed
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0799P)2 + 0.1541P]
where P = (Fo2 + 2Fc2)/3
2185 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.28 e Å3
8 restraintsΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were observed in the electron difference map. All hydroxy hydrogen atoms were refined with their O-H distances restrained to a target distance of 0.84 %A (DFIX). All other hydrogen atoms were geometrically placed and refined with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.1468 (5)1.09568 (17)0.02598 (13)0.0161 (4)
H1A0.2491161.1609360.0436540.019*
C2A0.0561 (4)0.98695 (17)0.10428 (13)0.0161 (4)
C3A0.0876 (5)0.89114 (17)0.07847 (13)0.0159 (4)
O4A0.1011 (3)0.96812 (13)0.20910 (9)0.0204 (3)
H4A0.224 (6)1.024 (2)0.2205 (19)0.031*
O5A0.1865 (4)0.78369 (12)0.15524 (10)0.0223 (3)
H5A0.055 (6)0.767 (2)0.2104 (15)0.033*
C1B0.3702 (5)0.38074 (17)0.02176 (14)0.0176 (4)
H1B0.2803950.2992340.0364810.021*
C2B0.3851 (5)0.42502 (17)0.10209 (13)0.0164 (4)
C3B0.5136 (5)0.54465 (17)0.08035 (14)0.0167 (4)
O4B0.2720 (4)0.34746 (13)0.20260 (10)0.0231 (3)
H4B0.192 (7)0.388 (2)0.2403 (18)0.035*
O5B0.5337 (4)0.58394 (13)0.16233 (10)0.0225 (3)
H5B0.434 (7)0.6521 (18)0.1517 (19)0.034*
C1C0.5825 (5)0.12616 (17)0.45145 (13)0.0168 (4)
H1C0.6395800.2120430.4182100.020*
C2C0.4847 (5)0.05791 (17)0.39276 (13)0.0167 (4)
C3C0.4038 (5)0.06764 (17)0.44063 (13)0.0161 (4)
O4C0.4713 (4)0.10954 (12)0.28510 (9)0.0195 (3)
H4C0.421 (6)0.1868 (16)0.2668 (18)0.029*
O5C0.3112 (3)0.13754 (12)0.38383 (9)0.0185 (3)
H5C0.226 (6)0.093 (2)0.3286 (14)0.028*
C1D1.0908 (4)0.38787 (17)0.49271 (13)0.0159 (4)
H1D1.1539690.3109470.4876890.019*
C2D0.9455 (4)0.47869 (17)0.40886 (13)0.0149 (4)
C3D0.8562 (4)0.59139 (17)0.41683 (13)0.0151 (4)
O4D0.8906 (4)0.45066 (13)0.32286 (9)0.0202 (3)
H4D0.773 (6)0.509 (2)0.2812 (17)0.030*
O5D0.7198 (3)0.68082 (12)0.33076 (9)0.0180 (3)
H5D0.611 (6)0.7358 (19)0.3477 (18)0.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0121 (8)0.0164 (9)0.0193 (9)0.0051 (7)0.0046 (7)0.0052 (7)
C2A0.0106 (8)0.0201 (10)0.0156 (8)0.0037 (7)0.0036 (6)0.0039 (7)
C3A0.0126 (8)0.0159 (9)0.0153 (8)0.0037 (7)0.0049 (6)0.0003 (7)
O4A0.0238 (7)0.0217 (7)0.0146 (6)0.0096 (6)0.0051 (5)0.0046 (5)
O5A0.0267 (7)0.0185 (7)0.0153 (6)0.0120 (6)0.0023 (5)0.0012 (5)
C1B0.0142 (8)0.0154 (9)0.0215 (9)0.0067 (7)0.0072 (7)0.0036 (7)
C2B0.0128 (8)0.0166 (9)0.0162 (8)0.0056 (7)0.0055 (7)0.0009 (7)
C3B0.0136 (8)0.0191 (9)0.0183 (8)0.0092 (7)0.0096 (7)0.0065 (7)
O4B0.0302 (8)0.0182 (7)0.0171 (6)0.0073 (6)0.0010 (5)0.0022 (5)
O5B0.0309 (8)0.0196 (7)0.0195 (7)0.0136 (6)0.0128 (6)0.0083 (6)
C1C0.0143 (8)0.0162 (9)0.0172 (8)0.0063 (7)0.0036 (7)0.0024 (7)
C2C0.0130 (8)0.0194 (10)0.0133 (8)0.0072 (7)0.0039 (6)0.0005 (7)
C3C0.0119 (8)0.0176 (9)0.0171 (8)0.0058 (7)0.0040 (6)0.0041 (7)
O4C0.0264 (7)0.0157 (7)0.0138 (6)0.0074 (6)0.0068 (5)0.0013 (5)
O5C0.0210 (7)0.0175 (7)0.0154 (6)0.0051 (6)0.0080 (5)0.0032 (5)
C1D0.0123 (8)0.0145 (9)0.0183 (8)0.0043 (7)0.0036 (7)0.0026 (7)
C2D0.0103 (8)0.0180 (9)0.0148 (8)0.0026 (7)0.0033 (6)0.0037 (7)
C3D0.0120 (8)0.0144 (9)0.0150 (8)0.0041 (7)0.0045 (6)0.0000 (7)
O4D0.0237 (7)0.0210 (7)0.0164 (6)0.0107 (6)0.0094 (5)0.0062 (5)
O5D0.0194 (6)0.0171 (7)0.0148 (6)0.0092 (5)0.0075 (5)0.0015 (5)
Geometric parameters (Å, º) top
C1A—H1A0.9500C1C—H1C0.9500
C1A—C2A1.388 (2)C1C—C2C1.391 (3)
C1A—C3Ai1.391 (2)C1C—C3Ciii1.394 (2)
C2A—C3A1.385 (3)C2C—C3C1.386 (3)
C2A—O4A1.376 (2)C2C—O4C1.385 (2)
C3A—O5A1.378 (2)C3C—O5C1.379 (2)
O4A—H4A0.852 (17)O4C—H4C0.863 (17)
O5A—H5A0.835 (17)O5C—H5C0.832 (16)
C1B—H1B0.9500C1D—H1D0.9500
C1B—C2B1.386 (2)C1D—C2D1.392 (2)
C1B—C3Bii1.391 (3)C1D—C3Div1.382 (2)
C2B—C3B1.390 (3)C2D—C3D1.392 (3)
C2B—O4B1.381 (2)C2D—O4D1.368 (2)
C3B—O5B1.372 (2)C3D—O5D1.3881 (19)
O4B—H4B0.861 (16)O4D—H4D0.858 (16)
O5B—H5B0.843 (17)O5D—H5D0.851 (16)
C2A—C1A—H1A120.1C2C—C1C—H1C120.2
C2A—C1A—C3Ai119.82 (17)C2C—C1C—C3Ciii119.53 (18)
C3Ai—C1A—H1A120.1C3Ciii—C1C—H1C120.2
C3A—C2A—C1A120.03 (16)C3C—C2C—C1C120.55 (16)
O4A—C2A—C1A123.07 (16)O4C—C2C—C1C122.61 (17)
O4A—C2A—C3A116.90 (15)O4C—C2C—C3C116.82 (16)
C2A—C3A—C1Ai120.14 (16)C2C—C3C—C1Ciii119.92 (17)
O5A—C3A—C1Ai119.11 (16)O5C—C3C—C1Ciii118.51 (17)
O5A—C3A—C2A120.70 (15)O5C—C3C—C2C121.57 (15)
C2A—O4A—H4A112.3 (16)C2C—O4C—H4C109.5 (15)
C3A—O5A—H5A111.3 (17)C3C—O5C—H5C110.6 (17)
C2B—C1B—H1B119.9C2D—C1D—H1D119.7
C2B—C1B—C3Bii120.17 (18)C3Div—C1D—H1D119.7
C3Bii—C1B—H1B119.9C3Div—C1D—C2D120.58 (17)
C1B—C2B—C3B119.88 (17)C1D—C2D—C3D119.20 (16)
O4B—C2B—C1B118.40 (17)O4D—C2D—C1D117.50 (16)
O4B—C2B—C3B121.71 (16)O4D—C2D—C3D123.28 (15)
C2B—C3B—C1Bii119.95 (17)C1Div—C3D—C2D120.22 (15)
O5B—C3B—C1Bii121.84 (18)C1Div—C3D—O5D122.17 (16)
O5B—C3B—C2B118.17 (16)O5D—C3D—C2D117.60 (15)
C2B—O4B—H4B111.8 (18)C2D—O4D—H4D108.3 (17)
C3B—O5B—H5B112.5 (16)C3D—O5D—H5D111.5 (16)
C1A—C2A—C3A—C1Ai1.1 (3)C1C—C2C—C3C—C1Ciii0.5 (3)
C1A—C2A—C3A—O5A178.53 (16)C1C—C2C—C3C—O5C179.04 (15)
C3Ai—C1A—C2A—C3A1.0 (3)C3Ciii—C1C—C2C—C3C0.5 (3)
C3Ai—C1A—C2A—O4A178.86 (16)C3Ciii—C1C—C2C—O4C178.89 (15)
O4A—C2A—C3A—C1Ai178.86 (16)O4C—C2C—C3C—C1Ciii178.98 (15)
O4A—C2A—C3A—O5A1.4 (3)O4C—C2C—C3C—O5C0.6 (2)
C1B—C2B—C3B—C1Bii0.5 (3)C1D—C2D—C3D—C1Div0.4 (3)
C1B—C2B—C3B—O5B178.19 (14)C1D—C2D—C3D—O5D178.51 (15)
C3Bii—C1B—C2B—C3B0.5 (3)C3Div—C1D—C2D—C3D0.4 (3)
C3Bii—C1B—C2B—O4B179.07 (15)C3Div—C1D—C2D—O4D178.16 (16)
O4B—C2B—C3B—C1Bii179.06 (15)O4D—C2D—C3D—C1Div178.07 (17)
O4B—C2B—C3B—O5B1.4 (2)O4D—C2D—C3D—O5D3.0 (3)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1; (iv) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4A—H4A···O4Cv0.85 (2)1.89 (2)2.715 (2)163 (2)
O4B—H4B···O4Dvi0.86 (2)1.88 (2)2.708 (2)163 (3)
O4B—H4B···O5B0.86 (2)2.45 (2)2.764 (2)102 (2)
O4C—H4C···O4B0.86 (2)1.85 (2)2.702 (2)167 (2)
O4D—H4D···O5B0.86 (2)1.85 (2)2.6425 (19)154 (2)
O4D—H4D···O5D0.86 (2)2.34 (2)2.789 (2)113 (2)
O5A—H5A···O4A0.83 (2)2.40 (2)2.711 (2)103 (2)
O5A—H5A···O5Dvi0.83 (2)1.95 (2)2.7562 (18)162 (2)
O5B—H5B···O5A0.84 (2)1.80 (2)2.633 (2)169 (2)
O5C—H5C···O4Avii0.83 (2)2.04 (2)2.8376 (16)161 (2)
O5C—H5C···O4C0.83 (2)2.38 (2)2.734 (2)107 (2)
O5D—H5D···O5Cviii0.85 (2)2.03 (2)2.8796 (19)175 (2)
Symmetry codes: (v) x1, y+1, z; (vi) x1, y, z; (vii) x, y1, z; (viii) x, y+1, z.
 

Acknowledgements

The authors would like to thank T. Liu at the Analytical Services in the University of Nottingham School of Chemistry for performing thre CHN analysis. Author contributions are as follows: conceptualization, BLW; investigation, BLW, SH, WJC, SA; validation, BLW, SA; writing (original draft), BLW; writing (review and editing), BLW, SA, WJC, PDB, ANK; visualization, BLW; supervision, ANK, PDB; funding acquisition, ANK, PDB.

Funding information

Funding for this research was provided by: Engineering and Physical Sciences Research Council (grant No. EP/W006413/1); Leverhulme Trust (grant No. RPG-2022-300).

References

First citationAbrahams, B. F., Dharma, A. D., Dyett, B., Hudson, T. A., Maynard-Casely, H., Kingsbury, C. J., McCormick, L. J., Robson, R., Sutton, A. L. & White, K. F. (2016). Dalton Trans. 45, 1339–1344.  CrossRef CAS PubMed Google Scholar
First citationChristinat, N., Croisier, E., Scopelliti, R., Cascella, M., Röthlisberger, U. & Severin, K. (2007). Eur. J. Inorg. Chem. pp. 5177–5181.  CrossRef Google Scholar
First citationDalapati, S., Addicoat, M., Jin, S., Sakurai, T., Gao, J., Xu, H., Irle, S., Seki, S. & Jiang, D. (2015). Nat. Commun. 6, 7786.  CrossRef PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJene, P. G., Pernin, C. G. & Ibers, J. A. (2001). Acta Cryst. C57, 730–734.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJia, S.-H., Ding, X., Yu, H.-T. & Han, B.-H. (2015). RSC Adv. 5, 71095–71101.  CrossRef CAS Google Scholar
First citationLanni, L. M., Tilford, R. W., Bharathy, M. & Lavigne, J. J. (2011). J. Am. Chem. Soc. 133, 13975–13983.  CrossRef CAS PubMed Google Scholar
First citationMa, H., Ren, H., Meng, S., Yan, Z., Zhao, H., Sun, F. & Zhu, G. (2013). Chem. Commun. 49, 9773.  CrossRef Google Scholar
First citationMukerji, D. N. (1922). J. Chem. Soc. Trans. 121, 545–552.  CrossRef Google Scholar
First citationNakabayashi, K. & Ohkoshi, S. (2009). Inorg. Chem. 48, 8647–8649.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNishiyabu, R., Teraoka, S., Matsushima, Y. & Kubo, Y. (2012). ChemPlusChem 77, 201–209.  CrossRef CAS Google Scholar
First citationNiu, W., Smith, M. D. & Lavigne, J. J. (2006). Cryst. Growth Des. 6, 1274–1277.  CrossRef CAS Google Scholar
First citationPandey, M. K., Kunchur, H. S., Ananthnag, G. S., Mague, J. T. & Balakrishna, M. S. (2019). Dalton Trans. 48, 3610–3624.  CrossRef CAS PubMed Google Scholar
First citationPark, S. W., Liao, Z., Ibarlucea, B., Qi, H., Lin, H. H., Becker, D., Melidonie, J., Zhang, T., Sahabudeen, H., Baraban, L., Baek, C. K., Zheng, Z., Zschech, E., Fery, A., Heine, T., Kaiser, U., Cuniberti, G., Dong, R. & Feng, X. (2020). Angew. Chem. Int. Ed. 59, 8218–8224.  CrossRef CAS Google Scholar
First citationPoschmann, M. P. M., Reinsch, H. & Stock, N. (2021). Z. Anorg. Allg. Chem. 647, 436–441.  CrossRef CAS Google Scholar
First citationRambo, B. M. & Lavigne, J. J. (2007). Chem. Mater. 19, 3732–3739.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRondelli, M., Daranas, A. H. & Martín, T. (2023). J. Org. Chem. 88, 2113–2121.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWeider, P. R., Hegedus, L. S. & Asada, H. (1985). J. Org. Chem. 50, 4276–4281.  CrossRef CAS Google Scholar
First citationWellala, N. P. N., Dong, H. T., Krause, J. A. & Guan, H. (2018). Organometallics, 37, 4031–4039.  CrossRef CAS Google Scholar
First citationYuan, Y., Liu, J., Ren, H., Jing, X., Wang, W., Ma, H., Sun, F. & Zhao, H. (2012). J. Mater. Res. 27, 1417–1420.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146