organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Redetermination of germacrone type II based on single-crystal X-ray data

crossmark logo

aFaculty of Chemistry and Pharmacy, University of Regensburg, Universitaetsstrasse 31, 93053 Regensburg, Germany, and bFaculty of Pharmacy, Department of Pharmaceutical Chemistry, Medical University `Prof. Dr. Paraskev Stoyanov' – Varna, 84 "Tzar Osvoboditel" Blvd, 9000 Varna, Bulgaria
*Correspondence e-mail: ilian.kolev@mu-varna.bg

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 March 2024; accepted 18 April 2024; online 26 April 2024)

The extraction and purification procedures, crystallization and crystal structure refinement (single-crystal X-ray data) of germacrone type II, C15H22O, are presented. The structural results are compared with a previous powder X-ray synchrotron study [Kaduk et al. (2022[Kaduk, J. A., Gates-Rector, S. & Blanton, T. N. (2022). Powder Diffr. 37, 98-104.]). Powder Diffr. 37, 98–104], revealing significant improvements in terms of accuracy and precision. Hirshfeld atom refinement (HAR), as well as Hirshfeld surface analysis, give insight into the inter­molecular inter­actions of germacrone type II.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

(3E,7E)-3,7-Dimethyl-10-propan-2-yl­idene­cyclo­deca-3,7-dien-1-one (1), also called germacrone, is dimorphic. The first polymorph was reported in 1999 based on single-crystal X-ray data (Clardy & Lobkovsky, 1999[Clardy, J. C. & Lobkovsky, E. (1999). CCDC 102883: Experimental Crystal Structure Determination.]), and the second polymorph (germacrone type II) in 2022 based on synchrotron powder X-ray diffraction data (Kaduk et al., 2022[Kaduk, J. A., Gates-Rector, S. & Blanton, T. N. (2022). Powder Diffr. 37, 98-104.]). Herein we compare the results of our single-crystal X-ray study with the mol­ecular structure refined with the Rietveld method (Kaduk et al., 2022[Kaduk, J. A., Gates-Rector, S. & Blanton, T. N. (2022). Powder Diffr. 37, 98-104.]).

We confirm that (1) crystallizes in the monoclinic space group C2/c. The unit-cell volume of 2579.78 (10) Å3 at a temperature of 100 K is about 4% smaller than that of 2684.06 (4) Å3 determined at room temperature. Fig. 1[link] shows the mol­ecular structure of (1) and Fig. 2[link] the packing of the mol­ecules along the crystallographic b direction. The most prominent feature with respect to the crystal packing aspects of (1) is the carbonyl group (C1=O1) next to the C=CMe2 entity [C2=C13(C14H3)(C15H3)]. A Hirshfeld surface analysis using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) reveals that the carbonyl group is responsible for the only contacts of (1) with its periodic environment, with distances below the sum of the van der Waals radii (Fig. 3[link], red contacts). Numerical details of the contacts involving H atoms below 5 Å are listed in Table 1[link]. In comparison with the room-temperature powder study, we found longer hydrogen–acceptor (H⋯A) distances, e.g. with one of the shortest H⋯A contacts being 2.59 (1) Å, while it was reported at 2.473 Å by Kaduk et al. (2022[Kaduk, J. A., Gates-Rector, S. & Blanton, T. N. (2022). Powder Diffr. 37, 98-104.]). A possible reason for this difference may be that we refined C—H distances directly based on the single-crystal X-ray diffraction data, employing Hirshfeld Atom Refinement (HAR). It has been reported that HAR yields C—H bond lengths that are as accurate as neutron data (Woińska et al., 2016[Woińska, M., Grabowsky, S., Dominiak, P. M., Woźniak, K. & Jayatilaka, D. (2016). Sci. Adv. 2, e1600192.]), so we are confident that these distances for germacrone type II are improved compared to the previous powder study.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 1.076 (10) 2.590 (10) 3.6245 (10) 161.0 (8)
C10—H10B⋯O1i 1.105 (9) 2.695 (10) 3.7028 (10) 151.3 (7)
C14—H14B⋯O1i 1.072 (11) 2.552 (12) 3.2434 (10) 121.5 (9)
C4—H4⋯O1i 1.104 (9) 3.356 (10) 4.1760 (9) 132.0 (6)
C11—H11C⋯O1ii 1.073 (13) 3.177 (12) 4.1177 (11) 146.9 (9)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (1) with the atomic labelling scheme. Anisotropic displacement ellipsoids are drawn at the 50% probability level. Bond lengths (Å), except for C(sp3)—C(sp3) and C(sp2)—C(sp2) bonds, are indicated.
[Figure 2]
Figure 2
Crystal packing of (1) along the crystallographic b direction. Anisotropic displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
Hirshfeld fingerprint plots (left) of (1), showing the contacts on the Hirshfeld surface (right).

In Table 2[link], the bond lengths between all atoms heavier than hydrogen are compared between the current single-crystal X-ray study and the previous powder study by Kaduk et al. (2022[Kaduk, J. A., Gates-Rector, S. & Blanton, T. N. (2022). Powder Diffr. 37, 98-104.]). The accuracy of the bond lengths differs by an entire order of magnitude and some distances differ strongly. For example, the C5—C12 bond to the methyl group of C12 is heavily underestimated [1.395 (12) Å] compared to 1.5017 (10) Å determined in the current study. The higher accuracy and precision of the current model results from the single-crystal X-ray data and the use of a successful non-spherical description of the atoms, but also from the low-temperature data. The overlap of both mol­ecular structures (Fig. 4[link]) underlines the difference between the two structure refinements.

Table 2
Comparison of bond lengths (Å) determined from the current single-crystal X-ray study and from the powder study by Kaduk et al. (2022[Kaduk, J. A., Gates-Rector, S. & Blanton, T. N. (2022). Powder Diffr. 37, 98-104.])

Atom Atom Current single-crystal X-ray study. Previous powder study*
O1 C1 1.2144 (9) 1.212 (10)
C1 C2 1.5035 (10) 1.558 (10)
C2 C3 1.5221 (10) 1.516 (11)
C4 C3 1.5069 (11) 1.513 (12)
C5 C4 1.3387 (11) 1.314 (11)
C5 C12 1.5017 (10) 1.395 (12)
C5 C6 1.5121 (11) 1.497 (12)
C7 C6 1.5597 (12) 1.518 (15)
C1 C10 1.5292 (10) 1.514 (12)
C9 C8 1.3391 (10) 1.326 (13)
C9 C10 1.5207 (10) 1.576 (12)
C9 C11 1.5005 (10) 1.537 (13)
C8 C7 1.5002 (10) 1.484 (13)
C13 C2 1.3460 (10) 1.405 (10)
C13 C14 1.5015 (11) 1.601 (11)
C13 C15 1.5015 (11) 1.574 (11)
Note: (*) atom labels were adopted from the current single-crystal X-ray study for better comparison.
[Figure 4]
Figure 4
Overlayed mol­ecular structures of germacrone type II determined in this work (ellipsoids connected by orange bonds) and from previous powder data (Kaduk et al., 2022[Kaduk, J. A., Gates-Rector, S. & Blanton, T. N. (2022). Powder Diffr. 37, 98-104.]; blue spheres). Ellipsoids and spheres are drawn at the 50% probability level.

However, the Hirshfeld surface analysis (Fig. 3[link]) is in close agreement with the results by Kaduk et al. (2022[Kaduk, J. A., Gates-Rector, S. & Blanton, T. N. (2022). Powder Diffr. 37, 98-104.]). The inter­molecular inter­action in germacrone type II is of primarily dispersion character of H⋯H contacts (81.1%), with the remainder mostly consisting of O⋯H contacts (9.5%) and O⋯C contacts (0.8%).

Synthesis and crystallization

The essential oil (EO) from the leaves of Geranium macrorrhizum L. was obtained by steam distillation, using a conventional distillation vessel with a capacity of 2.5 m3. The target terpenoid was isolated from the resulting EO. For this purpose, approximately 1.0 g of EO was dissolved in 5.0 ml of 99% vol. ethanol. To this solution, distilled water was subsequently added dropwise until a faint opalescence appeared. The homogeneity of the latter was restored by adding 200 µl of ethanol. The resulting solution was allowed to stand in a refrigerator for several hours. The crystals formed were separated from the remaining solution and purified twice by the same methodology. Approximately 200 mg of thin acicular crystals were thus obtained.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Refinement of the initial structure solution as determined by SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) was performed using olex2.refine (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]; Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]). The refined structure was used as an input to perform an iterative Hirshfeld atom refinement (HAR) using NoSpherA2 (Kleemiss et al., 2021[Kleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675-1692.]) at the R2SCAN/cc-pVDZ level of theory until convergence was reached after eight cycles. This allowed us to model all atoms, including H atoms anisotropically without any constraints or restraints on the structural model.

Table 3
Experimental details

Crystal data
Chemical formula C15H22O
Mr 218.34
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 25.6112 (6), 9.7565 (2), 10.3664 (2)
β (°) 95.169 (2)
V3) 2579.78 (10)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.52
Crystal size (mm) 0.35 × 0.10 × 0.01
 
Data collection
Diffractometer XtaLAB Synergy R, DW system, HyPix-Arc 150
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.601, 1.000
No. of measured, independent and observed [I ≥ 2u(I)] reflections 13789, 2579, 2244
Rint 0.026
(sin θ/λ)max−1) 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.07
No. of reflections 2579
No. of parameters 343
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.15, −0.19
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The final model was used to generate the input file for CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]).

Structural data


Computing details top

(3E,7E)-3,7-Dimethyl-10-propan-2-ylidenecyclodeca-3,7-dien-1-one top
Crystal data top
C15H22OF(000) = 962.722
Mr = 218.34Dx = 1.124 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 25.6112 (6) ÅCell parameters from 7327 reflections
b = 9.7565 (2) Åθ = 3.5–73.5°
c = 10.3664 (2) ŵ = 0.52 mm1
β = 95.169 (2)°T = 100 K
V = 2579.78 (10) Å3Plate, colourless
Z = 80.35 × 0.10 × 0.01 mm
Data collection top
XtaLAB Synergy R, DW system, HyPix-Arc 150
diffractometer
2244 reflections with I 2u(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.026
ω scansθmax = 74.2°, θmin = 3.5°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2023)
h = 3131
Tmin = 0.601, Tmax = 1.000k = 1211
13789 measured reflectionsl = 127
2579 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.055P)2 + 0.0128P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.0002
2579 reflectionsΔρmax = 0.15 e Å3
343 parametersΔρmin = 0.19 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.33333 (3)0.41200 (6)0.20570 (5)0.03252 (17)
C90.31211 (3)0.25885 (7)0.45034 (7)0.02028 (17)
C80.34076 (3)0.24944 (8)0.56458 (7)0.02222 (18)
C130.36790 (3)0.66412 (8)0.42455 (6)0.02161 (18)
C10.33372 (3)0.45137 (7)0.31692 (6)0.02148 (17)
C20.37771 (3)0.54035 (8)0.37471 (6)0.02055 (17)
C100.29269 (3)0.39910 (8)0.40343 (7)0.02205 (18)
C140.31393 (3)0.72500 (9)0.42034 (8)0.02466 (18)
C50.44323 (3)0.24947 (8)0.49580 (7)0.02413 (18)
C40.44050 (3)0.38643 (8)0.49131 (7)0.02410 (18)
C30.43197 (3)0.47697 (8)0.37352 (7)0.02458 (18)
C110.30102 (4)0.14357 (9)0.35603 (8)0.02775 (19)
C70.37470 (4)0.13211 (9)0.61428 (8)0.02777 (19)
C150.40994 (4)0.75499 (9)0.48836 (9)0.02842 (19)
C120.44745 (4)0.15866 (10)0.38024 (8)0.0297 (2)
C60.43328 (4)0.17738 (9)0.62037 (8)0.0290 (2)
H80.3460 (4)0.3411 (11)0.6219 (9)0.041 (3)
H10A0.2546 (4)0.3942 (11)0.3461 (10)0.038 (3)
H10B0.2903 (4)0.4685 (10)0.4870 (9)0.034 (2)
H14A0.2841 (4)0.6658 (11)0.3672 (10)0.048 (3)
H14B0.3025 (5)0.7431 (14)0.5158 (11)0.061 (4)
H14C0.3145 (5)0.8231 (12)0.3739 (11)0.049 (3)
H40.4366 (4)0.4415 (10)0.5829 (9)0.038 (3)
H3A0.4331 (4)0.4181 (11)0.2840 (10)0.040 (3)
H3B0.4618 (4)0.5565 (11)0.3739 (10)0.043 (3)
H11A0.3154 (5)0.1660 (13)0.2629 (10)0.051 (3)
H11B0.3178 (5)0.0496 (12)0.3891 (10)0.053 (3)
H7A0.3659 (5)0.1001 (11)0.7122 (10)0.049 (3)
H7B0.3688 (4)0.0424 (12)0.5518 (9)0.044 (3)
H15A0.4471 (5)0.7088 (14)0.5030 (12)0.064 (4)
H15B0.4128 (6)0.8482 (12)0.4331 (12)0.060 (4)
H15C0.3996 (5)0.7869 (14)0.5819 (11)0.060 (4)
H12A0.4126 (5)0.0982 (14)0.3561 (11)0.058 (4)
H12B0.4554 (6)0.2159 (12)0.2938 (11)0.065 (4)
H12C0.4805 (5)0.0899 (13)0.3954 (11)0.064 (4)
H6A0.4579 (5)0.0867 (12)0.6382 (10)0.049 (3)
H6B0.4410 (4)0.2496 (12)0.7012 (10)0.040 (3)
H11C0.2595 (5)0.1274 (12)0.3405 (11)0.050 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0470 (4)0.0323 (3)0.0186 (3)0.0112 (3)0.0049 (2)0.0026 (2)
C90.0235 (4)0.0174 (4)0.0201 (3)0.0011 (3)0.0027 (3)0.0002 (3)
C80.0269 (4)0.0204 (4)0.0195 (4)0.0022 (3)0.0032 (3)0.0005 (3)
C130.0258 (4)0.0187 (4)0.0205 (3)0.0003 (3)0.0028 (3)0.0001 (3)
C10.0274 (4)0.0184 (3)0.0187 (3)0.0019 (3)0.0022 (3)0.0008 (3)
C20.0237 (4)0.0180 (4)0.0203 (3)0.0009 (3)0.0039 (3)0.0002 (3)
C100.0220 (4)0.0202 (4)0.0240 (4)0.0005 (3)0.0023 (3)0.0021 (3)
C140.0283 (5)0.0213 (4)0.0242 (4)0.0036 (3)0.0018 (3)0.0009 (3)
C50.0242 (4)0.0231 (4)0.0249 (4)0.0054 (3)0.0015 (3)0.0018 (3)
C40.0228 (4)0.0239 (4)0.0253 (4)0.0028 (3)0.0008 (3)0.0031 (3)
C30.0245 (4)0.0218 (4)0.0284 (4)0.0008 (3)0.0070 (3)0.0013 (3)
C110.0350 (5)0.0218 (4)0.0264 (4)0.0035 (4)0.0023 (3)0.0035 (3)
C70.0366 (5)0.0245 (4)0.0227 (4)0.0066 (3)0.0052 (3)0.0043 (3)
C150.0300 (5)0.0225 (4)0.0323 (5)0.0033 (4)0.0008 (4)0.0055 (3)
C120.0353 (5)0.0254 (4)0.0294 (4)0.0043 (4)0.0085 (4)0.0033 (3)
C60.0328 (5)0.0296 (4)0.0243 (4)0.0107 (4)0.0006 (3)0.0028 (3)
H80.052 (8)0.040 (7)0.030 (5)0.002 (6)0.000 (5)0.006 (5)
H10A0.021 (6)0.045 (7)0.048 (6)0.001 (5)0.004 (5)0.012 (5)
H10B0.045 (7)0.024 (6)0.035 (5)0.000 (5)0.018 (5)0.003 (5)
H14A0.040 (7)0.036 (7)0.063 (7)0.002 (6)0.018 (6)0.000 (6)
H14B0.065 (9)0.083 (11)0.036 (7)0.021 (8)0.010 (6)0.003 (6)
H14C0.045 (8)0.046 (8)0.057 (7)0.007 (6)0.008 (6)0.020 (6)
H40.056 (8)0.027 (6)0.031 (6)0.010 (5)0.005 (5)0.012 (5)
H3A0.049 (7)0.038 (7)0.037 (6)0.002 (6)0.017 (5)0.005 (5)
H3B0.021 (6)0.042 (7)0.067 (8)0.003 (5)0.005 (5)0.002 (6)
H11A0.074 (10)0.059 (9)0.024 (6)0.011 (7)0.015 (6)0.012 (5)
H11B0.074 (9)0.037 (7)0.044 (7)0.000 (7)0.018 (6)0.008 (6)
H7A0.066 (9)0.043 (7)0.041 (7)0.006 (6)0.011 (6)0.022 (5)
H7B0.051 (8)0.045 (7)0.036 (6)0.016 (6)0.004 (5)0.000 (6)
H15A0.034 (8)0.059 (9)0.098 (10)0.006 (7)0.012 (7)0.023 (7)
H15B0.086 (11)0.032 (7)0.060 (8)0.021 (7)0.008 (7)0.003 (6)
H15C0.056 (9)0.081 (10)0.044 (7)0.013 (8)0.011 (6)0.037 (7)
H12A0.047 (8)0.076 (10)0.053 (7)0.037 (7)0.023 (6)0.029 (7)
H12B0.119 (13)0.032 (7)0.045 (7)0.005 (8)0.018 (7)0.008 (6)
H12C0.072 (10)0.061 (9)0.058 (8)0.041 (8)0.001 (7)0.013 (6)
H6A0.054 (8)0.042 (7)0.053 (7)0.022 (6)0.009 (6)0.007 (6)
H6B0.041 (7)0.049 (7)0.031 (6)0.000 (6)0.006 (5)0.002 (5)
H11C0.046 (8)0.050 (8)0.052 (7)0.007 (6)0.005 (6)0.013 (6)
Geometric parameters (Å, º) top
O1—C11.2144 (9)C5—C61.5121 (11)
C9—C81.3391 (10)C4—C31.5069 (11)
C9—C101.5207 (10)C4—H41.104 (9)
C9—C111.5005 (10)C3—H3A1.094 (10)
C8—C71.5002 (10)C3—H3B1.089 (11)
C8—H81.076 (10)C11—H11A1.086 (11)
C13—C21.3460 (10)C11—H11B1.056 (12)
C13—C141.5015 (11)C11—H11C1.073 (13)
C13—C151.5015 (11)C7—C61.5597 (12)
C1—C21.5035 (10)C7—H7A1.105 (10)
C1—C101.5292 (10)C7—H7B1.091 (11)
C2—C31.5221 (10)C15—H15A1.052 (12)
C10—H10A1.096 (10)C15—H15B1.081 (12)
C10—H10B1.105 (9)C15—H15C1.074 (11)
C14—H14A1.069 (11)C12—H12A1.081 (11)
C14—H14B1.072 (11)C12—H12B1.091 (11)
C14—H14C1.072 (11)C12—H12C1.080 (12)
C5—C41.3387 (11)C6—H6A1.093 (11)
C5—C121.5017 (10)C6—H6B1.099 (11)
C10—C9—C8118.81 (7)H3A—C3—C4111.5 (6)
C11—C9—C8125.55 (7)H3B—C3—C2110.6 (6)
C11—C9—C10115.40 (6)H3B—C3—C4111.4 (6)
C7—C8—C9127.62 (7)H3B—C3—H3A107.7 (8)
H8—C8—C9117.5 (5)H11A—C11—C9111.7 (6)
H8—C8—C7113.9 (5)H11B—C11—C9113.1 (5)
C14—C13—C2123.16 (7)H11B—C11—H11A107.7 (10)
C15—C13—C2123.20 (7)H11C—C11—C9109.5 (6)
C15—C13—C14113.64 (7)H11C—C11—H11A107.8 (9)
C2—C1—O1120.18 (7)H11C—C11—H11B106.8 (9)
C10—C1—O1120.26 (7)C6—C7—C8108.86 (7)
C10—C1—C2119.26 (6)H7A—C7—C8111.8 (6)
C1—C2—C13120.78 (7)H7A—C7—C6108.6 (6)
C3—C2—C13124.74 (7)H7B—C7—C8111.3 (5)
C3—C2—C1114.46 (6)H7B—C7—C6109.4 (6)
C1—C10—C9105.39 (6)H7B—C7—H7A106.8 (8)
H10A—C10—C9112.6 (6)H15A—C15—C13114.5 (7)
H10A—C10—C1108.7 (5)H15B—C15—C13110.1 (7)
H10B—C10—C9109.9 (5)H15B—C15—H15A109.4 (11)
H10B—C10—C1110.1 (5)H15C—C15—C13110.1 (7)
H10B—C10—H10A110.1 (8)H15C—C15—H15A106.7 (9)
H14A—C14—C13114.5 (6)H15C—C15—H15B105.6 (10)
H14B—C14—C13111.5 (7)H12A—C12—C5112.9 (6)
H14B—C14—H14A108.8 (10)H12B—C12—C5112.7 (6)
H14C—C14—C13108.4 (6)H12B—C12—H12A107.5 (9)
H14C—C14—H14A106.8 (8)H12C—C12—C5111.2 (6)
H14C—C14—H14B106.4 (9)H12C—C12—H12A108.4 (11)
C12—C5—C4124.64 (7)H12C—C12—H12B103.6 (10)
C6—C5—C4118.79 (7)C7—C6—C5109.43 (6)
C6—C5—C12115.89 (7)H6A—C6—C5112.5 (6)
C3—C4—C5128.07 (7)H6A—C6—C7108.4 (6)
H4—C4—C5117.7 (5)H6B—C6—C5108.7 (6)
H4—C4—C3113.2 (5)H6B—C6—C7108.6 (6)
C4—C3—C2107.30 (6)H6B—C6—H6A109.2 (8)
H3A—C3—C2108.4 (6)
O1—C1—C2—C13123.05 (8)C8—C7—C6—C546.11 (7)
O1—C1—C2—C358.17 (8)C13—C2—C1—C1063.20 (8)
O1—C1—C10—C980.30 (8)C13—C2—C3—C494.67 (8)
C9—C8—C7—C6110.92 (9)C1—C2—C3—C484.06 (6)
C9—C10—C1—C293.45 (6)C2—C3—C4—C5110.80 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i1.076 (10)2.590 (10)3.6245 (10)161.0 (8)
C10—H10B···O1i1.105 (9)2.695 (10)3.7028 (10)151.3 (7)
C14—H14B···O1i1.072 (11)2.552 (12)3.2434 (10)121.5 (9)
C4—H4···O1i1.104 (9)3.356 (10)4.1760 (9)132.0 (6)
C11—H11C···O1ii1.073 (13)3.177 (12)4.1177 (11)146.9 (9)
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1/2, y1/2, z+1/2.
Comparison of bond lengths (Å) determined from the current single-crystal X-ray study and from the powder study by Kaduk et al. (2022) top
AtomAtomCurrent single-crystal X-ray studyPrevious powder study*
O1C11.2144 (9)1.212 (10)
C1C21.5035 (10)1.558 (10)
C2C31.5221 (10)1.516 (11)
C4C31.5069 (11)1.513 (12)
C5C41.3387 (11)1.314 (11)
C5C121.5017 (10)1.395 (12)
C5C61.5121 (11)1.497 (12)
C7C61.5597 (12)1.518 (15)
C1C101.5292 (10)1.514 (12)
C9C81.3391 (10)1.326 (13)
C9C101.5207 (10)1.576 (12)
C9C111.5005 (10)1.537 (13)
C8C71.5002 (10)1.484 (13)
C13C21.3460 (10)1.405 (10)
C13C141.5015 (11)1.601 (11)
C13C151.5015 (11)1.574 (11)
Note: (*) atom labels were adopted from the current single-crystal X-ray study for better comparison.
 

Acknowledgements

The European Union-NextGenerationEU provided funding through the National Recovery and Resilience Plan of the Republic of Bulgaria. The Studienstiftung des Deutschen Volkes is thanked for the award of a PhD fellowship to FM.

Funding information

Funding for this research was provided by: European Union-NextGenerationEU (grant No. BG-RRP-2.004-0009-C02).

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationClardy, J. C. & Lobkovsky, E. (1999). CCDC 102883: Experimental Crystal Structure Determination.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaduk, J. A., Gates-Rector, S. & Blanton, T. N. (2022). Powder Diffr. 37, 98–104.  CrossRef CAS Google Scholar
First citationKleemiss, F., Dolomanov, O. V., Bodensteiner, M., Peyerimhoff, N., Midgley, L., Bourhis, L. J., Genoni, A., Malaspina, L. A., Jayatilaka, D., Spencer, J. L., White, F., Grundkötter-Stock, B., Steinhauer, S., Lentz, D., Puschmann, H. & Grabowsky, S. (2021). Chem. Sci. 12, 1675–1692.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoińska, M., Grabowsky, S., Dominiak, P. M., Woźniak, K. & Jayatilaka, D. (2016). Sci. Adv. 2, e1600192.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146