metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Triaceto­nitrile­(1,4,7-tri­methyl-1,4,7-tri­aza­cyclonona­ne)cobalt(II) bis­­(tetra­phenyl­borate)

crossmark logo

aDepartment of Chemistry, Duksung Women's University, Seoul 01369, Republic of Korea, bDepartment of Chemistry, Sunchon National University, Sunchon 57922, Republic of Korea, and cDepartment of Chemistry Education, Chonnam National University, Gwangju 61186, Republic of Korea
*Correspondence e-mail: kimj8@scnu.ac.kr, jonghoon92@jnu.ac.kr

Edited by I. Brito, University of Antofagasta, Chile (Received 23 May 2024; accepted 6 June 2024; online 11 June 2024)

The title cobalt(II) complex, [Co(C2H3N)3(C9H21N3)](C24H20B)2 or [(tacn)Co(NCMe)3][BPh4]2, has been characterized by single-crystal X-ray diffraction. It incorporates the well-known macrocyclic tacn (1,4,7-trimethyl-1,4,7-tri­aza­cyclo­nona­ne) ligand, which is coordinated facially to the metal center. The complex crystallizes in space group P21/c with Z = 4. The divalent cobalt ion exhibits a six-coordinate octa­hedral geometry by one tacn and three aceto­nitrile ligands. Two non-coordinating tetra­phenyl­borate (BPh4) anions are also present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cobalt complexes have attracted much attention due to their applications as catalysts for hydrogenation and hydrogen evolution reactions (Lin et al., 2017[Lin, C.-Y., Fettinger, J. C. & Power, P. P. (2017). Inorg. Chem. 56, 9892-9902.]; Zhang et al., 2013[Zhang, G., Vasudevan, K. V., Scott, B. L. & Hanson, S. K. (2013). J. Am. Chem. Soc. 135, 8668-8681.], 2017[Zhang, W., Lai, W. & Cao, R. (2017). Chem. Rev. 117, 3717-3797.]). A rational design of catalyst is essential for the development of efficient cobalt catalysts. A scorpionate ligand allowing the facial coordination to a metal ion leads to the high-spin electronic configuration in low-coordinate cobalt complexes (Detrich et al., 1996[Detrich, J. L., Konečný, R., Vetter, W. M., Doren, D., Rheingold, A. L. & Theopold, K. H. (1996). J. Am. Chem. Soc. 118, 1703-1712.]; Cordeiro et al., 2021[Cordeiro, L. L., Dmitrenko, O., Yap, G. P. A. & Riordan, C. G. (2021). Inorg. Chem. 60, 6327-6338.]; Gu et al., 2023[Gu, L., Fraker, A. & McSkimming, A. (2023). Organometallics, 42, 1621-1628.]). Particularly, such a high-spin state of a monovalent cobalt ion allows the oxidative addition of di­hydrogen, generating the cobalt dihydride, which is an important inter­mediate for the aforementioned catalyses. The 1,4,7-trimethyl-1,4,7-tri­aza­cyclo­nonane (tacn) ligand exhibits an almost identical coordination mode with scorpionate ligands and it is proposed that a metal complex supported by tacn can display similar chemical and catalytic properties. Although tacn has also been introduced to cobalt, most of the resulting complexes show binuclear geometry. This study shows that [(tacn)Co(NCMe)3][BPh4]2 is monomeric.

This report describes the preparation and the crystal structure of [(tacn)Co(NCMe)3][BPh4]2 (1), which is a potential pre-catalyst. Compound 1 was prepared by the sequential reaction of the solution of cobalt(II) bromide (CoBr2) in aceto­nitrile with 1 equiv. of tacn and 3 equiv. of sodium tetra­phenyl­borate (NaBPh4). As a result of the paramagnetic character of the cobalt cation, the 1H NMR spectrum exhibits paramagnetically shifted peaks at 177.0, 48.3, 48.3, and 1.93 p.p.m. and the diamagnetic tetra­phenyl­borate anions can be assigned at 7.18, 6.83, 6.81, 6.79, 6.69, 6.67, and 6.65 p.p.m. (see Figure S1). The presence of the non-coordinating BPh4 anion was also confirmed by 11B resonance at −6.78 p.p.m. (see Figure S2).

The single-crystal X-ray diffraction data reveals that the divalent cobalt ion adopts an octa­hedral geometry with six nitro­gen donors of tacn and three aceto­nitrile ligands with two non-coordinating BPh4 ions (see Fig. 1[link]). The tacn ligand is coordinated to the cobalt(II) center in the facial coordination fashion, exhibiting Ntacn—Co1—Ntacn bond angles of 83.16 (9), 82.86 (9) and 83.18 (9)°. The solvent ligands, aceto­nitrile, are also coordinated to cobalt in a cis manner. The three Ntacn—Co1—Naceto­nitrile bond angles are 175.23 (9), 175.58 (9) and 176.62 (10)°, clearly showing the octa­hedral geometry of 1 (Table 1[link]). The Co—N bond lengths ranging from 2.094 (3) to 2.153 (2) Å indicate that the high-spin divalent cobalt ion is supported by six L-type nitro­gen donors (Kershaw Cook et al. 2013[Kershaw Cook, L. J., Tuna, F. & Halcrow, M. A. (2013). Dalton Trans. 42, 2254-2265.]). This result corresponds to the 1H NMR spectrum showing paramagnetic character. In the crystal, the discrete cobalt complexes and BPh4 anions are arranged along the b-axis direction (see Fig. 2[link]). There are no directional inter­molecular inter­actions or hydrogen bonding among mol­ecular ions.

Table 1
Selected geometric parameters (Å, °)

Co1—N1 2.143 (2) Co1—N4 2.129 (3)
Co1—N2 2.139 (2) Co1—N5 2.094 (3)
Co1—N3 2.141 (2) Co1—N6 2.153 (2)
       
N1—Co1—N2 83.16 (9) N1—Co1—N6 175.58 (9)
N1—Co1—N3 82.86 (9) N2—Co1—N5 175.23 (9)
N2—Co1—N3 83.18 (9) N3—Co1—N4 176.62 (10)
[Figure 1]
Figure 1
X-ray crystal structure of 1 (ellipsoids at 50% probability). All hydrogen atoms are omitted for clarity.
[Figure 2]
Figure 2
Crystal Structure of 1 in a view along the crystallographic b-axis direction. All hydrogen atoms are omitted for clarity.

A search in the Cambridge Structural Database for structure 1 did not reveal any reported structures, including derivative searches. Similar dimeric cobalt compounds supported by tacn have been reported (Bossek et al. 1997[Bossek, U., Nühlen, D., Bill, E., Glaser, T., Krebs, C., Weyhermüller, T., Wieghardt, K., Lengen, M. & Trautwein, A. X. (1997). Inorg. Chem. 36, 2834-2843.]; Thangavel et al. 2013[Thangavel, A., Wieliczko, M., Bacsa, J. & Scarborough, C. C. (2013). Inorg. Chem. 52, 13282-13287.]) but a monomeric cobalt complex has not previously been structurally characterized.

Synthesis and crystallization

Experimental details

Cobalt(II) bromide (CoBr2), tacn, and sodium tetra­phenyl­borate (NaBPh4) were purchased from Sigma Aldrich. All manipulations were carried out using standard glovebox techniques under N2 atmosphere. Unless otherwise noted, solvents (THF and aceto­nitrile) were de­oxy­genated and dried by 4 Å mol­ecular sieve. Tetra­hydro­furan (THF) was tested with a standard purple solution of sodium benzo­phenone ketyl in THF in order to confirm effective oxygen and moisture removal.

[(tacn)Co(NCMe)3][BPh4]2 (1). The reaction scheme is shown in Fig. 3[link]. To a solution of CoBr2 (318 mg, 1.44 mmol) in 5 ml of THF, a solution of tacn (254 mg, 144 mmol) in 5 ml of THF was added dropwise and the reaction mixture was stirred at room temperature for 1 h. The purple precipitate formed was dried under vacuum. The reaction mixture was dissolved in 10 ml of MeCN and NaBPh4 (1.486 g, 4.321 mmol) was added. The reaction mixture was stirred at room temperature for 3 d then filtered through Celite and the solution was dried under vacuum. The compound [(tacn)Co(NCMe)3[BPh4]2 (1, 1.258 g, 1.268 mmol, 88.0% yield) was isolated as a pale-orange solid after washing with a minimum amount of MeCN. X-ray quality crystals were grown by cooling down of a saturated solution of 1 in aceto­nitrile at −35° C. 1H NMR (DMSO-d6, 400 MHz): δ 177.0, 48.3, 48.3, 7.18, 6.83, 6.81, 6.79, 6.69, 6.67, 6.65, 1.93 p.p.m.. 11B NMR (DMSO-d6, 128 MHz): δ −6.78 p.p.m..

[Figure 3]
Figure 3
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Co(C2H3N)3(C9H21N3)](C24H20B)2
Mr 991.80
Crystal system, space group Monoclinic, P21/c
Temperature (K) 133
a, b, c (Å) 18.1245 (16), 11.6689 (10), 26.067 (2)
β (°) 90.332 (2)
V3) 5513.0 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.10 × 0.09 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.627, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 112545, 9437, 6984
Rint 0.096
(sin θ/λ)max−1) 0.589
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.107, 1.14
No. of reflections 9437
No. of parameters 655
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.59, −0.63
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CIFTAB (Sheldrick, 2008[Sheldrick, G. M. (2008). CIFTAB. University of Göttingen, Germany.]).

Structural data


Computing details top

Triacetonitrile(1,4,7-trimethyl-1,4,7-triazacyclononane)cobalt(II) bis(tetraphenylborate) top
Crystal data top
[Co(C2H3N)3(C9H21N3)](C24H20B)2F(000) = 2108
Mr = 991.80Dx = 1.195 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.1245 (16) ÅCell parameters from 9821 reflections
b = 11.6689 (10) Åθ = 2.2–24.7°
c = 26.067 (2) ŵ = 0.36 mm1
β = 90.332 (2)°T = 133 K
V = 5513.0 (8) Å3Platy, orange
Z = 40.10 × 0.09 × 0.05 mm
Data collection top
Bruker APEXII CCD detector
diffractometer
6984 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.096
phi and ω scansθmax = 24.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2121
Tmin = 0.627, Tmax = 0.745k = 1313
112545 measured reflectionsl = 3030
9437 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.033P)2 + 3.7116P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
9437 reflectionsΔρmax = 0.59 e Å3
655 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were positioned with idealized geometry and refined isotropically with Uiso(H) = 1.2Ueq(C) using a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.26079 (2)0.21794 (3)0.37198 (2)0.02127 (11)
N10.36590 (12)0.2774 (2)0.34576 (9)0.0289 (6)
N20.32689 (13)0.1042 (2)0.41730 (9)0.0364 (6)
N30.27676 (13)0.09052 (19)0.31402 (8)0.0297 (6)
N40.25061 (14)0.3410 (2)0.43183 (9)0.0373 (6)
N50.20270 (13)0.3280 (2)0.32282 (9)0.0324 (6)
N60.15961 (13)0.1475 (2)0.40119 (9)0.0302 (6)
C10.37595 (19)0.4025 (3)0.34969 (14)0.0500 (9)
H1A0.4220380.4245260.3328530.075*
H1B0.3780750.4247960.3859180.075*
H1C0.3344150.4414350.3329020.075*
C100.23835 (17)0.4038 (3)0.46362 (12)0.0376 (8)
C20.42496 (16)0.2172 (3)0.37525 (12)0.0445 (8)
H2A0.4658500.2712000.3824240.053*
H2B0.4447540.1534520.3543610.053*
C110.2220 (2)0.4837 (3)0.50480 (13)0.0664 (12)
H11A0.2194020.5617090.4909590.100*
H11B0.2609380.4796690.5309550.100*
H11C0.1745210.4636430.5202430.100*
C120.17103 (16)0.3839 (3)0.29450 (11)0.0292 (7)
C130.13107 (17)0.4524 (3)0.25734 (11)0.0375 (8)
H13A0.0897750.4909870.2742420.056*
H13B0.1121090.4028320.2299410.056*
H13C0.1642590.5099040.2426790.056*
C140.11375 (16)0.1172 (3)0.42739 (11)0.0292 (7)
C150.05684 (17)0.0781 (3)0.46240 (11)0.0408 (8)
H15A0.0136370.1282660.4594710.061*
H15B0.0758430.0804100.4976620.061*
H15C0.0426890.0005650.4536680.061*
C160.00729 (16)0.8301 (3)0.37025 (10)0.0298 (7)
C170.06356 (17)0.8249 (3)0.39156 (11)0.0399 (8)
H170.0790040.7556340.4073780.048*
C180.11219 (19)0.9176 (3)0.39040 (13)0.0514 (10)
H180.1594850.9108730.4056290.062*
C190.0918 (2)1.0189 (3)0.36720 (13)0.0546 (11)
H190.1249001.0819560.3661440.066*
C200.0233 (2)1.0274 (3)0.34574 (13)0.0489 (9)
H200.0087211.0967510.3296050.059*
C210.02505 (17)0.9348 (3)0.34749 (11)0.0369 (8)
H210.0723900.9432470.3324970.044*
C220.02576 (14)0.5992 (2)0.36243 (10)0.0242 (6)
C230.05553 (15)0.4955 (2)0.37991 (10)0.0280 (7)
H230.0961280.4980670.4030930.034*
C240.02860 (16)0.3893 (3)0.36499 (11)0.0307 (7)
H240.0505310.3212610.3780520.037*
C250.02994 (16)0.3825 (3)0.33126 (11)0.0343 (7)
H250.0488910.3101530.3209580.041*
C260.06053 (16)0.4821 (3)0.31272 (12)0.0357 (7)
H260.1007470.4784430.2892380.043*
C270.03319 (15)0.5880 (2)0.32799 (11)0.0304 (7)
H270.0554020.6554110.3145190.037*
C280.09238 (16)0.7265 (3)0.43650 (10)0.0316 (7)
C290.14978 (18)0.7970 (3)0.45322 (11)0.0398 (8)
H290.1754070.8413430.4284740.048*
C300.1714 (2)0.8056 (3)0.50445 (12)0.0496 (9)
H300.2109390.8547540.5139670.060*
C310.1354 (2)0.7431 (3)0.54106 (12)0.0546 (10)
H310.1500920.7479980.5760310.065*
C320.0779 (2)0.6732 (3)0.52669 (12)0.0555 (10)
H320.0524270.6297330.5518260.067*
C330.05695 (18)0.6660 (3)0.47559 (11)0.0441 (9)
H330.0166740.6176820.4666790.053*
C340.13362 (14)0.7270 (2)0.33569 (10)0.0247 (6)
C350.12318 (15)0.7591 (2)0.28431 (10)0.0295 (7)
H350.0759070.7858620.2739250.035*
C360.17851 (16)0.7535 (2)0.24803 (11)0.0349 (8)
H360.1687510.7769460.2137510.042*
C370.24763 (16)0.7143 (3)0.26137 (12)0.0363 (8)
H370.2859100.7111890.2366630.044*
C380.26038 (16)0.6794 (2)0.31121 (12)0.0352 (8)
H380.3076130.6512570.3209430.042*
C390.20450 (15)0.6854 (2)0.34707 (11)0.0306 (7)
H390.2146210.6601990.3810410.037*
C400.51258 (14)0.7520 (2)0.31920 (10)0.0215 (6)
C410.49323 (14)0.6505 (2)0.29379 (10)0.0256 (6)
H410.5077060.5796980.3087910.031*
C420.45418 (14)0.6477 (2)0.24806 (10)0.0261 (7)
H420.4423180.5762460.2325890.031*
C430.43240 (14)0.7490 (2)0.22484 (10)0.0249 (7)
H430.4070800.7481230.1928310.030*
C440.44819 (14)0.8509 (2)0.24909 (10)0.0254 (6)
H440.4324040.9210590.2341340.031*
C450.48688 (14)0.8523 (2)0.29510 (10)0.0254 (6)
H450.4964440.9239950.3110340.030*
C460.49871 (15)0.7112 (2)0.41940 (10)0.0246 (6)
C470.52292 (17)0.6700 (2)0.46687 (10)0.0315 (7)
H470.5745060.6629220.4727010.038*
C480.47564 (19)0.6390 (3)0.50568 (11)0.0388 (8)
H480.4949090.6105530.5371720.047*
C490.40053 (19)0.6491 (3)0.49892 (11)0.0414 (8)
H490.3676570.6283990.5256200.050*
C500.37390 (18)0.6897 (3)0.45288 (12)0.0411 (8)
H500.3222230.6975810.4476920.049*
C510.42219 (16)0.7190 (2)0.41404 (11)0.0322 (7)
H510.4023790.7455890.3823870.039*
C520.62601 (15)0.6606 (2)0.37250 (9)0.0251 (6)
C530.70063 (16)0.6897 (3)0.36737 (11)0.0357 (8)
H530.7135220.7686070.3674930.043*
C540.75655 (18)0.6100 (3)0.36213 (12)0.0446 (9)
H540.8061550.6350140.3586310.054*
C550.74065 (19)0.4944 (3)0.36195 (11)0.0447 (9)
H550.7786410.4394270.3571780.054*
C560.66883 (18)0.4603 (3)0.36880 (10)0.0374 (8)
H560.6569770.3810660.3697080.045*
C570.61333 (16)0.5420 (2)0.37443 (10)0.0297 (7)
H570.5643220.5160090.3798590.036*
C580.58565 (15)0.8834 (2)0.38696 (10)0.0248 (6)
C590.63458 (16)0.9399 (3)0.35433 (11)0.0326 (7)
H590.6501830.9017000.3240770.039*
C600.66161 (17)1.0498 (3)0.36415 (12)0.0407 (8)
H600.6960741.0839500.3414770.049*
C610.63802 (18)1.1086 (3)0.40693 (12)0.0406 (8)
H610.6565821.1830910.4141120.049*
C620.58764 (17)1.0590 (3)0.43899 (11)0.0357 (8)
H620.5699071.0999130.4679050.043*
C630.56245 (15)0.9482 (2)0.42911 (10)0.0285 (7)
H630.5279140.9151690.4520550.034*
B10.06470 (17)0.7221 (3)0.37633 (12)0.0270 (7)
B20.55686 (17)0.7525 (3)0.37481 (12)0.0241 (7)
C30.39592 (16)0.1703 (3)0.42524 (12)0.0470 (9)
H3A0.4336970.1200750.4411050.056*
H3B0.3863750.2345370.4491040.056*
C40.29529 (19)0.0746 (3)0.46769 (12)0.0538 (10)
H4A0.3310930.0292670.4873970.081*
H4B0.2500940.0297520.4626290.081*
H4C0.2837070.1449790.4864770.081*
C50.3405 (2)0.0026 (3)0.38691 (13)0.0509 (9)
H5A0.3374860.0698660.4099390.061*
H5B0.3909200.0000310.3725690.061*
C60.2858 (2)0.0163 (3)0.34395 (13)0.0464 (9)
H6A0.3024330.0784170.3208650.056*
H6B0.2374520.0390300.3582830.056*
C70.21341 (17)0.0771 (3)0.27841 (12)0.0462 (9)
H7A0.2206580.0086830.2572350.069*
H7B0.2097880.1447690.2562660.069*
H7C0.1678670.0690120.2981620.069*
C80.34430 (16)0.1195 (2)0.28411 (11)0.0330 (7)
H8A0.3352500.1035840.2473050.040*
H8B0.3857190.0704830.2957260.040*
C90.36514 (16)0.2438 (2)0.29074 (11)0.0325 (7)
H9A0.4146190.2569030.2759540.039*
H9B0.3294230.2923810.2718350.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0208 (2)0.0226 (2)0.02047 (19)0.00069 (17)0.00212 (14)0.00164 (17)
N10.0234 (13)0.0275 (13)0.0360 (14)0.0043 (11)0.0051 (10)0.0021 (12)
N20.0324 (15)0.0413 (16)0.0355 (15)0.0051 (13)0.0033 (12)0.0076 (12)
N30.0344 (14)0.0260 (14)0.0288 (13)0.0031 (11)0.0036 (11)0.0040 (11)
N40.0403 (16)0.0392 (16)0.0326 (15)0.0025 (13)0.0073 (12)0.0078 (13)
N50.0313 (15)0.0370 (15)0.0291 (14)0.0077 (12)0.0089 (12)0.0084 (12)
N60.0264 (14)0.0390 (15)0.0253 (13)0.0038 (12)0.0029 (11)0.0062 (11)
C10.048 (2)0.035 (2)0.067 (2)0.0204 (17)0.0163 (18)0.0089 (18)
C100.041 (2)0.040 (2)0.0316 (18)0.0055 (16)0.0042 (15)0.0051 (16)
C20.0219 (17)0.057 (2)0.054 (2)0.0013 (17)0.0046 (15)0.0076 (18)
C110.090 (3)0.062 (3)0.047 (2)0.006 (2)0.015 (2)0.029 (2)
C120.0309 (17)0.0326 (18)0.0243 (16)0.0035 (14)0.0084 (13)0.0040 (14)
C130.046 (2)0.0399 (19)0.0263 (16)0.0097 (16)0.0008 (14)0.0089 (14)
C140.0300 (17)0.0325 (18)0.0250 (16)0.0011 (14)0.0016 (14)0.0003 (13)
C150.0392 (19)0.052 (2)0.0308 (17)0.0112 (16)0.0117 (14)0.0035 (15)
C160.0325 (18)0.0333 (18)0.0234 (15)0.0018 (14)0.0018 (13)0.0101 (13)
C170.040 (2)0.044 (2)0.0358 (18)0.0070 (16)0.0046 (15)0.0113 (15)
C180.041 (2)0.072 (3)0.041 (2)0.022 (2)0.0032 (16)0.027 (2)
C190.067 (3)0.051 (3)0.046 (2)0.032 (2)0.021 (2)0.0253 (19)
C200.064 (3)0.032 (2)0.051 (2)0.0128 (18)0.0193 (19)0.0105 (16)
C210.0397 (19)0.0313 (18)0.0395 (18)0.0042 (15)0.0068 (15)0.0086 (15)
C220.0194 (15)0.0308 (17)0.0224 (15)0.0029 (13)0.0078 (12)0.0011 (12)
C230.0239 (16)0.0351 (18)0.0252 (16)0.0017 (14)0.0057 (12)0.0031 (13)
C240.0321 (18)0.0283 (17)0.0319 (17)0.0028 (14)0.0092 (14)0.0058 (13)
C250.0341 (18)0.0279 (18)0.0412 (19)0.0011 (15)0.0068 (15)0.0024 (14)
C260.0284 (17)0.0366 (19)0.0419 (19)0.0006 (15)0.0067 (14)0.0037 (15)
C270.0301 (17)0.0269 (17)0.0343 (17)0.0037 (14)0.0023 (14)0.0014 (13)
C280.0349 (17)0.0292 (17)0.0308 (16)0.0085 (15)0.0023 (13)0.0058 (14)
C290.058 (2)0.0297 (18)0.0313 (17)0.0019 (16)0.0079 (15)0.0000 (14)
C300.075 (3)0.034 (2)0.040 (2)0.0057 (18)0.0187 (18)0.0065 (16)
C310.095 (3)0.046 (2)0.0229 (18)0.019 (2)0.0065 (19)0.0120 (16)
C320.076 (3)0.063 (3)0.0279 (19)0.008 (2)0.0200 (18)0.0055 (18)
C330.048 (2)0.055 (2)0.0297 (18)0.0012 (17)0.0155 (15)0.0088 (16)
C340.0256 (16)0.0184 (15)0.0300 (16)0.0022 (13)0.0003 (12)0.0018 (13)
C350.0261 (16)0.0299 (17)0.0323 (17)0.0019 (13)0.0021 (13)0.0006 (13)
C360.0357 (18)0.0365 (19)0.0325 (17)0.0021 (15)0.0076 (14)0.0009 (14)
C370.0286 (17)0.0332 (18)0.047 (2)0.0058 (15)0.0144 (14)0.0107 (16)
C380.0247 (17)0.0278 (17)0.053 (2)0.0010 (13)0.0007 (15)0.0091 (15)
C390.0317 (18)0.0242 (16)0.0357 (17)0.0007 (13)0.0017 (14)0.0003 (13)
C400.0209 (14)0.0212 (15)0.0225 (14)0.0007 (12)0.0078 (11)0.0009 (11)
C410.0280 (16)0.0218 (16)0.0271 (16)0.0002 (13)0.0044 (13)0.0027 (12)
C420.0258 (16)0.0269 (17)0.0258 (16)0.0032 (13)0.0039 (12)0.0047 (13)
C430.0217 (15)0.0335 (18)0.0195 (14)0.0004 (13)0.0029 (11)0.0011 (12)
C440.0262 (16)0.0237 (16)0.0264 (16)0.0053 (13)0.0036 (12)0.0023 (13)
C450.0270 (16)0.0233 (16)0.0260 (16)0.0018 (13)0.0043 (13)0.0020 (12)
C460.0354 (17)0.0149 (14)0.0237 (15)0.0004 (13)0.0055 (12)0.0033 (12)
C470.0427 (19)0.0285 (17)0.0233 (16)0.0008 (14)0.0029 (14)0.0019 (13)
C480.064 (2)0.0301 (18)0.0222 (16)0.0004 (17)0.0052 (15)0.0007 (13)
C490.061 (2)0.0352 (19)0.0285 (18)0.0084 (17)0.0210 (16)0.0005 (14)
C500.0385 (19)0.046 (2)0.0393 (19)0.0042 (16)0.0145 (15)0.0001 (16)
C510.0381 (18)0.0297 (17)0.0290 (16)0.0009 (15)0.0058 (13)0.0027 (14)
C520.0346 (17)0.0275 (16)0.0132 (13)0.0027 (13)0.0016 (12)0.0004 (12)
C530.0365 (19)0.0368 (19)0.0337 (17)0.0022 (15)0.0021 (14)0.0013 (14)
C540.0337 (19)0.058 (2)0.042 (2)0.0105 (18)0.0036 (15)0.0015 (17)
C550.047 (2)0.056 (2)0.0312 (18)0.0261 (19)0.0004 (16)0.0026 (16)
C560.058 (2)0.0317 (18)0.0225 (16)0.0131 (17)0.0064 (15)0.0002 (13)
C570.0377 (18)0.0314 (18)0.0199 (15)0.0023 (15)0.0011 (13)0.0019 (13)
C580.0280 (16)0.0249 (16)0.0215 (15)0.0012 (13)0.0052 (12)0.0041 (12)
C590.0366 (18)0.0323 (18)0.0287 (16)0.0026 (15)0.0041 (14)0.0061 (14)
C600.041 (2)0.037 (2)0.044 (2)0.0097 (16)0.0089 (16)0.0191 (16)
C610.052 (2)0.0230 (17)0.047 (2)0.0048 (16)0.0231 (17)0.0055 (15)
C620.047 (2)0.0253 (17)0.0344 (18)0.0056 (15)0.0154 (15)0.0024 (14)
C630.0336 (17)0.0247 (16)0.0273 (16)0.0010 (14)0.0069 (13)0.0038 (13)
B10.0265 (18)0.0271 (18)0.0274 (17)0.0029 (16)0.0015 (14)0.0014 (15)
B20.0295 (18)0.0183 (17)0.0244 (17)0.0005 (14)0.0027 (14)0.0007 (13)
C30.0270 (18)0.072 (3)0.042 (2)0.0050 (17)0.0111 (15)0.0013 (18)
C40.050 (2)0.073 (3)0.038 (2)0.010 (2)0.0079 (16)0.0277 (19)
C50.058 (2)0.033 (2)0.061 (2)0.0158 (17)0.0042 (19)0.0135 (17)
C60.066 (2)0.0246 (18)0.048 (2)0.0005 (17)0.0122 (18)0.0017 (15)
C70.046 (2)0.059 (2)0.0336 (18)0.0164 (18)0.0016 (16)0.0149 (17)
C80.0333 (17)0.0351 (18)0.0305 (17)0.0034 (14)0.0088 (13)0.0077 (14)
C90.0264 (16)0.0389 (19)0.0325 (17)0.0005 (14)0.0150 (13)0.0017 (14)
Geometric parameters (Å, º) top
Co1—N12.143 (2)C35—C361.384 (4)
Co1—N22.139 (2)C35—H350.9500
Co1—N32.141 (2)C36—C371.377 (4)
Co1—N42.129 (3)C36—H360.9500
Co1—N52.094 (3)C37—C381.380 (4)
Co1—N62.153 (2)C37—H370.9500
N1—C11.475 (4)C38—C391.384 (4)
N1—C91.487 (3)C38—H380.9500
N1—C21.490 (4)C39—H390.9500
N2—C41.477 (4)C40—C411.401 (4)
N2—C31.483 (4)C40—C451.406 (4)
N2—C51.498 (4)C40—B21.653 (4)
N3—C61.479 (4)C41—C421.383 (4)
N3—C71.480 (4)C41—H410.9500
N3—C81.494 (3)C42—C431.384 (4)
N4—C101.129 (4)C42—H420.9500
N5—C121.138 (3)C43—C441.376 (4)
N6—C141.135 (3)C43—H430.9500
C1—H1A0.9800C44—C451.386 (4)
C1—H1B0.9800C44—H440.9500
C1—H1C0.9800C45—H450.9500
C10—C111.454 (4)C46—C511.396 (4)
C2—C31.511 (4)C46—C471.396 (4)
C2—H2A0.9900C46—B21.645 (4)
C2—H2B0.9900C47—C481.378 (4)
C11—H11A0.9800C47—H470.9500
C11—H11B0.9800C48—C491.377 (4)
C11—H11C0.9800C48—H480.9500
C12—C131.447 (4)C49—C501.375 (4)
C13—H13A0.9800C49—H490.9500
C13—H13B0.9800C50—C511.385 (4)
C13—H13C0.9800C50—H500.9500
C14—C151.455 (4)C51—H510.9500
C15—H15A0.9800C52—C531.402 (4)
C15—H15B0.9800C52—C571.404 (4)
C15—H15C0.9800C52—B21.651 (4)
C16—C211.397 (4)C53—C541.383 (4)
C16—C171.403 (4)C53—H530.9500
C16—B11.642 (4)C54—C551.379 (5)
C17—C181.395 (4)C54—H540.9500
C17—H170.9500C55—C561.374 (4)
C18—C191.379 (5)C55—H550.9500
C18—H180.9500C56—C571.394 (4)
C19—C201.368 (5)C56—H560.9500
C19—H190.9500C57—H570.9500
C20—C211.392 (4)C58—C591.398 (4)
C20—H200.9500C58—C631.401 (4)
C21—H210.9500C58—B21.644 (4)
C22—C271.398 (4)C59—C601.396 (4)
C22—C231.399 (4)C59—H590.9500
C22—B11.638 (4)C60—C611.379 (4)
C23—C241.387 (4)C60—H600.9500
C23—H230.9500C61—C621.370 (4)
C24—C251.376 (4)C61—H610.9500
C24—H240.9500C62—C631.394 (4)
C25—C261.374 (4)C62—H620.9500
C25—H250.9500C63—H630.9500
C26—C271.389 (4)C3—H3A0.9900
C26—H260.9500C3—H3B0.9900
C27—H270.9500C4—H4A0.9800
C28—C291.394 (4)C4—H4B0.9800
C28—C331.399 (4)C4—H4C0.9800
C28—B11.645 (4)C5—C61.500 (5)
C29—C301.393 (4)C5—H5A0.9900
C29—H290.9500C5—H5B0.9900
C30—C311.369 (5)C6—H6A0.9900
C30—H300.9500C6—H6B0.9900
C31—C321.374 (5)C7—H7A0.9800
C31—H310.9500C7—H7B0.9800
C32—C331.385 (4)C7—H7C0.9800
C32—H320.9500C8—C91.508 (4)
C33—H330.9500C8—H8A0.9900
C34—C351.403 (4)C8—H8B0.9900
C34—C391.403 (4)C9—H9A0.9900
C34—B11.643 (4)C9—H9B0.9900
N5—Co1—N489.38 (10)C38—C37—H37120.6
N4—Co1—N293.69 (10)C37—C38—C39120.1 (3)
N5—Co1—N393.66 (9)C37—C38—H38119.9
N5—Co1—N192.93 (9)C39—C38—H38119.9
N4—Co1—N195.53 (9)C38—C39—C34123.2 (3)
N1—Co1—N283.16 (9)C38—C39—H39118.4
N1—Co1—N382.86 (9)C34—C39—H39118.4
N2—Co1—N383.18 (9)C41—C40—C45114.3 (2)
N1—Co1—N6175.58 (9)C41—C40—B2122.4 (2)
N2—Co1—N5175.23 (9)C45—C40—B2123.2 (2)
N3—Co1—N4176.62 (10)C42—C41—C40123.6 (3)
N5—Co1—N691.39 (9)C42—C41—H41118.2
N4—Co1—N685.44 (9)C40—C41—H41118.2
N2—Co1—N692.49 (9)C41—C42—C43120.0 (3)
N3—Co1—N695.94 (9)C41—C42—H42120.0
C1—N1—C9109.2 (2)C43—C42—H42120.0
C1—N1—C2110.1 (2)C44—C43—C42118.6 (3)
C9—N1—C2112.1 (2)C44—C43—H43120.7
C1—N1—Co1114.07 (18)C42—C43—H43120.7
C9—N1—Co1102.65 (16)C43—C44—C45120.7 (3)
C2—N1—Co1108.68 (17)C43—C44—H44119.7
C4—N2—C3109.2 (2)C45—C44—H44119.7
C4—N2—C5110.0 (3)C44—C45—C40122.8 (3)
C3—N2—C5111.4 (2)C44—C45—H45118.6
C4—N2—Co1114.68 (19)C40—C45—H45118.6
C3—N2—Co1102.92 (18)C51—C46—C47114.7 (2)
C5—N2—Co1108.51 (18)C51—C46—B2123.4 (2)
C6—N3—C7108.9 (2)C47—C46—B2121.8 (2)
C6—N3—C8112.2 (2)C48—C47—C46123.2 (3)
C7—N3—C8109.4 (2)C48—C47—H47118.4
C6—N3—Co1103.20 (17)C46—C47—H47118.4
C7—N3—Co1114.11 (18)C49—C48—C47120.1 (3)
C8—N3—Co1109.00 (16)C49—C48—H48119.9
C10—N4—Co1173.5 (3)C47—C48—H48119.9
C12—N5—Co1176.8 (2)C50—C49—C48118.9 (3)
C14—N6—Co1163.7 (2)C50—C49—H49120.6
N1—C1—H1A109.5C48—C49—H49120.6
N1—C1—H1B109.5C49—C50—C51120.2 (3)
H1A—C1—H1B109.5C49—C50—H50119.9
N1—C1—H1C109.5C51—C50—H50119.9
H1A—C1—H1C109.5C50—C51—C46122.8 (3)
H1B—C1—H1C109.5C50—C51—H51118.6
N4—C10—C11179.4 (4)C46—C51—H51118.6
N1—C2—C3111.3 (2)C53—C52—C57113.6 (3)
N1—C2—H2A109.4C53—C52—B2125.4 (3)
C3—C2—H2A109.4C57—C52—B2121.0 (2)
N1—C2—H2B109.4C54—C53—C52123.7 (3)
C3—C2—H2B109.4C54—C53—H53118.1
H2A—C2—H2B108.0C52—C53—H53118.1
C10—C11—H11A109.5C55—C54—C53120.3 (3)
C10—C11—H11B109.5C55—C54—H54119.8
H11A—C11—H11B109.5C53—C54—H54119.8
C10—C11—H11C109.5C56—C55—C54118.7 (3)
H11A—C11—H11C109.5C56—C55—H55120.6
H11B—C11—H11C109.5C54—C55—H55120.6
N5—C12—C13178.3 (3)C55—C56—C57120.0 (3)
C12—C13—H13A109.5C55—C56—H56120.0
C12—C13—H13B109.5C57—C56—H56120.0
H13A—C13—H13B109.5C56—C57—C52123.5 (3)
C12—C13—H13C109.5C56—C57—H57118.3
H13A—C13—H13C109.5C52—C57—H57118.3
H13B—C13—H13C109.5C59—C58—C63114.7 (3)
N6—C14—C15178.0 (3)C59—C58—B2121.5 (2)
C14—C15—H15A109.5C63—C58—B2123.8 (2)
C14—C15—H15B109.5C60—C59—C58123.0 (3)
H15A—C15—H15B109.5C60—C59—H59118.5
C14—C15—H15C109.5C58—C59—H59118.5
H15A—C15—H15C109.5C61—C60—C59119.7 (3)
H15B—C15—H15C109.5C61—C60—H60120.2
C21—C16—C17114.8 (3)C59—C60—H60120.2
C21—C16—B1124.4 (3)C62—C61—C60119.6 (3)
C17—C16—B1120.6 (3)C62—C61—H61120.2
C18—C17—C16122.5 (3)C60—C61—H61120.2
C18—C17—H17118.8C61—C62—C63119.9 (3)
C16—C17—H17118.8C61—C62—H62120.1
C19—C18—C17120.2 (3)C63—C62—H62120.1
C19—C18—H18119.9C62—C63—C58123.1 (3)
C17—C18—H18119.9C62—C63—H63118.5
C20—C19—C18119.2 (3)C58—C63—H63118.5
C20—C19—H19120.4C22—B1—C16112.3 (2)
C18—C19—H19120.4C22—B1—C34102.5 (2)
C19—C20—C21120.2 (3)C16—B1—C34113.3 (2)
C19—C20—H20119.9C22—B1—C28111.5 (2)
C21—C20—H20119.9C16—B1—C28104.9 (2)
C20—C21—C16123.1 (3)C34—B1—C28112.6 (2)
C20—C21—H21118.4C58—B2—C46109.9 (2)
C16—C21—H21118.4C58—B2—C52111.7 (2)
C27—C22—C23114.9 (3)C46—B2—C52109.0 (2)
C27—C22—B1123.4 (3)C58—B2—C40108.9 (2)
C23—C22—B1121.3 (2)C46—B2—C40108.0 (2)
C24—C23—C22123.1 (3)C52—B2—C40109.3 (2)
C24—C23—H23118.4N2—C3—C2111.5 (3)
C22—C23—H23118.4N2—C3—H3A109.3
C25—C24—C23119.9 (3)C2—C3—H3A109.3
C25—C24—H24120.0N2—C3—H3B109.3
C23—C24—H24120.0C2—C3—H3B109.3
C26—C25—C24119.0 (3)H3A—C3—H3B108.0
C26—C25—H25120.5N2—C4—H4A109.5
C24—C25—H25120.5N2—C4—H4B109.5
C25—C26—C27120.6 (3)H4A—C4—H4B109.5
C25—C26—H26119.7N2—C4—H4C109.5
C27—C26—H26119.7H4A—C4—H4C109.5
C26—C27—C22122.5 (3)H4B—C4—H4C109.5
C26—C27—H27118.7N2—C5—C6112.0 (3)
C22—C27—H27118.7N2—C5—H5A109.2
C29—C28—C33114.5 (3)C6—C5—H5A109.2
C29—C28—B1122.6 (3)N2—C5—H5B109.2
C33—C28—B1122.7 (3)C6—C5—H5B109.2
C30—C29—C28123.2 (3)H5A—C5—H5B107.9
C30—C29—H29118.4N3—C6—C5111.9 (3)
C28—C29—H29118.4N3—C6—H6A109.2
C31—C30—C29119.8 (3)C5—C6—H6A109.2
C31—C30—H30120.1N3—C6—H6B109.2
C29—C30—H30120.1C5—C6—H6B109.2
C30—C31—C32119.3 (3)H6A—C6—H6B107.9
C30—C31—H31120.3N3—C7—H7A109.5
C32—C31—H31120.3N3—C7—H7B109.5
C31—C32—C33120.1 (3)H7A—C7—H7B109.5
C31—C32—H32120.0N3—C7—H7C109.5
C33—C32—H32120.0H7A—C7—H7C109.5
C32—C33—C28123.1 (3)H7B—C7—H7C109.5
C32—C33—H33118.5N3—C8—C9111.3 (2)
C28—C33—H33118.5N3—C8—H8A109.4
C35—C34—C39114.4 (2)C9—C8—H8A109.4
C35—C34—B1121.7 (2)N3—C8—H8B109.4
C39—C34—B1123.4 (2)C9—C8—H8B109.4
C36—C35—C34123.1 (3)H8A—C8—H8B108.0
C36—C35—H35118.5N1—C9—C8111.4 (2)
C34—C35—H35118.5N1—C9—H9A109.3
C37—C36—C35120.3 (3)C8—C9—H9A109.3
C37—C36—H36119.8N1—C9—H9B109.3
C35—C36—H36119.8C8—C9—H9B109.3
C36—C37—C38118.9 (3)H9A—C9—H9B108.0
C36—C37—H37120.6
C1—N1—C2—C3104.4 (3)C27—C22—B1—C1628.2 (3)
C9—N1—C2—C3133.9 (3)C23—C22—B1—C16159.6 (2)
Co1—N1—C2—C321.2 (3)C27—C22—B1—C3493.6 (3)
C21—C16—C17—C180.5 (4)C23—C22—B1—C3478.6 (3)
B1—C16—C17—C18175.4 (3)C27—C22—B1—C28145.7 (2)
C16—C17—C18—C190.8 (5)C23—C22—B1—C2842.2 (3)
C17—C18—C19—C200.4 (5)C21—C16—B1—C22137.0 (3)
C18—C19—C20—C210.1 (5)C17—C16—B1—C2247.6 (3)
C19—C20—C21—C160.4 (5)C21—C16—B1—C3421.5 (4)
C17—C16—C21—C200.1 (4)C17—C16—B1—C34163.0 (3)
B1—C16—C21—C20175.8 (3)C21—C16—B1—C28101.7 (3)
C27—C22—C23—C240.7 (4)C17—C16—B1—C2873.7 (3)
B1—C22—C23—C24173.5 (2)C35—C34—B1—C2279.8 (3)
C22—C23—C24—C250.3 (4)C39—C34—B1—C2291.3 (3)
C23—C24—C25—C260.3 (4)C35—C34—B1—C1641.3 (4)
C24—C25—C26—C270.4 (4)C39—C34—B1—C16147.6 (3)
C25—C26—C27—C220.1 (4)C35—C34—B1—C28160.2 (3)
C23—C22—C27—C260.6 (4)C39—C34—B1—C2828.7 (4)
B1—C22—C27—C26173.2 (3)C29—C28—B1—C22154.6 (3)
C33—C28—C29—C301.1 (5)C33—C28—B1—C2230.0 (4)
B1—C28—C29—C30176.8 (3)C29—C28—B1—C1683.6 (3)
C28—C29—C30—C310.2 (5)C33—C28—B1—C1691.8 (3)
C29—C30—C31—C320.5 (5)C29—C28—B1—C3440.0 (4)
C30—C31—C32—C330.3 (5)C33—C28—B1—C34144.6 (3)
C31—C32—C33—C280.7 (5)C59—C58—B2—C46178.8 (2)
C29—C28—C33—C321.3 (5)C63—C58—B2—C460.6 (4)
B1—C28—C33—C32177.1 (3)C59—C58—B2—C5260.2 (3)
C39—C34—C35—C361.8 (4)C63—C58—B2—C52121.6 (3)
B1—C34—C35—C36173.6 (3)C59—C58—B2—C4060.7 (3)
C34—C35—C36—C370.6 (4)C63—C58—B2—C40117.5 (3)
C35—C36—C37—C380.7 (4)C51—C46—B2—C5896.3 (3)
C36—C37—C38—C390.7 (4)C47—C46—B2—C5880.8 (3)
C37—C38—C39—C340.6 (4)C51—C46—B2—C52141.0 (3)
C35—C34—C39—C381.8 (4)C47—C46—B2—C5241.9 (3)
B1—C34—C39—C38173.5 (3)C51—C46—B2—C4022.4 (3)
C45—C40—C41—C421.9 (4)C47—C46—B2—C40160.5 (2)
B2—C40—C41—C42177.9 (2)C53—C52—B2—C5816.4 (4)
C40—C41—C42—C430.3 (4)C57—C52—B2—C58165.2 (2)
C41—C42—C43—C442.2 (4)C53—C52—B2—C46137.9 (3)
C42—C43—C44—C451.8 (4)C57—C52—B2—C4643.6 (3)
C43—C44—C45—C400.6 (4)C53—C52—B2—C40104.2 (3)
C41—C40—C45—C442.4 (4)C57—C52—B2—C4074.2 (3)
B2—C40—C45—C44178.4 (2)C41—C40—B2—C58168.1 (2)
C51—C46—C47—C480.1 (4)C45—C40—B2—C5816.3 (3)
B2—C46—C47—C48177.4 (3)C41—C40—B2—C4672.7 (3)
C46—C47—C48—C490.7 (5)C45—C40—B2—C46102.9 (3)
C47—C48—C49—C500.5 (5)C41—C40—B2—C5245.7 (3)
C48—C49—C50—C510.4 (5)C45—C40—B2—C52138.6 (2)
C49—C50—C51—C461.1 (5)C4—N2—C3—C2172.0 (3)
C47—C46—C51—C500.8 (4)C5—N2—C3—C266.3 (3)
B2—C46—C51—C50176.5 (3)Co1—N2—C3—C249.8 (3)
C57—C52—C53—C543.0 (4)N1—C2—C3—N249.6 (4)
B2—C52—C53—C54175.5 (3)C4—N2—C5—C6106.9 (3)
C52—C53—C54—C550.3 (5)C3—N2—C5—C6131.9 (3)
C53—C54—C55—C562.2 (5)Co1—N2—C5—C619.3 (3)
C54—C55—C56—C571.7 (4)C7—N3—C6—C5170.4 (3)
C55—C56—C57—C521.3 (4)C8—N3—C6—C568.4 (3)
C53—C52—C57—C563.5 (4)Co1—N3—C6—C548.8 (3)
B2—C52—C57—C56175.0 (2)N2—C5—C6—N347.6 (4)
C63—C58—C59—C603.3 (4)C6—N3—C8—C9132.8 (3)
B2—C58—C59—C60178.3 (3)C7—N3—C8—C9106.2 (3)
C58—C59—C60—C612.1 (5)Co1—N3—C8—C919.1 (3)
C59—C60—C61—C620.8 (5)C1—N1—C9—C8171.9 (2)
C60—C61—C62—C632.1 (4)C2—N1—C9—C865.9 (3)
C61—C62—C63—C580.7 (4)Co1—N1—C9—C850.6 (2)
C59—C58—C63—C622.0 (4)N3—C8—C9—N148.6 (3)
B2—C58—C63—C62179.7 (3)
 

References

First citationBossek, U., Nühlen, D., Bill, E., Glaser, T., Krebs, C., Weyhermüller, T., Wieghardt, K., Lengen, M. & Trautwein, A. X. (1997). Inorg. Chem. 36, 2834–2843.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordeiro, L. L., Dmitrenko, O., Yap, G. P. A. & Riordan, C. G. (2021). Inorg. Chem. 60, 6327–6338.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDetrich, J. L., Konečný, R., Vetter, W. M., Doren, D., Rheingold, A. L. & Theopold, K. H. (1996). J. Am. Chem. Soc. 118, 1703–1712.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGu, L., Fraker, A. & McSkimming, A. (2023). Organometallics, 42, 1621–1628.  Web of Science CSD CrossRef CAS Google Scholar
First citationKershaw Cook, L. J., Tuna, F. & Halcrow, M. A. (2013). Dalton Trans. 42, 2254–2265.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLin, C.-Y., Fettinger, J. C. & Power, P. P. (2017). Inorg. Chem. 56, 9892–9902.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). CIFTAB. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThangavel, A., Wieliczko, M., Bacsa, J. & Scarborough, C. C. (2013). Inorg. Chem. 52, 13282–13287.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, G., Vasudevan, K. V., Scott, B. L. & Hanson, S. K. (2013). J. Am. Chem. Soc. 135, 8668–8681.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, W., Lai, W. & Cao, R. (2017). Chem. Rev. 117, 3717–3797.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146