metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[2,3-bis­­(thio­phen-2-yl)pyrido[3,4-b]pyrazine]­silver(I) perchlorate methanol disolvate

crossmark logo

aCentral Connecticut State University, Department of Chemistry & Biochemistry, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu

Edited by M. Zeller, Purdue University, USA (Received 28 March 2024; accepted 17 April 2024; online 26 April 2024)

The title compound, [Ag(C15H9N3S2)2]ClO4·2CH3OH, is monoclinic. The AgI atom is coordinated by pyrido N atoms and is two-coordinate; however, the AgI atom has nearby O atoms that can be assumed to be weakly bonded – one from the perchlorate anion and one from the methanol solvate molecule. One of the thienyl groups on a 2,3-bis­(thio­phen-2-yl)pyrido[3,4-b]pyrazine is flipped disordered and was refined to occupancies of 68.4 (6) and 31.6 (6)%.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Crystal structures of di­aryl­pyrido[2,3-b]pyrazines are well known. For example, the authors have published the crystal structures of 2,3-bis­(thio­phen-2-yl)pyrido[2,3-b]pyrazine and 7-bromo-2,3-bis­(thio­phen-2-yl)pyrido[2,3-b]pyrazine (Popek & Crundwell, 2019[Popek, R. & Crundwell, G. (2019). Acta Cryst. E75, 89-93.]). By comparison, only one structure of a pyrido[3,4-b]pyrazine has been published to date, namely, 2,3-di­phenyl­pyrido[3,4-b]pyrazine (Chan & Chang, 2016[Chan, C.-K. & Chang, M.-Y. (2016). Synthesis, 48, 3785-3793.]). This article is the first single-crystal XRD study of dithienylpyrido[3,4-b]pyrazine, as well as the first bis complex of this ligand with a transition metal.

The bis complex with silver utilizes the pyrido N atom in the pyrido[3,4-b]pyrazine to make a nearly linear, nearly flat silver(I) complex where the N—Ag—N angle is 175.25 (14)°. This is inter­esting compared to bis complexes with 2,3-di­aryl­quinoxalines which have no choice but to bond to metals using the quinoxaline N atoms, which are more sterically hindered due to their close proximity to the aryl groups on neighboring C atoms. Additionally, the AgI atom is weakly coordinated by two O atoms – a methanol O atom (O6, Fig. 1[link]) at 2.782 (4) Å and a perchlorate O atom (O1) at 3.079 (5) Å, thereby mimicking a four-coordinate square-planar environment (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

Ag1—N3 2.170 (3) Ag1—O1 3.079 (5)
Ag1—N6 2.179 (3) Ag1—O6 2.782 (4)
       
N3—Ag1—N6 175.24 (14)    
[Figure 1]
Figure 1
A view of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dotted bonds illustrate the nearby O atoms from a methanol and from the counter-anion. All H atoms have been omitted, as has the minor component of the disordered thienyl ring.

Like many bis 2,3-dithienylquinoxaline complexes with metals where one thienyl ring is nearly coplanar with the quinoxaline ring (Crundwell & Ellis, 2023[Crundwell, G. & Ellis, K. M. (2023). IUCr Data, 8, x230265.]), here also one thienyl ring in each ligand is nearly planar with the main pyrido­pyrazine moiety. Based on least-squares-plane calculations, the thienyl rings containing S1 and S3 (Fig. 1[link]) make angles of 11.2 (2) and 4.35 (11)°, respectively, with respect to the least-squares-plane determinations of the pyrido­py­ra­zine atoms. By comparison, the thienyl rings containing the S2 and S4 atoms make angles of 50.36 (11) and 64.5 (5)°. Also typical for these thienyl rings are flip disorders. The thienyl ring containing the S4 atom exhibits a flip disorder of 68.4 (6)/31.6 (6)%.

Finally, there are several hydrogen bonds in the structure (Table 2[link]). The most significant hydrogen bonds involve the hydroxy groups on the two methanol solvent molecules. The methanol O atom (O6, Fig. 1[link]) that weakly coordinates to the AgI atom also has a H atom that is hydrogen bonded to the neighboring methanol (O5), which, in turn, particpates in a hydrogen bond by donating its H atom to a symmetry-related perchlorate anion.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯S4i 0.93 2.92 3.665 (6) 138
C9—H9⋯O2ii 0.93 2.64 3.465 (8) 149
C11—H11⋯O5i 0.93 2.65 3.520 (8) 156
C14—H14⋯N5iii 0.93 2.69 3.393 (5) 133
C24—H24⋯S4 0.93 2.77 3.321 (6) 119
C24—H24⋯S4B 0.93 3.00 3.774 (17) 141
C29—H29⋯O4iv 0.93 2.49 3.330 (12) 150
C30—H30⋯Cl1v 0.93 2.96 3.738 (10) 142
C30—H30⋯O1v 0.93 2.40 3.312 (10) 166
C28B—H28B⋯S1vi 0.93 2.93 3.67 (2) 138
C29B—H29B⋯O2v 0.93 2.31 3.21 (2) 162
O6—H6A⋯O5 0.82 1.99 2.805 (8) 175
O5—H5A⋯O3vii 0.82 2.11 2.889 (8) 158
Symmetry codes: (i) [x-1, y, z+1]; (ii) [x, y, z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z]; (v) [-x+2, y+{\script{1\over 2}}, -z]; (vi) [x+1, y, z-1]; (vii) [-x+2, y+{\script{1\over 2}}, -z+1].

Synthesis and crystallization

Silver perchlorate was used as received from Fisher chemicals. 2,3-Bis(thio­phen-2-yl)pyrido[3,4-b]pyrazine was synthesized by the acid-catalyzed condensation reaction between 2,2′-thenil and pyridine-3,4-di­amine (Lassagne et al., 2015[Lassagne, F., Chevallier, F., Roisnel, T., Dorcet, V., Mongin, F. & Domingo, L. R. (2015). Synthesis, 47, 2680-2689.]) and was purified by column chromatography before use.

A 30 ml methanol solution of 148 mg (0.50 mmol) of pyrido­pyrazine was stirred and warmed until the ligand dissolved. A 5 ml solution of 52 mg (0.25 mmol) of silver perchlorate in methanol was added to the former solution. The resulting mixture was removed from heat and transferred into test tubes that were individually placed into amber vials. The amber vials were loosely capped and were placed in a drawer to remove them from ambient room lighting. Diffraction-quality pale-yellow plates formed via slow evaporation of the solvent within 48 h. Crystals were harvested from the evaporating solutions. Crystals slowly desolvated upon standing in open air and were thus covered in paraffin oil for data collection.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Ag(C15H9N3S2)2]ClO4·2CH4O
Mr 862.15
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 8.3455 (3), 19.2331 (6), 11.0134 (3)
β (°) 102.491 (3)
V3) 1725.93 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.96
Crystal size (mm) 0.38 × 0.37 × 0.11
 
Data collection
Diffractometer Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Corporation, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.851, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 45050, 12591, 8576
Rint 0.039
(sin θ/λ)max−1) 0.780
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.095, 1.01
No. of reflections 12591
No. of parameters 495
No. of restraints 185
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.28
Absolute structure Flack x determined using 3323 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.044 (8)
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Corporation, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

A ring-flip disorder of 68.4 (6) to 31.6 (6)% was determined for one of the ligand thienyl rings. This disorder was treated by a FLAT restraint to the flipped component atoms of the thienyl ring along with SADI and SIMU restraints to control bond lengths and displacement parameters, respectively. The displacement parameter of the C atom that connects the thienyl ring to the pyrido­pyrazine ring was constrained to be idenical in both flipped orientations using an EADP constraint.

Finally, an H atom on a methanol solvent molecule was restrained such that it made a hydrogen bond with a neighboring methanol.

Structural data


Computing details top

Bis[2,3-bis(thiophen-2-yl)pyrido[3,4-b]pyrazine]silver(I) perchlorate methanol disolvate top
Crystal data top
[Ag(C15H9N3S2)2]ClO4·2CH4OF(000) = 872
Mr = 862.15Dx = 1.659 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.3455 (3) ÅCell parameters from 10547 reflections
b = 19.2331 (6) Åθ = 3.1–31.8°
c = 11.0134 (3) ŵ = 0.96 mm1
β = 102.491 (3)°T = 293 K
V = 1725.93 (10) Å3Plate, yellow
Z = 20.38 × 0.37 × 0.11 mm
Data collection top
Xcalibur Sapphire3
diffractometer
12591 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source8576 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 16.1790 pixels mm-1θmax = 33.7°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
k = 2929
Tmin = 0.851, Tmax = 1.000l = 1616
45050 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.1482P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.45 e Å3
12591 reflectionsΔρmin = 0.28 e Å3
495 parametersAbsolute structure: Flack x determined using 3323 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
185 restraintsAbsolute structure parameter: 0.044 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms on sp2 and sp3 C atom were placed at calculated positions with C—H distances of 0.93 and 0.96 Å and were included in the refinement in riding-motion approximation, with Uiso(H) = 1.2Ueq or 1.5Ueq of the carrier atom, respectively. Hydroxy-group H atoms were also placed at calculated positions with an O—H distance of 0.82 Å and were included in the refinement in riding-motion approximation, with 1.5Ueq of the carrier atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.70442 (4)0.12456 (2)0.38256 (3)0.05936 (11)
N10.4283 (4)0.14950 (16)0.8719 (3)0.0373 (6)
N20.5361 (4)0.02155 (15)0.7974 (3)0.0397 (7)
N30.6104 (4)0.1316 (2)0.5510 (2)0.0421 (7)
N40.9634 (4)0.07609 (16)0.1102 (3)0.0383 (7)
N50.8781 (4)0.20922 (16)0.0416 (3)0.0405 (7)
N60.7905 (4)0.10874 (17)0.2114 (3)0.0455 (8)
C10.4227 (4)0.09252 (19)0.9368 (3)0.0345 (7)
C20.4642 (4)0.02578 (18)0.8917 (3)0.0350 (7)
C30.5467 (4)0.08089 (19)0.7322 (3)0.0356 (7)
C40.6119 (5)0.0784 (2)0.6252 (3)0.0409 (8)
H40.6584630.0370290.6060240.049*
C50.5462 (6)0.1931 (2)0.5815 (4)0.0486 (10)
H50.5453220.2311820.5293830.058*
C60.4834 (6)0.2006 (2)0.6851 (4)0.0484 (10)
H60.4403090.2431270.7027260.058*
C70.4843 (5)0.14404 (17)0.7647 (3)0.0352 (7)
C80.3768 (4)0.10390 (18)1.0565 (3)0.0360 (8)
C90.3805 (5)0.0610 (2)1.1561 (4)0.0465 (9)
H90.4092260.0142851.1570750.056*
C100.3359 (6)0.0953 (3)1.2574 (4)0.0538 (11)
H100.3324550.0736791.3323140.065*
C110.2991 (7)0.1626 (3)1.2335 (4)0.0579 (12)
H110.2660680.1927521.2894390.070*
S10.32009 (16)0.18639 (6)1.08882 (10)0.0512 (3)
C120.4263 (5)0.04052 (19)0.9440 (3)0.0415 (8)
C130.2780 (6)0.0623 (2)0.9634 (4)0.0476 (9)
H130.1859860.0338380.9536290.057*
C140.2801 (7)0.1323 (2)0.9996 (4)0.0577 (12)
H140.1892380.1552701.0163820.069*
C150.4267 (7)0.1627 (2)1.0074 (5)0.0631 (13)
H150.4496110.2086211.0315370.076*
S20.56527 (17)0.10719 (6)0.96782 (13)0.0613 (3)
C160.9753 (4)0.1309 (2)0.1800 (3)0.0331 (6)
C170.9372 (4)0.19958 (18)0.1415 (3)0.0349 (7)
C180.8609 (5)0.15199 (19)0.0273 (3)0.0359 (8)
C190.8032 (5)0.1610 (2)0.1367 (4)0.0447 (9)
H190.7730100.2052730.1572630.054*
C200.8349 (6)0.0447 (2)0.1796 (4)0.0532 (11)
H200.8248130.0076810.2318930.064*
C210.8936 (6)0.0311 (2)0.0755 (4)0.0503 (10)
H210.9234120.0138540.0582450.060*
C220.9079 (5)0.0861 (2)0.0047 (3)0.0369 (7)
C231.0254 (4)0.1167 (2)0.2965 (3)0.0367 (7)
C241.0302 (5)0.1588 (2)0.3989 (3)0.0448 (9)
H241.0023240.2056850.4048210.054*
C251.0833 (5)0.1202 (3)0.4929 (4)0.0587 (11)
H251.0925950.1393550.5685540.070*
C261.1189 (7)0.0532 (3)0.4622 (4)0.0639 (13)
H261.1574320.0217110.5132640.077*
S31.08557 (18)0.03321 (6)0.32037 (11)0.0599 (3)
C270.9611 (16)0.2629 (6)0.2120 (14)0.0367 (17)0.684 (6)
C280.842 (2)0.3113 (12)0.258 (2)0.049 (3)0.684 (6)
H280.7316840.3072250.2554690.058*0.684 (6)
C290.9107 (12)0.3688 (6)0.3118 (12)0.062 (2)0.684 (6)
H290.8473760.4043120.3550700.074*0.684 (6)
C301.0712 (13)0.3668 (5)0.2944 (10)0.061 (3)0.684 (6)
H301.1337360.4010050.3219780.073*0.684 (6)
S41.1517 (4)0.2942 (2)0.2149 (3)0.0632 (9)0.684 (6)
C27B0.976 (3)0.2650 (14)0.194 (3)0.0367 (17)0.316 (6)
C28B1.132 (3)0.2911 (15)0.184 (2)0.051 (5)0.316 (6)
H28B1.2270180.2720750.1353050.061*0.316 (6)
C29B1.124 (2)0.3524 (11)0.259 (2)0.059 (5)0.316 (6)
H29B1.2170780.3764310.2697300.071*0.316 (6)
C30B0.975 (2)0.3713 (13)0.311 (3)0.064 (6)0.316 (6)
H30B0.9496640.4115300.3583170.076*0.316 (6)
S4B0.8309 (15)0.3144 (8)0.2838 (14)0.062 (3)0.316 (6)
Cl10.56109 (14)0.07882 (6)0.41362 (11)0.0552 (3)
O10.6944 (5)0.0331 (2)0.4288 (5)0.0981 (16)
O20.5177 (8)0.0979 (4)0.2865 (5)0.131 (2)
O30.6003 (7)0.1420 (3)0.4721 (6)0.1162 (17)
O40.4275 (5)0.0473 (2)0.4526 (5)0.0983 (15)
O60.7948 (6)0.2632 (2)0.3707 (5)0.0914 (13)
H6A0.8873270.2734550.3626820.137*
C320.6934 (10)0.3214 (4)0.3467 (7)0.107 (2)
H32A0.7325010.3517640.2902700.161*
H32B0.6944060.3455960.4231340.161*
H32C0.5833750.3069800.3102470.161*
O51.1150 (7)0.3021 (3)0.3591 (5)0.1150 (17)
H5A1.1781220.3184900.4199430.172*
C311.1213 (12)0.3419 (6)0.2541 (10)0.133 (3)
H31A1.0759580.3156680.1804580.200*
H31B1.2332850.3535420.2546070.200*
H31C1.0588980.3837370.2549380.200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0787 (2)0.0712 (2)0.03931 (14)0.0011 (2)0.03710 (14)0.00273 (17)
N10.0452 (16)0.0377 (15)0.0334 (15)0.0010 (12)0.0185 (13)0.0006 (12)
N20.0520 (18)0.0362 (15)0.0359 (15)0.0013 (14)0.0203 (13)0.0022 (12)
N30.0527 (16)0.0490 (18)0.0301 (13)0.0117 (17)0.0209 (12)0.0033 (16)
N40.0506 (18)0.0346 (15)0.0346 (16)0.0000 (13)0.0198 (13)0.0012 (12)
N50.0541 (19)0.0346 (15)0.0395 (16)0.0052 (14)0.0253 (15)0.0021 (12)
N60.0564 (19)0.048 (2)0.0394 (16)0.0015 (15)0.0265 (14)0.0044 (13)
C10.0371 (17)0.0383 (17)0.0312 (16)0.0020 (14)0.0142 (14)0.0018 (14)
C20.0413 (18)0.0339 (17)0.0328 (16)0.0008 (14)0.0145 (14)0.0031 (13)
C30.0419 (19)0.0345 (17)0.0338 (17)0.0047 (15)0.0159 (15)0.0011 (14)
C40.049 (2)0.045 (2)0.0336 (18)0.0026 (17)0.0208 (16)0.0062 (15)
C50.070 (3)0.045 (2)0.038 (2)0.005 (2)0.0279 (19)0.0064 (17)
C60.066 (3)0.038 (2)0.050 (2)0.0016 (19)0.031 (2)0.0035 (17)
C70.0433 (18)0.0352 (19)0.0311 (15)0.0051 (14)0.0169 (13)0.0004 (13)
C80.0413 (18)0.042 (2)0.0284 (15)0.0024 (14)0.0148 (13)0.0002 (12)
C90.064 (3)0.046 (2)0.0344 (19)0.0014 (19)0.0212 (18)0.0059 (16)
C100.070 (3)0.067 (3)0.0303 (19)0.002 (2)0.0242 (19)0.0060 (18)
C110.076 (3)0.065 (3)0.040 (2)0.001 (2)0.030 (2)0.011 (2)
S10.0749 (7)0.0455 (5)0.0399 (5)0.0041 (5)0.0270 (5)0.0016 (4)
C120.056 (2)0.0373 (19)0.0351 (18)0.0012 (16)0.0192 (16)0.0057 (15)
C130.059 (2)0.041 (2)0.048 (2)0.0051 (18)0.0227 (19)0.0075 (17)
C140.083 (3)0.046 (2)0.048 (2)0.019 (2)0.023 (2)0.0058 (19)
C150.099 (4)0.037 (2)0.056 (3)0.000 (2)0.022 (3)0.012 (2)
S20.0724 (8)0.0425 (5)0.0732 (8)0.0112 (5)0.0251 (6)0.0113 (5)
C160.0355 (15)0.0359 (17)0.0301 (14)0.0043 (16)0.0120 (11)0.0010 (16)
C170.0393 (19)0.0349 (18)0.0334 (17)0.0011 (14)0.0144 (14)0.0019 (14)
C180.0426 (19)0.0373 (17)0.0321 (17)0.0013 (14)0.0175 (14)0.0005 (13)
C190.057 (2)0.045 (2)0.041 (2)0.0036 (18)0.0283 (18)0.0023 (16)
C200.075 (3)0.046 (2)0.047 (2)0.003 (2)0.031 (2)0.0122 (18)
C210.077 (3)0.0371 (19)0.045 (2)0.003 (2)0.032 (2)0.0048 (17)
C220.0447 (19)0.0365 (17)0.0329 (17)0.0003 (16)0.0157 (15)0.0010 (14)
C230.0394 (16)0.0424 (19)0.0309 (14)0.0010 (16)0.0131 (12)0.0037 (15)
C240.050 (2)0.057 (2)0.0316 (18)0.0035 (18)0.0194 (16)0.0040 (16)
C250.069 (2)0.079 (3)0.0351 (17)0.005 (3)0.0272 (17)0.005 (3)
C260.085 (3)0.074 (3)0.041 (2)0.008 (3)0.033 (2)0.015 (2)
S30.0897 (9)0.0492 (6)0.0473 (6)0.0080 (6)0.0294 (6)0.0066 (5)
C270.049 (3)0.0351 (18)0.030 (5)0.0042 (18)0.018 (3)0.001 (2)
C280.057 (6)0.047 (6)0.047 (7)0.002 (5)0.023 (5)0.010 (4)
C290.072 (6)0.049 (4)0.068 (5)0.010 (5)0.024 (5)0.018 (4)
C300.069 (7)0.042 (4)0.080 (7)0.011 (5)0.033 (6)0.011 (4)
S40.0515 (12)0.0482 (13)0.098 (2)0.0056 (9)0.0335 (12)0.0089 (14)
C27B0.049 (3)0.0351 (18)0.030 (5)0.0042 (18)0.018 (3)0.001 (2)
C28B0.061 (10)0.036 (7)0.063 (9)0.006 (7)0.029 (7)0.022 (7)
C29B0.057 (9)0.057 (9)0.065 (9)0.006 (7)0.013 (7)0.019 (7)
C30B0.060 (12)0.054 (8)0.077 (9)0.003 (11)0.013 (11)0.032 (7)
S4B0.073 (4)0.049 (3)0.061 (6)0.003 (3)0.009 (3)0.017 (3)
Cl10.0634 (6)0.0444 (5)0.0612 (6)0.0008 (5)0.0208 (5)0.0028 (5)
O10.093 (3)0.072 (3)0.150 (4)0.031 (2)0.074 (3)0.054 (3)
O20.141 (4)0.165 (5)0.079 (3)0.014 (4)0.010 (3)0.039 (4)
O30.125 (4)0.089 (3)0.142 (5)0.008 (3)0.046 (3)0.037 (3)
O40.077 (3)0.083 (3)0.150 (4)0.012 (2)0.058 (3)0.007 (3)
O60.118 (3)0.063 (2)0.099 (3)0.007 (2)0.036 (3)0.003 (2)
C320.150 (7)0.106 (5)0.080 (4)0.044 (5)0.053 (4)0.017 (4)
O50.113 (4)0.122 (4)0.103 (4)0.025 (3)0.010 (3)0.018 (3)
C310.132 (7)0.133 (8)0.131 (8)0.022 (6)0.019 (6)0.017 (6)
Geometric parameters (Å, º) top
Ag1—N32.170 (3)C18—C191.402 (5)
Ag1—N62.179 (3)C18—C221.394 (5)
Ag1—O13.079 (5)C19—H190.9300
Ag1—O62.782 (4)C20—H200.9300
N1—C11.315 (4)C20—C211.366 (5)
N1—C71.365 (4)C21—H210.9300
N2—C21.309 (4)C21—C221.401 (5)
N2—C31.362 (4)C23—C241.396 (5)
N3—C41.308 (5)C23—S31.720 (4)
N3—C51.369 (6)C24—H240.9300
N4—C161.321 (5)C24—C251.420 (5)
N4—C221.354 (5)C25—H250.9300
N5—C171.313 (4)C25—C261.348 (8)
N5—C181.361 (5)C26—H260.9300
N6—C191.317 (5)C26—S31.690 (5)
N6—C201.354 (5)C27—C281.379 (18)
C1—C21.445 (5)C27—S41.708 (11)
C1—C81.467 (5)C28—H280.9300
C2—C121.462 (5)C28—C291.429 (18)
C3—C41.402 (5)C29—H290.9300
C3—C71.398 (5)C29—C301.312 (11)
C4—H40.9300C30—H300.9300
C5—H50.9300C30—S41.707 (10)
C5—C61.363 (5)C27B—C28B1.38 (2)
C6—H60.9300C27B—S4B1.68 (2)
C6—C71.396 (5)C28B—H28B0.9300
C8—C91.367 (5)C28B—C29B1.44 (2)
C8—S11.715 (4)C29B—H29B0.9300
C9—H90.9300C29B—C30B1.309 (19)
C9—C101.413 (6)C30B—H30B0.9300
C10—H100.9300C30B—S4B1.698 (18)
C10—C111.344 (7)Cl1—O11.399 (4)
C11—H110.9300Cl1—O21.417 (5)
C11—S11.703 (5)Cl1—O31.380 (5)
C12—C131.365 (6)Cl1—O41.415 (4)
C12—S21.711 (4)O6—H6A0.8200
C13—H130.9300O6—C321.394 (8)
C13—C141.404 (6)C32—H32A0.9600
C14—H140.9300C32—H32B0.9600
C14—C151.342 (7)C32—H32C0.9600
C15—H150.9300O5—H5A0.8200
C15—S21.699 (5)O5—C311.398 (11)
C16—C171.443 (5)C31—H31A0.9600
C16—C231.458 (4)C31—H31B0.9600
C17—C271.480 (8)C31—H31C0.9600
C17—C27B1.451 (16)
N3—Ag1—N6175.24 (14)N6—C19—H19118.9
C1—N1—C7117.7 (3)C18—C19—H19118.9
C2—N2—C3117.3 (3)N6—C20—H20118.0
C4—N3—Ag1121.9 (3)N6—C20—C21123.9 (4)
C4—N3—C5118.3 (3)C21—C20—H20118.0
C5—N3—Ag1119.8 (3)C20—C21—H21120.7
C16—N4—C22117.9 (3)C20—C21—C22118.7 (4)
C17—N5—C18117.2 (3)C22—C21—H21120.7
C19—N6—Ag1121.3 (3)N4—C22—C18120.9 (3)
C19—N6—C20118.0 (3)N4—C22—C21121.7 (3)
C20—N6—Ag1120.7 (2)C18—C22—C21117.4 (3)
N1—C1—C2121.0 (3)C16—C23—S3117.2 (3)
N1—C1—C8114.3 (3)C24—C23—C16131.8 (4)
C2—C1—C8124.8 (3)C24—C23—S3110.9 (3)
N2—C2—C1120.8 (3)C23—C24—H24124.6
N2—C2—C12115.7 (3)C23—C24—C25110.7 (4)
C1—C2—C12123.4 (3)C25—C24—H24124.6
N2—C3—C4119.8 (3)C24—C25—H25123.1
N2—C3—C7121.5 (3)C26—C25—C24113.8 (4)
C7—C3—C4118.6 (3)C26—C25—H25123.1
N3—C4—C3123.1 (4)C25—C26—H26123.9
N3—C4—H4118.5C25—C26—S3112.2 (3)
C3—C4—H4118.5S3—C26—H26123.9
N3—C5—H5118.7C26—S3—C2392.3 (2)
C6—C5—N3122.6 (4)C17—C27—S4122.1 (8)
C6—C5—H5118.7C28—C27—C17125.6 (12)
C5—C6—H6120.3C28—C27—S4110.8 (9)
C5—C6—C7119.4 (4)C27—C28—H28124.7
C7—C6—H6120.3C27—C28—C29110.7 (13)
N1—C7—C3120.3 (3)C29—C28—H28124.7
N1—C7—C6121.8 (3)C28—C29—H29123.0
C6—C7—C3118.0 (3)C30—C29—C28114.0 (12)
C1—C8—S1117.5 (3)C30—C29—H29123.0
C9—C8—C1131.8 (3)C29—C30—H30124.0
C9—C8—S1110.5 (3)C29—C30—S4112.0 (9)
C8—C9—H9123.6S4—C30—H30124.0
C8—C9—C10112.8 (4)C27—S4—C3092.0 (5)
C10—C9—H9123.6C17—C27B—S4B122.3 (17)
C9—C10—H10123.7C28B—C27B—C17125 (2)
C11—C10—C9112.5 (4)C28B—C27B—S4B113.0 (13)
C11—C10—H10123.7C27B—C28B—H28B125.4
C10—C11—H11123.9C27B—C28B—C29B109.1 (18)
C10—C11—S1112.1 (4)C29B—C28B—H28B125.4
S1—C11—H11123.9C28B—C29B—H29B123.2
C11—S1—C892.0 (2)C30B—C29B—C28B113.6 (19)
C2—C12—S2121.1 (3)C30B—C29B—H29B123.2
C13—C12—C2127.5 (4)C29B—C30B—H30B123.6
C13—C12—S2110.7 (3)C29B—C30B—S4B112.8 (16)
C12—C13—H13123.8S4B—C30B—H30B123.6
C12—C13—C14112.5 (4)C27B—S4B—C30B91.3 (11)
C14—C13—H13123.8O1—Cl1—O2107.9 (3)
C13—C14—H14123.5O1—Cl1—O4110.6 (3)
C15—C14—C13113.0 (4)O3—Cl1—O1113.3 (3)
C15—C14—H14123.5O3—Cl1—O2102.6 (4)
C14—C15—H15124.1O3—Cl1—O4111.0 (3)
C14—C15—S2111.8 (3)O4—Cl1—O2111.2 (4)
S2—C15—H15124.1C32—O6—H6A109.5
C15—S2—C1291.9 (2)O6—C32—H32A109.5
N4—C16—C17120.7 (3)O6—C32—H32B109.5
N4—C16—C23115.8 (4)O6—C32—H32C109.5
C17—C16—C23123.5 (3)H32A—C32—H32B109.5
N5—C17—C16121.5 (3)H32A—C32—H32C109.5
N5—C17—C27116.2 (8)H32B—C32—H32C109.5
N5—C17—C27B111.7 (17)C31—O5—H5A109.5
C16—C17—C27122.4 (7)O5—C31—H31A109.5
C16—C17—C27B126.4 (17)O5—C31—H31B109.5
N5—C18—C19118.4 (3)O5—C31—H31C109.5
N5—C18—C22121.6 (3)H31A—C31—H31B109.5
C22—C18—C19119.8 (3)H31A—C31—H31C109.5
N6—C19—C18122.1 (4)H31B—C31—H31C109.5
Ag1—N3—C4—C3177.7 (3)C9—C10—C11—S10.8 (6)
Ag1—N3—C5—C6179.2 (4)C10—C11—S1—C80.9 (5)
Ag1—N6—C19—C18178.9 (3)S1—C8—C9—C100.5 (5)
Ag1—N6—C20—C21178.4 (3)C12—C13—C14—C150.0 (6)
N1—C1—C2—N212.4 (5)C13—C12—S2—C151.6 (3)
N1—C1—C2—C12165.9 (4)C13—C14—C15—S21.2 (6)
N1—C1—C8—C9169.2 (4)C14—C15—S2—C121.6 (4)
N1—C1—C8—S15.6 (4)S2—C12—C13—C141.2 (5)
N2—C2—C12—C13126.6 (4)C16—N4—C22—C181.6 (5)
N2—C2—C12—S243.3 (5)C16—N4—C22—C21179.1 (4)
N2—C3—C4—N3172.7 (4)C16—C17—C27—C28124.1 (18)
N2—C3—C7—N17.8 (6)C16—C17—C27—S471.1 (12)
N2—C3—C7—C6172.9 (4)C16—C17—C27B—C28B68 (3)
N3—C5—C6—C70.3 (7)C16—C17—C27B—S4B108 (3)
N4—C16—C17—N55.2 (5)C16—C23—C24—C25177.9 (4)
N4—C16—C17—C27175.2 (7)C16—C23—S3—C26178.9 (3)
N4—C16—C17—C27B166.7 (14)C17—N5—C18—C19177.9 (4)
N4—C16—C23—C24170.4 (4)C17—N5—C18—C221.6 (6)
N4—C16—C23—S37.4 (4)C17—C16—C23—C248.5 (6)
N5—C17—C27—C2855 (2)C17—C16—C23—S3173.7 (3)
N5—C17—C27—S4109.3 (11)C17—C27—C28—C29174.9 (14)
N5—C17—C27B—C28B104 (3)C17—C27—S4—C30173.6 (13)
N5—C17—C27B—S4B80 (3)C17—C27B—C28B—C29B173 (3)
N5—C18—C19—N6176.8 (4)C17—C27B—S4B—C30B176 (3)
N5—C18—C22—N44.0 (6)C18—N5—C17—C162.8 (5)
N5—C18—C22—C21176.7 (4)C18—N5—C17—C27177.6 (6)
N6—C20—C21—C220.6 (7)C18—N5—C17—C27B170.2 (12)
C1—N1—C7—C35.5 (5)C19—N6—C20—C210.7 (7)
C1—N1—C7—C6175.3 (4)C19—C18—C22—N4179.8 (4)
C1—C2—C12—C1351.8 (6)C19—C18—C22—C210.5 (6)
C1—C2—C12—S2138.3 (3)C20—N6—C19—C180.1 (6)
C1—C8—C9—C10175.5 (4)C20—C21—C22—N4179.2 (4)
C1—C8—S1—C11176.6 (3)C20—C21—C22—C180.0 (6)
C2—N2—C3—C4175.5 (3)C22—N4—C16—C172.7 (5)
C2—N2—C3—C70.4 (5)C22—N4—C16—C23176.1 (3)
C2—C1—C8—C99.0 (7)C22—C18—C19—N60.4 (6)
C2—C1—C8—S1176.2 (3)C23—C16—C17—N5173.6 (3)
C2—C12—C13—C14172.0 (4)C23—C16—C17—C276.0 (8)
C2—C12—S2—C15173.1 (3)C23—C16—C17—C27B14.5 (15)
C3—N2—C2—C110.0 (5)C23—C24—C25—C260.9 (6)
C3—N2—C2—C12168.5 (3)C24—C23—S3—C260.7 (3)
C4—N3—C5—C60.4 (7)C24—C25—C26—S31.4 (6)
C4—C3—C7—N1176.3 (3)C25—C26—S3—C231.2 (4)
C4—C3—C7—C63.0 (6)S3—C23—C24—C250.0 (4)
C5—N3—C4—C31.9 (6)C27—C28—C29—C307 (2)
C5—C6—C7—N1177.7 (4)C28—C27—S4—C306.8 (15)
C5—C6—C7—C31.6 (6)C28—C29—C30—S41.4 (18)
C7—N1—C1—C24.0 (5)C29—C30—S4—C273.1 (10)
C7—N1—C1—C8174.2 (3)S4—C27—C28—C299 (2)
C7—C3—C4—N33.2 (6)C27B—C28B—C29B—C30B5 (2)
C8—C1—C2—N2165.6 (3)C28B—C27B—S4B—C30B1 (3)
C8—C1—C2—C1216.0 (6)C28B—C29B—C30B—S4B4 (3)
C8—C9—C10—C110.2 (7)C29B—C30B—S4B—C27B2 (3)
C9—C8—S1—C110.8 (3)S4B—C27B—C28B—C29B3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···S4i0.932.923.665 (6)138
C9—H9···O2ii0.932.643.465 (8)149
C11—H11···O5i0.932.653.520 (8)156
C14—H14···N5iii0.932.693.393 (5)133
C24—H24···S40.932.773.321 (6)119
C24—H24···S4B0.933.003.774 (17)141
C29—H29···O4iv0.932.493.330 (12)150
C30—H30···Cl1v0.932.963.738 (10)142
C30—H30···O1v0.932.403.312 (10)166
C28B—H28B···S1vi0.932.933.67 (2)138
C29B—H29B···O2v0.932.313.21 (2)162
O6—H6A···O50.821.992.805 (8)175
O5—H5A···O3vii0.822.112.889 (8)158
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z+1; (iii) x+1, y1/2, z+1; (iv) x+1, y+1/2, z; (v) x+2, y+1/2, z; (vi) x+1, y, z1; (vii) x+2, y+1/2, z+1.
 

Acknowledgements

The authors would like to thank CSU–AAUP for research funding.

References

First citationChan, C.-K. & Chang, M.-Y. (2016). Synthesis, 48, 3785–3793.  CAS Google Scholar
First citationCrundwell, G. & Ellis, K. M. (2023). IUCr Data, 8, x230265.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLassagne, F., Chevallier, F., Roisnel, T., Dorcet, V., Mongin, F. & Domingo, L. R. (2015). Synthesis, 47, 2680–2689.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPopek, R. & Crundwell, G. (2019). Acta Cryst. E75, 89–93.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Corporation, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146