organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(1H-2,3-Di­hydro­naphtho­[1,8-de][1,3,2]di­aza­borinin-2-yl)-1-ethylpyridin-1-ium iodide monohydrate

crossmark logo

aDepartment of Systems Engineering, Wakayama University, Sakaedani, Wakayama, 640-8510, Japan
*Correspondence e-mail: okuno@wakayama-u.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 20 March 2024; accepted 23 April 2024; online 26 April 2024)

The cation of the title hydrated salt, C17H17BN3+·I·H2O, is a di­aza­borinane featuring substitution at the 1, 2, and 3 positions in the nitro­gen–boron six-membered heterocycle. The cation is approximately planar with a dihedral angle between the pyridyl ring and the di­aza­borinane ring system of 5.40 (5)°. In the crystal, the cations stack along [100] in an alternating head-to-tail manner, while the iodide ion and water mol­ecule form one-dimensional hydrogen-bonded chains beside the cation stack. The cation stacks and I–water chains are crosslinked by N—H⋯I and N—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C17H17BN3+·I·H2O, is a hydrated di­aza­borinane derivative featuring substitution at the 1, 2, and 3 positions in the nitro­gen–boron six-membered heterocycle (Fig. 1[link]). Di­aza­borinanes are found to stabilize organic radicals (LaPorte et al., 2023[LaPorte, A. J., Feldner, J. E., Spies, J. C., Maher, T. J. & Burke, M. D. (2023). Angew. Chem. Int. Ed. 62, e202309566.]). Recently we reported of the anhydrous polymorph of the title compound (Hashimoto & Okuno, 2024[Hashimoto, S. & Okuno, T. (2004).IUCrData, 9, x240362.]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the hydrated polymorph, the organic unit is almost planar with a dihedral angle between the N1/C1–C5 pyridyl ring and N2/N3/C6–C15/B1 ring system of 5.40 (5)°. The structure is similar to those of the anhydrous polymorph and other di­aza­borinanes (Akerman et al., 2011[Akerman, M. P., Robinson, R. S. & Slabber, C. A. (2011). Acta Cryst. E67, o1873.]; Hashimoto & Okuno, 2024[Hashimoto, S. & Okuno, T. (2004).IUCrData, 9, x240362.]; Slabber et al., 2011[Slabber, C. A., Grimmer, C., Akerman, M. P. & Robinson, R. S. (2011). Acta Cryst. E67, o1995.]).

In the crystal, the organic cations stack in an alternating head-to-tail manner along the a axis as shown in Fig. 2[link], where the B1⋯·B1iv and B1⋯·B1iii distances are 3.395 (6) and 3.436 (6) Å, respectively [symmetry codes: (iv) −x + 1, −y + 2, −z + 1; (iii) −x + 2, −y + 2, −z + 1]. The iodide ion accepts three C—H⋯I contacts from adjacent cations and two O—H⋯I links from the water mol­ecules. The iodide anions and water mol­ecules form a one-dimensional hydrogen-bonded chain beside the alternating cation stack and the stacks and hydrogen-bond chains are crosslinked by N—H⋯O and N—H⋯I links. The geometry of the hydrogen bonds is summarized in Table 1[link]. The contamination of water in aceto­nitrile is thought to give the hydrated polymorph. Selective formation of the hydrated polymorph has not yet been achieved.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H18⋯I1i 0.80 (4) 2.87 (4) 3.643 (3) 162 (4)
O1—H19⋯I1ii 0.77 (4) 3.04 (4) 3.793 (3) 167 (4)
N2—H5⋯I1 0.83 (3) 2.95 (3) 3.764 (2) 171 (2)
N3—H12⋯O1 0.82 (3) 2.23 (3) 3.046 (3) 172 (3)
C2—H2⋯I1 0.95 3.14 4.081 (2) 171
C16—H14⋯I1iii 0.99 2.98 3.840 (3) 145
C16—H13⋯I1iv 0.99 3.15 3.946 (3) 138
Symmetry codes: (i) [-x+2, -y+2, -z+1]; (ii) [-x+1, -y+2, -z+1]; (iii) [x, y, z-1]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Inter­molecular inter­actions of the title compound. [symmetry codes: (i) x, y − 1, z; (ii) x, −y + [{3\over 2}], z − [{1\over 2}]; (iii) −x + 2, −y + 2, −z + 1; (iv) −x + 1, −y + 2, −z + 1].

Synthesis and crystallization

Single crystals in the form of pale-yellow blocks of sufficient quality were obtained by recrystallization of 1-ethyl-4-(1H-naphtho­[1,8-de] [1,3,2]di­aza­borinin-2(3H)-yl)pyridin-1-ium iodide (Hashimoto & Okuno, 2024[Hashimoto, S. & Okuno, T. (2004).IUCrData, 9, x240362.]) from aceto­nitrile solution, which was apparently contaminated with water.

Refinement

Experimental details and crystal data are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H17BN3+·I·H2O
Mr 419.06
Crystal system, space group Monoclinic, P21/c
Temperature (K) 93
a, b, c (Å) 6.746 (2), 23.041 (7), 10.939 (3)
β (°) 97.616 (5)
V3) 1685.4 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.91
Crystal size (mm) 0.18 × 0.18 × 0.10
 
Data collection
Diffractometer Saturn724+
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.879, 0.900
No. of measured, independent and observed [I > 2σ(I)] reflections 13511, 3846, 3463
Rint 0.030
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.056, 1.04
No. of reflections 3846
No. of parameters 224
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.92, −0.40
Computer programs: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

4-(1H-2,3-Dihydronaphtho[1,8-de][1,3,2]diazaborinin-2-yl)-1-ethylpyridin-1-ium iodide monohydrate top
Crystal data top
C17H17BN3+·I·H2OF(000) = 832
Mr = 419.06Dx = 1.652 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 6.746 (2) ÅCell parameters from 6255 reflections
b = 23.041 (7) Åθ = 1.8–30.9°
c = 10.939 (3) ŵ = 1.91 mm1
β = 97.616 (5)°T = 93 K
V = 1685.4 (9) Å3Block, pale yellow
Z = 40.18 × 0.18 × 0.10 mm
Data collection top
Saturn724+
diffractometer
3463 reflections with I > 2σ(I)
Detector resolution: 28.445 pixels mm-1Rint = 0.030
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 68
Tmin = 0.879, Tmax = 0.900k = 2229
13511 measured reflectionsl = 1414
3846 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0201P)2 + 1.9341P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
3846 reflectionsΔρmax = 0.92 e Å3
224 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The positions of the N-bound and O-bound H atoms were obtained from difference Fourier maps and were refined isotropically. The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(carrier) or 1.5Ueq(methyl carrier).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.89530 (2)0.83028 (2)0.76189 (2)0.01877 (6)
O10.6094 (4)1.10388 (9)0.20283 (18)0.0265 (4)
N10.7490 (3)0.86217 (8)0.19278 (17)0.0134 (4)
N20.7739 (3)0.97508 (8)0.61095 (18)0.0129 (4)
N30.7269 (3)1.05026 (8)0.45657 (18)0.0134 (4)
C90.7933 (3)1.09991 (10)0.8927 (2)0.0151 (5)
H80.80041.12790.95690.018*
C30.7379 (3)0.94374 (10)0.3791 (2)0.0126 (4)
C140.7397 (3)1.09351 (10)0.5472 (2)0.0125 (4)
C120.7480 (3)1.19358 (10)0.6120 (2)0.0164 (5)
H100.74631.23360.59110.020*
C50.7167 (3)0.91855 (10)0.1633 (2)0.0150 (5)
H40.69790.93000.07910.018*
C70.7968 (3)0.99955 (10)0.8283 (2)0.0152 (5)
H60.80500.95960.85000.018*
C110.7647 (3)1.17771 (10)0.7336 (2)0.0165 (5)
H90.77181.20680.79560.020*
C10.7676 (3)0.84457 (10)0.3109 (2)0.0139 (4)
H10.78440.80450.32980.017*
C130.7334 (3)1.15171 (10)0.5175 (2)0.0159 (5)
H110.71921.16350.43360.019*
C40.7108 (3)0.95958 (10)0.2540 (2)0.0148 (5)
H30.68800.99910.23180.018*
C80.8044 (3)1.04216 (10)0.9213 (2)0.0163 (5)
H70.81741.03051.00530.020*
C170.5808 (4)0.78797 (11)0.0480 (2)0.0214 (5)
H160.60510.76050.01680.026*
H150.53390.76680.11650.026*
H170.47890.81610.01450.026*
C150.7622 (3)1.07573 (9)0.6732 (2)0.0117 (4)
C60.7776 (3)1.01577 (10)0.7059 (2)0.0126 (4)
C100.7714 (3)1.11839 (10)0.7680 (2)0.0133 (4)
C20.7624 (3)0.88432 (10)0.4052 (2)0.0144 (4)
H20.77560.87130.48830.017*
C160.7726 (3)0.81952 (10)0.0940 (2)0.0161 (5)
H130.87560.79070.12590.019*
H140.82060.84000.02400.019*
B10.7452 (4)0.99074 (11)0.4849 (2)0.0127 (5)
H120.704 (4)1.0625 (12)0.386 (3)0.024 (8)*
H50.787 (4)0.9418 (13)0.639 (3)0.022 (8)*
H180.704 (6)1.1246 (18)0.201 (4)0.058 (13)*
H190.517 (6)1.1225 (17)0.212 (3)0.049 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.02772 (10)0.01391 (8)0.01487 (8)0.00169 (6)0.00351 (6)0.00146 (6)
O10.0302 (12)0.0232 (10)0.0257 (10)0.0001 (9)0.0025 (9)0.0040 (8)
N10.0122 (10)0.0158 (10)0.0123 (9)0.0011 (7)0.0020 (7)0.0026 (7)
N20.0141 (10)0.0104 (9)0.0141 (9)0.0002 (7)0.0011 (7)0.0004 (7)
N30.0157 (10)0.0151 (10)0.0089 (9)0.0000 (7)0.0007 (7)0.0008 (7)
C90.0120 (11)0.0190 (12)0.0146 (11)0.0001 (9)0.0022 (8)0.0020 (9)
C30.0063 (10)0.0146 (11)0.0167 (11)0.0008 (8)0.0008 (8)0.0002 (8)
C140.0087 (11)0.0153 (11)0.0132 (10)0.0012 (8)0.0001 (8)0.0010 (8)
C120.0140 (12)0.0128 (11)0.0215 (12)0.0020 (9)0.0010 (9)0.0015 (9)
C50.0138 (11)0.0187 (12)0.0120 (10)0.0018 (9)0.0006 (8)0.0016 (9)
C70.0152 (12)0.0143 (11)0.0157 (11)0.0001 (9)0.0002 (8)0.0011 (8)
C110.0122 (11)0.0154 (11)0.0216 (12)0.0012 (9)0.0006 (9)0.0033 (9)
C10.0117 (11)0.0144 (11)0.0157 (11)0.0014 (8)0.0017 (8)0.0002 (8)
C130.0161 (12)0.0156 (11)0.0157 (11)0.0006 (9)0.0002 (9)0.0028 (9)
C40.0131 (12)0.0154 (11)0.0153 (11)0.0007 (9)0.0000 (8)0.0013 (8)
C80.0157 (12)0.0197 (12)0.0133 (11)0.0010 (9)0.0010 (9)0.0005 (9)
C170.0164 (13)0.0222 (13)0.0250 (13)0.0001 (10)0.0008 (10)0.0090 (10)
C150.0061 (10)0.0141 (11)0.0146 (10)0.0015 (8)0.0007 (8)0.0004 (8)
C60.0091 (11)0.0144 (11)0.0143 (10)0.0007 (8)0.0016 (8)0.0001 (8)
C100.0082 (11)0.0151 (11)0.0163 (11)0.0019 (8)0.0002 (8)0.0013 (9)
C20.0140 (11)0.0171 (11)0.0122 (10)0.0003 (9)0.0019 (8)0.0012 (8)
C160.0161 (12)0.0172 (12)0.0155 (11)0.0001 (9)0.0038 (9)0.0045 (9)
B10.0062 (11)0.0173 (12)0.0142 (12)0.0012 (9)0.0006 (9)0.0004 (10)
Geometric parameters (Å, º) top
O1—H180.80 (4)C5—H40.9500
O1—H190.77 (4)C5—C41.375 (3)
N1—C51.349 (3)C7—H60.9500
N1—C11.344 (3)C7—C81.410 (3)
N1—C161.485 (3)C7—C61.380 (3)
N2—C61.397 (3)C11—H90.9500
N2—B11.413 (3)C11—C101.417 (3)
N2—H50.83 (3)C1—H10.9500
N3—C141.400 (3)C1—C21.383 (3)
N3—B11.408 (3)C13—H110.9500
N3—H120.81 (3)C4—H30.9500
C9—H80.9500C8—H70.9500
C9—C81.367 (3)C17—H160.9800
C9—C101.418 (3)C17—H150.9800
C3—C41.404 (3)C17—H170.9800
C3—C21.404 (3)C17—C161.511 (3)
C3—B11.581 (3)C15—C61.427 (3)
C14—C131.379 (3)C15—C101.424 (3)
C14—C151.426 (3)C2—H20.9500
C12—H100.9500C16—H130.9900
C12—C111.370 (3)C16—H140.9900
C12—C131.408 (3)
H18—O1—H19109 (4)C14—C13—H11120.1
C5—N1—C16119.52 (19)C12—C13—H11120.1
C1—N1—C5120.79 (19)C3—C4—H3119.6
C1—N1—C16119.64 (19)C5—C4—C3120.8 (2)
C6—N2—B1122.7 (2)C5—C4—H3119.6
C6—N2—H5111 (2)C9—C8—C7121.1 (2)
B1—N2—H5127 (2)C9—C8—H7119.4
C14—N3—B1122.82 (19)C7—C8—H7119.4
C14—N3—H12114 (2)H16—C17—H15109.5
B1—N3—H12123 (2)H16—C17—H17109.5
C8—C9—H8119.7H15—C17—H17109.5
C8—C9—C10120.5 (2)C16—C17—H16109.5
C10—C9—H8119.7C16—C17—H15109.5
C4—C3—B1121.5 (2)C16—C17—H17109.5
C2—C3—C4116.6 (2)C14—C15—C6121.0 (2)
C2—C3—B1121.8 (2)C10—C15—C14119.6 (2)
N3—C14—C15117.9 (2)C10—C15—C6119.4 (2)
C13—C14—N3121.9 (2)N2—C6—C15117.99 (19)
C13—C14—C15120.2 (2)C7—C6—N2122.0 (2)
C11—C12—H10119.4C7—C6—C15120.0 (2)
C11—C12—C13121.3 (2)C9—C10—C15118.8 (2)
C13—C12—H10119.4C11—C10—C9122.7 (2)
N1—C5—H4119.7C11—C10—C15118.4 (2)
N1—C5—C4120.6 (2)C3—C2—H2119.7
C4—C5—H4119.7C1—C2—C3120.5 (2)
C8—C7—H6120.0C1—C2—H2119.7
C6—C7—H6120.0N1—C16—C17113.04 (19)
C6—C7—C8120.1 (2)N1—C16—H13109.0
C12—C11—H9119.6N1—C16—H14109.0
C12—C11—C10120.7 (2)C17—C16—H13109.0
C10—C11—H9119.6C17—C16—H14109.0
N1—C1—H1119.7H13—C16—H14107.8
N1—C1—C2120.6 (2)N2—B1—C3121.8 (2)
C2—C1—H1119.7N3—B1—N2117.4 (2)
C14—C13—C12119.7 (2)N3—B1—C3120.8 (2)
N1—C5—C4—C30.0 (3)C8—C9—C10—C11178.3 (2)
N1—C1—C2—C30.1 (3)C8—C9—C10—C150.3 (3)
N3—C14—C13—C12179.6 (2)C8—C7—C6—N2178.6 (2)
N3—C14—C15—C62.0 (3)C8—C7—C6—C151.0 (3)
N3—C14—C15—C10178.65 (19)C15—C14—C13—C120.4 (3)
C14—N3—B1—N21.2 (3)C6—N2—B1—N32.3 (3)
C14—N3—B1—C3177.6 (2)C6—N2—B1—C3178.9 (2)
C14—C15—C6—N21.2 (3)C6—C7—C8—C90.1 (3)
C14—C15—C6—C7179.2 (2)C6—C15—C10—C90.7 (3)
C14—C15—C10—C9179.9 (2)C6—C15—C10—C11177.3 (2)
C14—C15—C10—C112.1 (3)C10—C9—C8—C70.8 (4)
C12—C11—C10—C9178.5 (2)C10—C15—C6—N2178.15 (19)
C12—C11—C10—C150.5 (3)C10—C15—C6—C71.4 (3)
C5—N1—C1—C22.8 (3)C2—C3—C4—C52.6 (3)
C5—N1—C16—C1796.2 (2)C2—C3—B1—N20.9 (3)
C11—C12—C13—C141.3 (4)C2—C3—B1—N3177.9 (2)
C1—N1—C5—C42.8 (3)C16—N1—C5—C4174.6 (2)
C1—N1—C16—C1786.3 (3)C16—N1—C1—C2174.7 (2)
C13—C14—C15—C6177.3 (2)B1—N2—C6—C7177.0 (2)
C13—C14—C15—C102.1 (3)B1—N2—C6—C153.4 (3)
C13—C12—C11—C101.2 (4)B1—N3—C14—C13176.0 (2)
C4—C3—C2—C12.7 (3)B1—N3—C14—C153.2 (3)
C4—C3—B1—N2179.5 (2)B1—C3—C4—C5176.1 (2)
C4—C3—B1—N30.8 (3)B1—C3—C2—C1176.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H18···I1i0.80 (4)2.87 (4)3.643 (3)162 (4)
O1—H19···I1ii0.77 (4)3.04 (4)3.793 (3)167 (4)
N2—H5···I10.83 (3)2.95 (3)3.764 (2)171 (2)
N3—H12···O10.82 (3)2.23 (3)3.046 (3)172 (3)
C2—H2···I10.953.144.081 (2)171
C16—H14···I1iii0.992.983.840 (3)145
C16—H13···I1iv0.993.153.946 (3)138
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x, y, z1; (iv) x, y+3/2, z1/2.
 

Acknowledgements

TO gratefully acknowledges the publication supporting fund of Wakayama University.

Funding information

Funding for this research was provided by: Wakayama University.

References

First citationAkerman, M. P., Robinson, R. S. & Slabber, C. A. (2011). Acta Cryst. E67, o1873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHashimoto, S. & Okuno, T. (2004).IUCrData, 9, x240362.  Google Scholar
First citationLaPorte, A. J., Feldner, J. E., Spies, J. C., Maher, T. J. & Burke, M. D. (2023). Angew. Chem. Int. Ed. 62, e202309566.  CSD CrossRef Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSlabber, C. A., Grimmer, C., Akerman, M. P. & Robinson, R. S. (2011). Acta Cryst. E67, o1995.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146