organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2E,2′E)-1,1′-([1,1′-Biphen­yl]-4,4′-di­yl)bis­­[3-(di­meth­yl­amino)­prop-2-en-1-one]

crossmark logo

aDepartment of Applied Chemistry, Faculty of Science Division I, Tokyo University, of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
*Correspondence e-mail: sadakiyo@rs.tus.ac.jp

Edited by I. Brito, University of Antofagasta, Chile (Received 1 April 2024; accepted 19 April 2024; online 26 April 2024)

The title compound, C22H24N2O2, crystallizes in space group P21/n. The mol­ecular structure is almost planar except for a tilt of the phenyl rings. The allyl groups on both ends exhibit the trans-form and the connected N atoms show sp2 character. The mol­ecules are stacked and assembled along the c-axis direction by C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

β-Keto­amines are important not only for various chemical reactions, but also for creating functional complexes (Pettinari et al., 2014[Pettinari, R., Marchetti, F., Pettinari, C., Petrini, A., Scopelliti, R., Clavel, C. M. & Dyson, P. J. (2014). Inorg. Chem. 53, 13105-13111.]). Recently, they have also been used as reagents for covalent organic frameworks (Zhao et al., 2023[Zhao, Y., Li, W., Li, Y., Qiu, T., Mu, X., Ma, Y., Zhao, Y., Zhang, J., Zhang, J., Li, Y. & Tan, H. (2023). Adv. Funct. Mater. 33, 2306598.]). In this work, the crystal structure of the title β-keto­amine was determined. The mol­ecule is almost flat, but the phenyl rings are tilted [dihedral angle = 30.14 (8)°] (Fig. 1[link]) as a result of the repulsion between H atoms on the phenyl rings and inter­molecular inter­actions, i.e., C—H⋯π, with neighboring mol­ecules (Table 1[link]). In addition to the carbonyl and the allyl groups, the amino groups also show a planar character, indicating the sp2 character of the N atoms and the π-conjugated character of these functional groups. The bond-angle sums for both N atoms are 360.0°.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1/C9/C17/C4/C18/C15 and C3/C14/C11/C7/C6/C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21B⋯O2i 0.98 2.51 3.410 (2) 152
C22—H22⋯O1ii 0.98 2.48 3.387 (2) 154
C21—H21⋯Cg2iii 0.98 2.60 3.538 (2) 160
C22—H22BCg1iv 0.98 2.70 3.608 (2) 154
Symmetry codes: (i) [x, y+1, z]; (ii) [x, y-1, z]; (iii) [-x, -y, -z+2]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
Illustration of the title mol­ecule, composed of crystallographically independent atoms with displacement ellipsoids drawn at the 50% probability level.

In the crystal, the mol­ecules are assembled to form a two-dimensional layer-like structure in the (105) plane (Fig. 2[link]). The mol­ecules are stacked perpendicular to this plane through C—H⋯π inter­actions. Each mol­ecule inter­acts with three neighboring mol­ecules. Two different phenyl groups on the mol­ecule accept the C donors (C21 and C22), resulting in additional C—H⋯π inter­actions (Tsuzuki et al., 2000[Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2000). J. Am. Chem. Soc. 122, 3746-3753.]) with mol­ecules above and below (Fig. 3[link]). The C21 methyl group on one side inter­acts with the phenyl ring of the stacked mol­ecule above through a C21—H21⋯Cg2 inter­action [C21⋯Cg2 = 3.538 (2) Å], while the C22 methyl group on the other side similarly inter­acts with the mol­ecule below [C22⋯Cg1 = 3.608 (2) Å] where Cg1 and Cg2 are the centroids of the C1/C9/C17/C4/C18/C15 and C3/C14/C11/C7/C6/C16 rings, respectively. The distances between the phenyl groups are not remarkably short with centroid–centroid separations of 4.363 (1) and 4.833 (1) Å, and no obvious ππ inter­actions occur with neighboring mol­ecules, indicating that the mol­ecules are assembled mainly through C—H⋯π inter­actions. C—H⋯O inter­actions involving H22 and H22B (Table 1[link]) also occur, which also contribute to assemble the molecules.

[Figure 2]
Figure 2
Packing structure of the title compound along the b axis.
[Figure 3]
Figure 3
C—H⋯π inter­actions between neighboring mol­ecules. Symmetry codes: (i) [{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z; (ii) −x, −y, 2 − z.

Synthesis and crystallization

A mixture of 4,4′-diacetyl biphenyl (0.953 g, 4.00 mmol), anhydrous DMF (12 ml), and N,N-di­methyl­formamide diethyl acetal (12 ml) was stirred and heated at 90°C under a nitro­gen atmosphere for 12 h. After cooling, diethyl ether (20 ml) was added slowly to the reaction mixture, resulting in a yellow powder. The precipitate was collected by suction filtration and it was then immersed in n-pentane for 4 h at room temperature. After that, the precipitate was collected by suction filtration and dried under vacuum at 170°C overnight (0.961 g, 1.98 mmol, yield 50%). Crystals of the title compound were obtained by recrystallization through slow evaporation of a methanol solution. After several days, yellow crystals were obtained.

Refinement

Details of crystal data, data collections, and structure refinements are shown in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C22H24N2O2
Mr 348.43
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 15.862 (1), 6.0503 (4), 19.0640 (12)
β (°) 105.287 (3)
V3) 1764.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.40 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker PHOTON II CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.669, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 21542, 4738, 3539
Rint 0.076
(sin θ/λ)max−1) 0.731
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.154, 1.08
No. of reflections 4738
No. of parameters 239
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.25
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2019 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and Yadokari-XG (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218-224.]).

Structural data


Computing details top

(2E,2'E)-1,1'-([1,1'-Biphenyl]-4,4'-diyl)bis[3-(dimethylamino)prop-2-en-1-one] top
Crystal data top
C22H24N2O2F(000) = 744
Mr = 348.43Dx = 1.311 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 15.862 (1) ÅCell parameters from 2411 reflections
b = 6.0503 (4) Åθ = 3.0–29.0°
c = 19.0640 (12) ŵ = 0.08 mm1
β = 105.287 (3)°T = 90 K
V = 1764.8 (2) Å3Block, yellow
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Bruker PHOTON II CPAD
diffractometer
3539 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.076
φ and ω scansθmax = 31.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2223
Tmin = 0.669, Tmax = 0.746k = 88
21542 measured reflectionsl = 2726
4738 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.8647P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4738 reflectionsΔρmax = 0.31 e Å3
239 parametersΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All hydrogen atoms were fixed geometrically and refined using a riding-model approximation with C—H = 0.95 (for phenyl and allyl) and 0.98 (for methyl) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44366 (8)0.0656 (2)0.82473 (8)0.0251 (3)
O20.18571 (8)0.6345 (2)0.92406 (8)0.0260 (3)
C10.08648 (11)0.3027 (3)0.88219 (9)0.0172 (3)
C20.42078 (11)0.1318 (3)0.82155 (9)0.0183 (4)
N10.35165 (9)0.1752 (2)0.97342 (8)0.0206 (3)
N20.60934 (9)0.3981 (3)0.77673 (9)0.0216 (3)
C30.33358 (11)0.1860 (3)0.83472 (9)0.0164 (3)
C40.07530 (11)0.3830 (3)0.91419 (9)0.0182 (4)
C50.16200 (11)0.4379 (3)0.92887 (10)0.0194 (4)
C60.23300 (11)0.4325 (3)0.87142 (9)0.0184 (4)
H60.2204730.5751290.8869050.022*
C70.17109 (11)0.2637 (3)0.86495 (9)0.0171 (4)
C80.47315 (11)0.3113 (3)0.80669 (10)0.0190 (4)
H80.4544420.4601790.8076270.023*
C90.04331 (11)0.1358 (3)0.90959 (10)0.0194 (4)
H90.0690540.0067740.9181500.023*
C100.29110 (11)0.3106 (3)0.96087 (9)0.0197 (4)
H100.3029610.4638910.9632290.024*
C110.19194 (11)0.0561 (3)0.84176 (10)0.0188 (4)
H110.1504910.0604520.8357050.023*
C120.21424 (11)0.2595 (3)0.94506 (10)0.0204 (4)
H120.1956690.1102710.9447270.024*
C130.55029 (11)0.2624 (3)0.79123 (10)0.0197 (4)
H130.5636850.1094290.7907850.024*
C140.27188 (11)0.0173 (3)0.82748 (9)0.0182 (4)
H140.2848370.1256920.8125850.022*
C150.04694 (11)0.5114 (3)0.87134 (10)0.0206 (4)
H150.0744880.6277540.8522690.025*
C160.31225 (11)0.3953 (3)0.85566 (9)0.0176 (4)
H160.3525240.5135730.8591460.021*
C170.03656 (11)0.1741 (3)0.92460 (10)0.0197 (4)
H170.0651530.0566780.9421600.024*
C180.03162 (11)0.5510 (3)0.88793 (10)0.0193 (4)
H180.0562000.6951050.8813070.023*
C190.42660 (11)0.2587 (3)0.99574 (10)0.0231 (4)
H190.4256340.4206140.9957470.035*
H19A0.4805710.2064310.9617390.035*
H19B0.4240690.2051721.0447750.035*
C200.68514 (12)0.3137 (3)0.75587 (11)0.0259 (4)
H200.6836590.1517440.7554830.039*
H20A0.6841870.3679200.7072290.039*
H20B0.7386140.3644780.7908440.039*
C210.34611 (12)0.0646 (3)0.96831 (11)0.0248 (4)
H210.3345160.1292351.0170570.037*
H21A0.4014690.1222540.9379150.037*
H21B0.2986040.1033770.9465220.037*
C220.60316 (12)0.6375 (3)0.78032 (11)0.0239 (4)
H220.5537180.6774180.7995950.036*
H22A0.6572870.6965570.8123010.036*
H22B0.5943170.6999110.7314680.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0229 (6)0.0164 (6)0.0391 (8)0.0025 (5)0.0138 (6)0.0007 (6)
O20.0243 (7)0.0191 (7)0.0391 (8)0.0041 (5)0.0161 (6)0.0028 (6)
C10.0160 (8)0.0166 (8)0.0198 (8)0.0012 (7)0.0060 (7)0.0014 (7)
C20.0168 (8)0.0191 (9)0.0206 (8)0.0004 (7)0.0076 (7)0.0003 (7)
N10.0188 (7)0.0179 (8)0.0273 (8)0.0018 (6)0.0098 (6)0.0017 (6)
N20.0194 (7)0.0180 (8)0.0314 (8)0.0005 (6)0.0135 (7)0.0007 (6)
C30.0169 (8)0.0160 (8)0.0171 (8)0.0007 (7)0.0057 (7)0.0006 (7)
C40.0178 (8)0.0183 (9)0.0201 (8)0.0005 (7)0.0075 (7)0.0015 (7)
C50.0203 (8)0.0194 (9)0.0201 (8)0.0007 (7)0.0083 (7)0.0004 (7)
C60.0189 (8)0.0141 (8)0.0240 (9)0.0003 (7)0.0089 (7)0.0005 (7)
C70.0186 (8)0.0147 (8)0.0194 (8)0.0002 (7)0.0073 (7)0.0010 (7)
C80.0170 (8)0.0187 (9)0.0237 (9)0.0014 (7)0.0094 (7)0.0001 (7)
C90.0205 (8)0.0141 (8)0.0251 (9)0.0024 (7)0.0085 (7)0.0018 (7)
C100.0207 (8)0.0176 (9)0.0216 (9)0.0004 (7)0.0068 (7)0.0006 (7)
C110.0166 (8)0.0151 (8)0.0250 (9)0.0023 (7)0.0056 (7)0.0012 (7)
C120.0210 (8)0.0171 (9)0.0257 (9)0.0017 (7)0.0109 (7)0.0003 (7)
C130.0204 (8)0.0158 (8)0.0246 (9)0.0007 (7)0.0087 (7)0.0000 (7)
C140.0198 (8)0.0145 (8)0.0212 (8)0.0002 (7)0.0071 (7)0.0010 (7)
C150.0209 (8)0.0151 (8)0.0284 (9)0.0016 (7)0.0110 (8)0.0020 (7)
C160.0171 (8)0.0155 (8)0.0210 (8)0.0022 (7)0.0065 (7)0.0003 (7)
C170.0208 (8)0.0166 (9)0.0248 (9)0.0003 (7)0.0117 (7)0.0043 (7)
C180.0180 (8)0.0143 (8)0.0259 (9)0.0016 (7)0.0064 (7)0.0004 (7)
C190.0194 (8)0.0239 (10)0.0292 (10)0.0010 (7)0.0120 (8)0.0022 (8)
C200.0203 (9)0.0246 (10)0.0375 (11)0.0010 (8)0.0160 (8)0.0029 (8)
C210.0267 (9)0.0192 (9)0.0315 (10)0.0013 (8)0.0132 (8)0.0011 (8)
C220.0237 (9)0.0188 (9)0.0324 (10)0.0022 (7)0.0132 (8)0.0009 (8)
Geometric parameters (Å, º) top
O1—C21.245 (2)C9—H90.9500
O2—C51.243 (2)C10—C121.366 (2)
C1—C91.396 (2)C10—H100.9500
C1—C151.401 (2)C11—C141.385 (2)
C1—C71.482 (2)C11—H110.9500
C2—C81.440 (2)C12—H120.9500
C2—C31.506 (2)C13—H130.9500
N1—C101.331 (2)C14—H140.9500
N1—C191.455 (2)C15—C181.385 (2)
N1—C211.458 (2)C15—H150.9500
N2—C131.329 (2)C16—H160.9500
N2—C221.455 (2)C17—H170.9500
N2—C201.455 (2)C18—H180.9500
C3—C141.395 (2)C19—H190.9800
C3—C161.396 (2)C19—H19A0.9800
C4—C181.395 (2)C19—H19B0.9800
C4—C171.397 (2)C20—H200.9800
C4—C51.511 (2)C20—H20A0.9800
C5—C121.443 (2)C20—H20B0.9800
C6—C161.386 (2)C21—H210.9800
C6—C71.399 (2)C21—H21A0.9800
C6—H60.9500C21—H21B0.9800
C7—C111.400 (2)C22—H220.9800
C8—C131.364 (2)C22—H22A0.9800
C8—H80.9500C22—H22B0.9800
C9—C171.390 (2)
C9—C1—C15117.55 (15)N2—C13—C8129.23 (17)
C9—C1—C7122.00 (16)N2—C13—H13115.4
C15—C1—C7120.45 (15)C8—C13—H13115.4
O1—C2—C8123.86 (15)C11—C14—C3120.76 (16)
O1—C2—C3118.00 (15)C11—C14—H14119.6
C8—C2—C3118.14 (15)C3—C14—H14119.6
C10—N1—C19121.53 (15)C18—C15—C1121.12 (16)
C10—N1—C21122.76 (15)C18—C15—H15119.4
C19—N1—C21115.68 (14)C1—C15—H15119.4
C13—N2—C22123.09 (15)C6—C16—C3120.76 (16)
C13—N2—C20121.23 (15)C6—C16—H16119.6
C22—N2—C20115.68 (15)C3—C16—H16119.6
C14—C3—C16118.36 (15)C9—C17—C4120.82 (16)
C14—C3—C2118.40 (15)C9—C17—H17119.6
C16—C3—C2123.21 (15)C4—C17—H17119.6
C18—C4—C17117.95 (15)C15—C18—C4121.20 (16)
C18—C4—C5117.96 (16)C15—C18—H18119.4
C17—C4—C5124.09 (15)C4—C18—H18119.4
O2—C5—C12123.49 (16)N1—C19—H19109.5
O2—C5—C4117.97 (16)N1—C19—H19A109.5
C12—C5—C4118.50 (15)H19—C19—H19A109.5
C16—C6—C7121.20 (16)N1—C19—H19B109.5
C16—C6—H6119.4H19—C19—H19B109.5
C7—C6—H6119.4H19A—C19—H19B109.5
C6—C7—C11117.64 (15)N2—C20—H20109.5
C6—C7—C1121.32 (15)N2—C20—H20A109.5
C11—C7—C1121.04 (15)H20—C20—H20A109.5
C13—C8—C2118.39 (16)N2—C20—H20B109.5
C13—C8—H8120.8H20—C20—H20B109.5
C2—C8—H8120.8H20A—C20—H20B109.5
C17—C9—C1121.34 (16)N1—C21—H21109.5
C17—C9—H9119.3N1—C21—H21A109.5
C1—C9—H9119.3H21—C21—H21A109.5
N1—C10—C12128.94 (17)N1—C21—H21B109.5
N1—C10—H10115.5H21—C21—H21B109.5
C12—C10—H10115.5H21A—C21—H21B109.5
C14—C11—C7121.23 (16)N2—C22—H22109.5
C14—C11—H11119.4N2—C22—H22A109.5
C7—C11—H11119.4H22—C22—H22A109.5
C10—C12—C5118.29 (16)N2—C22—H22B109.5
C10—C12—H12120.9H22—C22—H22B109.5
C5—C12—H12120.9H22A—C22—H22B109.5
O1—C2—C3—C1419.5 (2)C1—C7—C11—C14178.24 (16)
C8—C2—C3—C14161.06 (16)N1—C10—C12—C5175.95 (17)
O1—C2—C3—C16158.78 (17)O2—C5—C12—C104.7 (3)
C8—C2—C3—C1620.7 (3)C4—C5—C12—C10177.69 (16)
C18—C4—C5—O27.3 (2)C22—N2—C13—C84.7 (3)
C17—C4—C5—O2173.35 (18)C20—N2—C13—C8175.17 (19)
C18—C4—C5—C12170.47 (16)C2—C8—C13—N2179.18 (18)
C17—C4—C5—C128.9 (3)C7—C11—C14—C31.0 (3)
C16—C6—C7—C110.2 (3)C16—C3—C14—C110.9 (3)
C16—C6—C7—C1179.64 (16)C2—C3—C14—C11177.45 (16)
C9—C1—C7—C6149.01 (17)C9—C1—C15—C180.7 (3)
C15—C1—C7—C630.9 (3)C7—C1—C15—C18179.29 (16)
C9—C1—C7—C1130.8 (3)C7—C6—C16—C31.8 (3)
C15—C1—C7—C11149.25 (18)C14—C3—C16—C62.3 (3)
O1—C2—C8—C133.7 (3)C2—C3—C16—C6175.97 (16)
C3—C2—C8—C13176.87 (16)C1—C9—C17—C41.4 (3)
C15—C1—C9—C170.9 (3)C18—C4—C17—C90.4 (3)
C7—C1—C9—C17179.15 (16)C5—C4—C17—C9179.73 (16)
C19—N1—C10—C12174.60 (18)C1—C15—C18—C41.7 (3)
C21—N1—C10—C123.2 (3)C17—C4—C18—C151.2 (3)
C6—C7—C11—C141.6 (3)C5—C4—C18—C15178.21 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1/C9/C17/C4/C18/C15 and C3/C14/C11/C7/C6/C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C21—H21B···O2i0.982.513.410 (2)152
C22—H22···O1ii0.982.483.387 (2)154
C21—H21···Cg2iii0.982.603.538 (2)160
C22—H22B···Cg1iv0.982.703.608 (2)154
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x, y, z+2; (iv) x+1/2, y1/2, z+3/2.
 

Funding information

Funding for this research was provided by: Japan Society for the Promotion of Science (grant No. 21K05089).

References

First citationBrandenburg, K. (2014). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationPettinari, R., Marchetti, F., Pettinari, C., Petrini, A., Scopelliti, R., Clavel, C. M. & Dyson, P. J. (2014). Inorg. Chem. 53, 13105–13111.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. (2000). J. Am. Chem. Soc. 122, 3746–3753.  Web of Science CrossRef CAS Google Scholar
First citationZhao, Y., Li, W., Li, Y., Qiu, T., Mu, X., Ma, Y., Zhao, Y., Zhang, J., Zhang, J., Li, Y. & Tan, H. (2023). Adv. Funct. Mater. 33, 2306598.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146