metal-organic compounds
Poly[3-methylpyridinium [(μ2-dihydrogen phosphito)bis(μ3-hydrogen phosphito)dizinc]]
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, United Kingdom, and bEaStCHEM, School of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland, United Kingdom
*Correspondence e-mail: w.harrison@abdn.ac.uk
In the title compound, {(C6H8N)[Zn2(HPO3)2(H2PO3)]}n, the constituent ZnO4, HPO3 and H2PO3 polyhedra of the inorganic component are linked into (010) sheets by Zn—O—P bonds (mean angle = 134.4°) and the layers are reinforced by O—H⋯O hydrogen bonds. The protonated templates are anchored to the inorganic sheets via bifurcated N—H⋯(O,O) hydrogen bonds.
CCDC reference: 2349240
Structure description
The family of zincophosphite (ZnPO) networks templated or ligated by organic species now encompasses well over 200 crystal structures in the Cambridge Structural Database (CSD; Groom et al., 2016). In continuation of our ongoing studies of these systems (Holmes et al., 2018; Wark et al., 2023), we describe the synthesis and structure of the title compound, {(C6H8N)[Zn2(HPO3)2(H2PO3)]}n, (I), where C6H8N+ is the 3-picolinium (or 3-methylpyridinium) cation.
The ), which crystallizes in the triclinic P, consists of two Zn2+ ions, two [HPO3]2− hydrogen phosphite anions, one [H2PO3]− dihydrogen phosphite anion and one C7H8N+ cation. The zinc coordination polyhedra are ZnO4 tetrahedra, with mean Zn—O separations of 1.934 and 1.942 Å for Zn1 and Zn2, respectively. The spread of bond angles about the metal ions [100.45 (13)–114.37 (14)° for Zn1 and 102.86 (14)–112.73 (14)° for Zn2] indicate modest degrees of distortion, with τ4′ values (Okuniewski et al., 2015) of 0.95 (Zn1) and 0.96 (Zn2), where a value of 1.00 corresponds to a regular tetrahedron. The [HPO3]2− groups adopt their usual tetrahedral (including the H atom) or pseudo-pyramidal (excluding H) shape and the mean P—O separations are 1.506 Å for P1 and 1.516 Å for P2. The O—P—O bond angles around P1 show a larger than typical range of 107.52 (19)–114.3 (2)°, with the smallest O1—P1—O2 angle associated with the bifurcated hydrogen bond from the protonated template (Fig. 1), whereas the P2 bond angles are tightly clustered [112.38 (19)–112.74 (18)°]. The [H2PO3]− dihydrogen phosphite group containing atom P3 includes a notably longer vertex [P3—O9 = 1.543 (3) Å] to the protonated O atom. Apart from O9, each O atom in (I) is bonded to one Zn and one P atom: the Zn—O—P bond angles vary from 128.89 (18) to 138.6 (2)°, with a mean of 134.4°, which is typical for this class of material (Wark et al., 2023). The geometrical parameters for the organic cation are as expected (e.g. Sivakumar et al., 2016).
of (I) (Fig. 1In the extended structure of (I), the constituent ZnO4, HPO3 and H2PO3 polyhedra are linked by Zn—O—P bonds into infinite (010) sheets (Fig. 2). Polyhedral 4- and 8-rings are present and the zinc and phosphorus nodes strictly alternate. The most distinctive building unit is a centrosymmetric 8-ring incorporating two bifurcated 4-rings reinforced by a pair of O9—H1O⋯O4 intra-layer hydrogen bonds (Fig. 3). These are linked by 4-rings involving the Zn2—O6—P2 bonds into [100] chains and crosslinked in the [001] direction by Zn1—O2—P1 bonds into the (010) sheets. The template interacts with the inorganic layers via an unusual bifurcated N1—H1B⋯(O1,O2) link (Fig. 1): the vast majority of template-to-framework hydrogen bonds are associated with a single acceptor O atom. Some weak nonclassical C—H⋯O interactions occur, as listed in Table 1. As is normal, the P—H unit does not participate in hydrogen bonding (Katinaitė & Harrison, 2017). There are no aromatic π–π stacking interactions in (I)>, the shortest centroid–centroid separation being greater than 5.68 Å, and inter-layer cohesion must be largely due to van der Waals forces.
A survey of the Cambridge Structural Database (Groom et al., 2016; updated to April 2024) revealed 217 crystal structures containing zinc cations and hydrogen phosphite anions based on a search for a Zn—O—P—H fragment. Structures containing zinc and a dihydrogen phosphite unit are uncommon with just three examples found, viz. bis(μ2-hydrogen phosphito-O,O′)(hydrogen phosphito-O)(2,2′-bipyridyl)zinc(II) (CSD refocde BEJHUU; Lin et al., 2003), bis(μ2-hydrogen phosphito-O,O′)(hydrogen phosphito-O)(4,4′-dimethyl-2,2′-bipyridyl)dizinc(II) (GICCOL; Lin et al., 2007) and catena-[1-azonio-4-azabicyclo[2.2.2]octane tris(μ3-hydrogen phosphito)(μ2-hydrogen phosphito)(1,4-diazabicyclo[2.2.2]octane-N)trizinc(II)] (XIZJEW; Liu et al., 2008). Compounds BEJHUU and GICCOL are closely related `zero-dimensional' bimetallic clusters with bulky chelating ligands, while XIZJEW features the organic species acting both as a ligand (via a Zn—N bond) and a protonated template.
Synthesis and crystallization
Compound (I) was prepared by mixing 0.41 g of ZnO, 0.82 g of H3PO3 and 0.47 g of 3-picoline (Zn:P:template molar ratio ≃ 1:2:1), which were placed in a 50 ml polypropylene bottle with 20 ml of water and shaken well to result in a white slurry. The bottle was placed in a 353 K oven for 48 h and then removed and allowed to cool to room temperature over about 2 h. The solids were recovered by vacuum filtration to result in a mass of rod-like colourless crystals accompanied by some white solids. IR (diamond window): 3400–2800 cm−1 (O—H, N—H stretch), 2450 cm−1 (P—H stretch; Ma et al., 2007).
Refinement
Crystal data, data collection and structure . The O-bound H atom was located in a difference map and refined as riding in its as-found relative location. The P-, N- and C-bound H atoms were located geometrically (P—H = 1.32, N—H = 0.88 and C—H = 0.95–0.98 Å) and refined as riding atoms. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. The constraint Uiso(H) = 1.2Ueq(N, O or P) or 1.5Ueq(methyl C) was applied in all cases. Two peaks greater than 1 e Å−3 were found in the final difference map for (I) in the vicinity of the Zn atoms, but they did not correspond to plausible chemical features.
details are summarized in Table 2
|
Structural data
CCDC reference: 2349240
https://doi.org/10.1107/S2414314624003456/tk4104sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624003456/tk4104Isup2.hkl
(C6H8N)[Zn2(HPO3)2(H2PO3)] | Z = 2 |
Mr = 465.82 | F(000) = 464 |
Triclinic, P1 | Dx = 2.099 Mg m−3 |
a = 8.8428 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2779 (6) Å | Cell parameters from 6732 reflections |
c = 9.9343 (4) Å | θ = 2.1–29.4° |
α = 79.126 (4)° | µ = 3.62 mm−1 |
β = 82.732 (4)° | T = 173 K |
γ = 67.279 (6)° | Bar, colourless |
V = 736.99 (8) Å3 | 0.12 × 0.03 × 0.01 mm |
Rigaku XtaLAB P200K diffractometer | 2491 reflections with I > 2σ(I) |
Radiation source: Rotating Anode | Rint = 0.066 |
ω scans | θmax = 29.6°, θmin = 2.1° |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2024) | h = −11→12 |
Tmin = 0.850, Tmax = 1.000 | k = −12→12 |
14787 measured reflections | l = −13→12 |
3442 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0819P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3442 reflections | Δρmax = 1.43 e Å−3 |
191 parameters | Δρmin = −0.89 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | −0.15526 (6) | 0.48844 (6) | 0.17897 (5) | 0.02409 (17) | |
Zn2 | 0.24043 (6) | 0.62310 (6) | 0.40311 (5) | 0.02507 (18) | |
P1 | 0.12600 (13) | 0.63180 (14) | 0.10765 (11) | 0.0231 (3) | |
H1 | 0.096928 | 0.778451 | 0.046688 | 0.028* | |
P2 | 0.57579 (14) | 0.67732 (15) | 0.38453 (12) | 0.0249 (3) | |
H2 | 0.585406 | 0.817529 | 0.343455 | 0.030* | |
P3 | −0.05587 (14) | 0.79747 (15) | 0.60236 (12) | 0.0268 (3) | |
H3 | −0.092835 | 0.950694 | 0.595471 | 0.032* | |
O1 | 0.2488 (4) | 0.5969 (4) | 0.2136 (3) | 0.0339 (8) | |
O2 | 0.2100 (4) | 0.5268 (4) | −0.0006 (3) | 0.0354 (8) | |
O3 | −0.0360 (4) | 0.6260 (4) | 0.1659 (4) | 0.0336 (8) | |
O4 | 0.6946 (4) | 0.5953 (4) | 0.4998 (3) | 0.0292 (7) | |
O5 | 0.6265 (4) | 0.5929 (4) | 0.2609 (3) | 0.0347 (8) | |
O6 | 0.3994 (4) | 0.7076 (4) | 0.4335 (3) | 0.0296 (7) | |
O7 | 0.0241 (4) | 0.7586 (4) | 0.4650 (3) | 0.0374 (8) | |
O8 | 0.0481 (4) | 0.7208 (4) | 0.7225 (4) | 0.0386 (8) | |
O9 | −0.2216 (4) | 0.7747 (5) | 0.6275 (4) | 0.0495 (10) | |
H1O | −0.248833 | 0.714280 | 0.588686 | 0.059* | |
C1 | 0.5538 (6) | 0.2241 (8) | 0.0263 (6) | 0.0480 (15) | |
H1A | 0.501366 | 0.270784 | −0.057545 | 0.058* | |
C2 | 0.6748 (6) | 0.0729 (7) | 0.0373 (5) | 0.0398 (13) | |
C3 | 0.7424 (6) | 0.0139 (6) | 0.1628 (5) | 0.0365 (12) | |
H3A | 0.822779 | −0.090250 | 0.177280 | 0.044* | |
C4 | 0.6958 (7) | 0.1029 (7) | 0.2676 (5) | 0.0424 (13) | |
H4 | 0.745714 | 0.061680 | 0.352982 | 0.051* | |
C5 | 0.5791 (7) | 0.2484 (7) | 0.2484 (6) | 0.0462 (15) | |
H5 | 0.546317 | 0.311069 | 0.320035 | 0.055* | |
C6 | 0.7301 (10) | −0.0189 (10) | −0.0812 (7) | 0.076 (2) | |
H6A | 0.645693 | 0.024450 | −0.148650 | 0.113* | |
H6B | 0.747583 | −0.130136 | −0.047771 | 0.113* | |
H6C | 0.832992 | −0.010706 | −0.124466 | 0.113* | |
N1 | 0.5110 (5) | 0.3034 (5) | 0.1310 (6) | 0.0501 (13) | |
H1B | 0.432689 | 0.397922 | 0.121074 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0207 (3) | 0.0390 (3) | 0.0137 (3) | −0.0117 (2) | 0.0011 (2) | −0.0071 (2) |
Zn2 | 0.0217 (3) | 0.0384 (3) | 0.0167 (3) | −0.0109 (2) | 0.0002 (2) | −0.0094 (2) |
P1 | 0.0208 (6) | 0.0313 (6) | 0.0170 (6) | −0.0083 (5) | −0.0011 (4) | −0.0064 (5) |
P2 | 0.0231 (6) | 0.0367 (7) | 0.0183 (6) | −0.0141 (5) | −0.0002 (5) | −0.0067 (5) |
P3 | 0.0226 (6) | 0.0356 (7) | 0.0231 (6) | −0.0106 (5) | 0.0001 (5) | −0.0079 (5) |
O1 | 0.0318 (18) | 0.056 (2) | 0.0185 (17) | −0.0173 (16) | −0.0047 (14) | −0.0113 (15) |
O2 | 0.0284 (17) | 0.058 (2) | 0.0178 (17) | −0.0078 (16) | −0.0033 (14) | −0.0176 (16) |
O3 | 0.0247 (17) | 0.0344 (18) | 0.044 (2) | −0.0114 (15) | 0.0067 (15) | −0.0161 (16) |
O4 | 0.0279 (17) | 0.0387 (19) | 0.0237 (17) | −0.0145 (15) | −0.0031 (14) | −0.0055 (14) |
O5 | 0.0205 (16) | 0.066 (2) | 0.0187 (16) | −0.0148 (16) | 0.0025 (13) | −0.0153 (16) |
O6 | 0.0215 (16) | 0.046 (2) | 0.0266 (17) | −0.0132 (15) | 0.0041 (13) | −0.0192 (15) |
O7 | 0.0236 (17) | 0.054 (2) | 0.0286 (19) | −0.0059 (16) | 0.0002 (14) | −0.0126 (16) |
O8 | 0.045 (2) | 0.043 (2) | 0.0290 (19) | −0.0170 (17) | −0.0059 (16) | −0.0032 (16) |
O9 | 0.034 (2) | 0.080 (3) | 0.052 (2) | −0.033 (2) | 0.0135 (17) | −0.038 (2) |
C1 | 0.026 (3) | 0.069 (4) | 0.040 (3) | −0.017 (3) | −0.007 (2) | 0.016 (3) |
C2 | 0.036 (3) | 0.057 (4) | 0.033 (3) | −0.025 (3) | 0.008 (2) | −0.014 (3) |
C3 | 0.025 (2) | 0.033 (3) | 0.043 (3) | −0.007 (2) | 0.000 (2) | 0.005 (2) |
C4 | 0.046 (3) | 0.057 (4) | 0.029 (3) | −0.029 (3) | −0.004 (2) | 0.005 (3) |
C5 | 0.054 (4) | 0.052 (4) | 0.044 (4) | −0.034 (3) | 0.029 (3) | −0.021 (3) |
C6 | 0.088 (5) | 0.115 (6) | 0.053 (4) | −0.062 (5) | 0.024 (4) | −0.047 (4) |
N1 | 0.030 (2) | 0.033 (2) | 0.066 (4) | 0.000 (2) | 0.024 (2) | −0.001 (2) |
Zn1—O3 | 1.923 (3) | P3—O9 | 1.543 (3) |
Zn1—O8i | 1.930 (4) | P3—H3 | 1.3200 |
Zn1—O2ii | 1.939 (3) | O9—H1O | 0.8542 |
Zn1—O5iii | 1.945 (3) | C1—N1 | 1.318 (8) |
Zn2—O6 | 1.931 (3) | C1—C2 | 1.392 (8) |
Zn2—O1 | 1.931 (3) | C1—H1A | 0.9500 |
Zn2—O7 | 1.938 (3) | C2—C3 | 1.374 (8) |
Zn2—O4iv | 1.967 (3) | C2—C6 | 1.504 (8) |
P1—O3 | 1.493 (3) | C3—C4 | 1.375 (8) |
P1—O1 | 1.511 (3) | C3—H3A | 0.9500 |
P1—O2 | 1.513 (3) | C4—C5 | 1.341 (8) |
P1—H1 | 1.3200 | C4—H4 | 0.9500 |
P2—O6 | 1.507 (3) | C5—N1 | 1.304 (8) |
P2—O5 | 1.509 (3) | C5—H5 | 0.9500 |
P2—O4 | 1.533 (3) | C6—H6A | 0.9800 |
P2—H2 | 1.3200 | C6—H6B | 0.9800 |
P3—O8 | 1.492 (4) | C6—H6C | 0.9800 |
P3—O7 | 1.496 (3) | N1—H1B | 0.8800 |
O3—Zn1—O8i | 114.37 (14) | P1—O3—Zn1 | 138.2 (2) |
O3—Zn1—O2ii | 112.19 (15) | P2—O4—Zn2iv | 128.89 (18) |
O8i—Zn1—O2ii | 109.65 (15) | P2—O5—Zn1v | 129.60 (18) |
O3—Zn1—O5iii | 107.88 (14) | P2—O6—Zn2 | 134.27 (19) |
O8i—Zn1—O5iii | 111.45 (15) | P3—O7—Zn2 | 134.0 (2) |
O2ii—Zn1—O5iii | 100.45 (13) | P3—O8—Zn1i | 138.6 (2) |
O6—Zn2—O1 | 111.84 (14) | P3—O9—H1O | 125.5 |
O6—Zn2—O7 | 108.97 (14) | N1—C1—C2 | 120.7 (5) |
O1—Zn2—O7 | 112.00 (13) | N1—C1—H1A | 119.6 |
O6—Zn2—O4iv | 108.32 (13) | C2—C1—H1A | 119.6 |
O1—Zn2—O4iv | 102.86 (14) | C3—C2—C1 | 115.7 (5) |
O7—Zn2—O4iv | 112.73 (14) | C3—C2—C6 | 122.1 (6) |
O3—P1—O1 | 114.3 (2) | C1—C2—C6 | 122.1 (6) |
O3—P1—O2 | 115.04 (19) | C2—C3—C4 | 121.2 (5) |
O1—P1—O2 | 107.52 (19) | C2—C3—H3A | 119.4 |
O3—P1—H1 | 106.4 | C4—C3—H3A | 119.4 |
O1—P1—H1 | 106.4 | C5—C4—C3 | 119.5 (5) |
O2—P1—H1 | 106.4 | C5—C4—H4 | 120.3 |
O6—P2—O5 | 112.30 (17) | C3—C4—H4 | 120.3 |
O6—P2—O4 | 112.74 (18) | N1—C5—C4 | 119.7 (5) |
O5—P2—O4 | 112.38 (19) | N1—C5—H5 | 120.2 |
O6—P2—H2 | 106.3 | C4—C5—H5 | 120.2 |
O5—P2—H2 | 106.3 | C2—C6—H6A | 109.5 |
O4—P2—H2 | 106.3 | C2—C6—H6B | 109.5 |
O8—P3—O7 | 116.5 (2) | H6A—C6—H6B | 109.5 |
O8—P3—O9 | 111.5 (2) | C2—C6—H6C | 109.5 |
O7—P3—O9 | 111.4 (2) | H6A—C6—H6C | 109.5 |
O8—P3—H3 | 105.5 | H6B—C6—H6C | 109.5 |
O7—P3—H3 | 105.5 | C5—N1—C1 | 123.2 (5) |
O9—P3—H3 | 105.5 | C5—N1—H1B | 118.4 |
P1—O1—Zn2 | 136.5 (2) | C1—N1—H1B | 118.4 |
P1—O2—Zn1ii | 135.1 (2) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y+1, −z; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1; (v) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O1 | 0.88 | 2.20 | 2.992 (6) | 150 |
N1—H1B···O2 | 0.88 | 2.24 | 2.947 (6) | 138 |
O9—H1O···O4iii | 0.85 | 1.78 | 2.630 (4) | 177 |
C1—H1A···O5vi | 0.95 | 2.34 | 3.285 (6) | 175 |
C5—H5···O4iv | 0.95 | 2.59 | 3.368 (6) | 140 |
C5—H5···O6iv | 0.95 | 2.52 | 3.300 (7) | 140 |
Symmetry codes: (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1; (vi) −x+1, −y+1, −z. |
References
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Holmes, W., Cordes, D. B., Slawin, A. M. Z. & Harrison, W. T. A. (2018). Acta Cryst. E74, 1411–1416. Web of Science CSD CrossRef IUCr Journals Google Scholar
Katinaitė, J. & Harrison, W. T. A. (2017). Acta Cryst. E73, 759–762. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lin, Z.-E., Fan, W., Gu, J. & Okubo, T. (2007). J. Solid State Chem. 180, 981–987. CSD CrossRef CAS Google Scholar
Lin, Z.-E., Zhang, J., Zheng, S.-T., Wei, Q.-H. & Yang, G.-Y. (2003). Solid State Sci. 5, 1435–1438. Web of Science CSD CrossRef CAS Google Scholar
Liu, L., Zhang, L.-R., Wang, X.-F., Li, G.-H., Liu, Y.-L. & Pang, W.-Q. (2008). Dalton Trans. pp. 2009–2014. CSD CrossRef Google Scholar
Ma, Y., Li, N., Xiang, S. & Guan, N. (2007). J. Phys. Chem. C, 111, 18361–18366. Web of Science CrossRef CAS Google Scholar
Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2024). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sivakumar, P., Niranjana Devi, R., Israel, S. & Chakkaravarthi, G. (2016). IUCrData, 1, x160979. Google Scholar
Wark, S., Lyons, M. J., Slawin, A. M. Z. & Harrison, W. T. A. (2023). Acta Cryst. E79, 272–279. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.