metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

mer-Bis(quinoline-2-carboxaldehyde 4-ethyl­thio­semicarbazonato)nickel(II) methanol 0.33-solvate 0.67-hydrate

crossmark logo

aChemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei
*Correspondence e-mail: haniti.hamid@ubd.edu.bn

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 14 March 2024; accepted 17 April 2024; online 26 April 2024)

In the title compound, [Ni(C13H13N4S)2]·0.33CH3OH·0.67H2O, the NiII atom is coordinated by two tridentate quinoline-2-carboxaldehyde 4-ethyl­thio­semi­car­ba­zonate ligands in a distorted octa­hedral shape. At 100 K, the crystal symmetry is monoclinic (space group P21/n). A mixture of water and methanol crystallizes with the title complex, and one of the ethyl groups in the coordinating ligands is disordered over two positions, with an occupancy ratio of 58:42. There is inter­molecular hydrogen bonding between the solvent mol­ecules and the amine and thiol­ate groups in the ligands. No other significant inter­actions are present in the crystal packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Thio­semicarbazones are a type of Schiff base ligand formed by the condensation of thio­semicarbazides with carbonyl compounds (Arulmurugan et al., 2010[Arulmurugan, S., Kavitha, H. P. & Venkatraman, B. R. (2010). Rasayan J. Chem. 3, 385-410.]). They com­monly behave as N,S- or N,N′,S-chelating agents, coordinating the metal through the imine N and S atoms. They frequently feature more than two covalent sites, the number depending on the aldehyde used during the synthesis and on the tautomeric equilibrium of the thio­semicarbazone (Latheef et al., 2021[Latheef, L., Kurup, M. R. P. & Suresh, E. (2021). Chem. Data Coll. 35, 100758.]; Osman et al., 2021[Osman, U. M., Silvarajoo, S., Kamarudin, K. H., Tahir, M. I. M. & Kwong, H. C. (2021). J. Mol. Struct. 1223, 128994.]). The versatility of the compounds, along with their metal complexes, have attracted significant inter­est in the fields of chemistry and biology. They exhibit a broad spectrum of biological properties, including anti­bacterial, anti­cancer, anti­proliferative and anti­viral activities (Chaturvedi, 2012[Chaturvedi, D. (2012). Tetrahedron, 68, 15-45.]; Damit et al., 2021[Damit, N. S. H. H., Hamid, M. H. S. A., Rahman, N. S. R. H. A., Ilias, S. N. H. H. & Keasberry, N. A. (2021). Inorg. Chim. Acta, 527, 120557.]; Montalbano et al., 2023[Montalbano, S., Buschini, A., Pelosi, G. & Bisceglie, F. (2023). Molecules, 28, 2778.]; Kumar et al., 2023[Kumar, R., Singh, A. A., Kumar, U., Jain, P., Sharma, A. K., Kant, C. & Haque Faizi, M. S. (2023). J. Mol. Struct. 1294, 136346.]; Arif et al., 2024[Arif, R., Akrema, , Pulaganti, M., Rubab, U., Ali, A., Khan, M. S. & Uddin, R. (2024). Chem. Pap. 78, 2867-2883.]). For instance, a series of quinoline-2-­carboxaldehyde thio­semicarbazone derivatives and their CuII and NiII complexes have been reported by Bisceglie et al. (2015[Bisceglie, F., Musiari, A., Pinelli, S., Alinovi, R., Menozzi, I., Polverini, E., Tarasconi, P., Tavone, M. & Pelosi, G. (2015). J. Inorg. Biochem. 152, 10-19.]) for biological survey studies.

NiII complexes having sulfur donors have been studied, receiving considerable attention due to the identification of a sulfur-rich coordination environment in biologically relevant nickel ompounds, such as the active sites of certain ureases, hydrogenases, as well as de­hydrogenases, that may play a role in the supposed mutagenicity of nickel compounds (Latheef et al., 2021[Latheef, L., Kurup, M. R. P. & Suresh, E. (2021). Chem. Data Coll. 35, 100758.]). The coordination chemistry of nickel is thus of inter­est with respect to its important roles in biological systems (Jayakumar et al., 2022[Jayakumar, K., Seena, E. B., Kurup, M. R. P., Kaya, S., Serdaroğlu, G., Suresh, E. & Marzouki, R. (2022). J. Mol. Struct. 1253, 132257.]; Sankar & Sharmila, 2023[Sankar, R. & Sharmila, T. M. (2023). Results Chem. 6, 101179.]). This is due to the ability of nickel to adopt different coord­ination environments, such as tetra­hedral, square planar and octa­hedral. The nickel ion can also bind to soft and hard donor ligands, which allows its coordination chemistry to encompass a variety of coordination environments, coordination numbers and oxidation states (Jayakumar et al., 2022[Jayakumar, K., Seena, E. B., Kurup, M. R. P., Kaya, S., Serdaroğlu, G., Suresh, E. & Marzouki, R. (2022). J. Mol. Struct. 1253, 132257.]).

The asymmetric unit of the title compound contains one complex with formula C26H26N8S2Ni and a mixture of water and methanol. The structure of the title compound is confirmed to be in a 2:1 ligand–metal complex, where the two ligands are perpendicular to each other in a distorted octa­hedral shape, coordinating in a meridional fashion (Fig. 1[link]). This aligns with the methyl analogue of the complex found in the literature, which has methyl groups in place of the ethyl groups (Bisceglie et al., 2015[Bisceglie, F., Musiari, A., Pinelli, S., Alinovi, R., Menozzi, I., Polverini, E., Tarasconi, P., Tavone, M. & Pelosi, G. (2015). J. Inorg. Biochem. 152, 10-19.]), with its two ligands coordinating as anionic deprotonated mol­ecules. In the structure reported herein, one of the ethyl groups is disordered over two positions, with an occupancy ratio refined as 58:42. The occupancy ratio of the solvent molecules, methanol and water, was refined to 1/3:2/3.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the more abundant ethyl-group positions. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity (with the exception of H4). Atoms C1S, O1S and O1W are for the disordered solvent molecules, methanol and water. The dashed bond is the inter­molecular hydrogen bond between the complex and the methanol mol­ecule (Table 1[link], entry 2).

Each methanol/water mol­ecule bridges two neighbouring complexes through inter­molecular N4—H4⋯O(solvent) and OH(solvent)⋯S2i hydrogen bonds (Table 1[link]). The crystal structure is further stabilized by weaker inter­molecular N8—H8⋯N3ii hydrogen bonds, forming a tri-periodic supra­molecular network (Fig. 2[link]). No other significant inter­actions are present in the crystal packing of the title compound. In contrast, in the case of the methyl analogue complex, no solvent is present in the unit cell (Bisceglie et al., 2015[Bisceglie, F., Musiari, A., Pinelli, S., Alinovi, R., Menozzi, I., Polverini, E., Tarasconi, P., Tavone, M. & Pelosi, G. (2015). J. Inorg. Biochem. 152, 10-19.]). Furthermore, this methyl complex also features inter­molecular inter­actions of C—H groups with the quinoline π-system, which are not observed in the structure reported herein. The Ni—N bond lengths are in good agreement with those observed in other octa­hedral [Ni(N,N′,S)2]2+ complexes retrieved from the Cambridge Structural Database (CSD, Version 5.45; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]): refcodes NOTWEA (Min et al., 2014[Min, R., Fan, X.-R., Zhou, P., Yan, J., Zhou, J.-L. & Zhang, S.-C. (2014). Chin. J. Inorg. Chem. 30, 1771-1777.]), and JUKRAK and JUKQUD (Bisceglie et al., 2015[Bisceglie, F., Musiari, A., Pinelli, S., Alinovi, R., Menozzi, I., Polverini, E., Tarasconi, P., Tavone, M. & Pelosi, G. (2015). J. Inorg. Biochem. 152, 10-19.]). To the best of our knowledge, no quinoline-2-carboxaldehyde 4-ethyl­thio­semicarbazonate–nickel(II) complexes have been deposited in the CSD so far.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O1W 0.84 (2) 2.10 (3) 2.936 (12) 174 (2)
N4—H4⋯O1S 0.84 (2) 2.08 (4) 2.91 (3) 170 (2)
O1S—H1S⋯S2i 0.84 2.46 3.24 (2) 154
N8—H8⋯N3ii 0.85 (2) 2.29 (2) 3.1349 (19) 174 (2)
Symmetry codes: (i) [x+1, y, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Perspective view of the crystal packing of the title compound approximately along the b axis. Solvent mol­ecules and H atoms have been omitted for clarity.

In the title compound, no H peaks were located on N3 and N7 in a difference map. Additionally, the C11=N3 and C24=N7 bond lengths are 1.3438 (19) and 1.3355 (19) Å, respectively, which confirms that significant double-bond character is present, and that the ligand is in its deprotonated form. Spectroscopic and mass spectrometry analyses of the complex further confirm that the 2:1 deprotonated ligand–metal complex is present.

Synthesis and crystallization

The title NiII complex was synthesized by dissolving quinoline-2-carboxaldehyde 4-ethyl­thio­semicarbazone (0.050 g, 0.194 mmol) in hot aceto­nitrile (10 ml), which was mixed with a hot solution of nickel(II) acetate tetra­hydrate (48.2 mg, 0.194 mmol) in methanol (10 ml) on a steam bath, and left to reflux at 355 K for 40 min. On standing overnight at room temperature, dark-brown crystals suitable for X-ray diffraction were obtained [yield: 0.0164 g; m.p. 541 K (decomposition)]. Elemental analysis calculated (%) for C26.33H28.65N8NiOS2: C 53.06, H 4.85, N 18.8; found: C 53.22, H 4.75, N 19.14. IR (ν, cm−1): 3280, 3217 (N—H), 2965, 2921 (CH ar­yl), 1600 (C=N), 1530, 1469 (C=C arom.), 831 (C—S). UV–Vis (DMSO), λmax: 118, 389, 474 nm. HR ESI–MS: calculated for [M + H]+: 573.1165; found 573.1087 (M is the unsolvated complex).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One ethyl group (C25—C26) was modelled for disorder over two parts. Displacement parameters for this group were restrained to be similar and site occupancies were refined to 0.58 (2) and 0.42 (2). The last residual peaks in the difference maps were modelled as a mixture of water and methanol sharing a single site, and displacement parameters for these atoms (C1A, O1A and O1W) were constrained to be identical. Occupancies for water and methanol were refined to 0.672 (6) and 0.328 (6), respectively. The H atoms of the solvent mol­ecules could not be located from a difference map and were thus placed in calculated positions. The H atoms of the amine groups (H4 and H8) were refined freely (positions and isotropic displacement parameters), while other H atoms were placed in calculated positions.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C13H13N4S)2]·0.33CH4O·0.67H2O
Mr 595.97
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.0560 (6), 21.3696 (9), 12.5648 (6)
β (°) 100.161 (2)
V3) 2657.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.93
Crystal size (mm) 0.13 × 0.13 × 0.10
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.710, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 143112, 8094, 7523
Rint 0.076
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.083, 1.08
No. of reflections 8094
No. of parameters 385
No. of restraints 36
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.48
Computer programs: APEX4 and SAINT (Bruker, 2016[Bruker (2016). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

mer-Bis(quinoline-2-carboxaldehyde 4-ethylthiosemicarbazonato)nickel(II) methanol 0.33-solvate 0.67-hydrate top
Crystal data top
[Ni(C13H13N4S)2]·0.328CH4O·0.672H2ODx = 1.489 Mg m3
Mr = 595.97Melting point: 541 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.0560 (6) ÅCell parameters from 9658 reflections
b = 21.3696 (9) Åθ = 2.6–30.4°
c = 12.5648 (6) ŵ = 0.93 mm1
β = 100.161 (2)°T = 100 K
V = 2657.7 (2) Å3Rod, dark brown
Z = 40.13 × 0.13 × 0.10 mm
F(000) = 1242
Data collection top
Bruker D8 Venture
diffractometer
7523 reflections with I > 2σ(I)
Radiation source: Microfocus Sealed TubeRint = 0.076
φ and ω scansθmax = 30.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1414
Tmin = 0.710, Tmax = 0.746k = 3030
143112 measured reflectionsl = 1717
8094 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0226P)2 + 3.305P]
where P = (Fo2 + 2Fc2)/3
8094 reflections(Δ/σ)max = 0.002
385 parametersΔρmax = 0.46 e Å3
36 restraintsΔρmin = 0.47 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.37125 (2)0.34643 (2)0.54815 (2)0.01053 (5)
S10.58288 (4)0.34892 (2)0.48937 (3)0.01341 (8)
S20.23953 (4)0.30891 (2)0.37971 (3)0.01339 (8)
N10.21681 (13)0.31495 (6)0.63795 (11)0.0125 (2)
N20.44276 (13)0.26050 (6)0.60052 (10)0.0113 (2)
N30.55983 (13)0.23412 (6)0.58182 (11)0.0126 (2)
N40.74864 (14)0.25342 (7)0.50791 (12)0.0156 (3)
H40.791 (2)0.2775 (11)0.4735 (19)0.024 (6)*
N50.44660 (13)0.41468 (6)0.67711 (10)0.0119 (2)
N60.31246 (13)0.42947 (6)0.47570 (10)0.0117 (2)
N70.24729 (13)0.43707 (6)0.37230 (11)0.0130 (2)
N80.14719 (14)0.38603 (7)0.21967 (11)0.0159 (3)
H80.125 (2)0.3518 (11)0.187 (2)0.025 (6)*
C10.10008 (15)0.34256 (7)0.65722 (13)0.0143 (3)
C20.07119 (17)0.40507 (8)0.62318 (15)0.0202 (3)
H20.1328190.4275010.5882420.024*
C30.04576 (18)0.43326 (9)0.64064 (17)0.0244 (4)
H30.0645230.4750990.6171690.029*
C40.13860 (17)0.40102 (9)0.69295 (16)0.0220 (3)
H4A0.2194760.4210410.7038370.026*
C50.11204 (16)0.34105 (8)0.72788 (14)0.0188 (3)
H50.1743060.3196660.7636750.023*
C60.00747 (15)0.31046 (8)0.71120 (13)0.0148 (3)
C70.03928 (16)0.24885 (8)0.74760 (13)0.0161 (3)
H70.0203960.2262080.7841640.019*
C80.15664 (16)0.22215 (7)0.72970 (13)0.0146 (3)
H8A0.1802170.1810020.7548070.018*
C90.24290 (15)0.25634 (7)0.67338 (12)0.0124 (3)
C100.36676 (15)0.22762 (7)0.65212 (12)0.0124 (3)
H100.3909540.1862020.6753120.015*
C110.63063 (15)0.27363 (7)0.53007 (12)0.0124 (3)
C120.80517 (16)0.19107 (8)0.53084 (14)0.0172 (3)
H12A0.7866550.1770090.6018680.021*
H12B0.9044090.1930440.5356140.021*
C130.74744 (19)0.14358 (8)0.44520 (16)0.0228 (3)
H13A0.7909990.1029440.4627100.034*
H13B0.7640930.1576000.3744600.034*
H13C0.6499400.1395390.4431480.034*
C140.51401 (15)0.40752 (7)0.78126 (12)0.0123 (3)
C150.54723 (16)0.34674 (7)0.82233 (13)0.0147 (3)
H150.5249350.3113470.7769420.018*
C160.61140 (16)0.33856 (8)0.92725 (13)0.0164 (3)
H160.6323720.2974880.9539400.020*
C170.64651 (17)0.39034 (8)0.99577 (14)0.0181 (3)
H170.6891260.3839851.0686620.022*
C180.61934 (17)0.44984 (8)0.95752 (13)0.0173 (3)
H180.6452790.4846211.0036110.021*
C190.55302 (16)0.45990 (7)0.85004 (13)0.0142 (3)
C200.52339 (17)0.52050 (8)0.80729 (13)0.0171 (3)
H200.5485700.5563420.8509250.020*
C210.45851 (17)0.52724 (7)0.70315 (13)0.0163 (3)
H210.4387250.5677110.6732390.020*
C220.42098 (15)0.47294 (7)0.64009 (12)0.0128 (3)
C230.35131 (16)0.47991 (7)0.52932 (13)0.0136 (3)
H230.3348040.5200700.4972940.016*
C240.21181 (15)0.38279 (7)0.32265 (12)0.0121 (3)
C250.1078 (15)0.4456 (8)0.1591 (14)0.021 (2)0.58 (2)
H25A0.1610210.4805740.1967170.025*0.58 (2)
H25B0.1304260.4421710.0857640.025*0.58 (2)
C260.0373 (7)0.4598 (3)0.1497 (11)0.0455 (18)0.58 (2)
H26A0.0557760.5013940.1178100.068*0.58 (2)
H26B0.0623090.4588580.2215880.068*0.58 (2)
H26C0.0902050.4284410.1033560.068*0.58 (2)
C25A0.1242 (19)0.4421 (11)0.1610 (18)0.017 (2)0.42 (2)
H25C0.1818190.4432870.1048070.021*0.42 (2)
H25D0.1490150.4780100.2102320.021*0.42 (2)
C26A0.0277 (10)0.4477 (6)0.1064 (12)0.041 (2)0.42 (2)
H26D0.0439530.4890860.0730390.061*0.42 (2)
H26E0.0851290.4421910.1610800.061*0.42 (2)
H26F0.0490720.4153190.0507300.061*0.42 (2)
O1W0.9174 (12)0.3352 (4)0.3991 (10)0.0262 (8)0.672 (6)
H1W0.9263730.3638140.4491730.039*0.672 (6)
H2W0.9996070.3267610.3910310.039*0.672 (6)
O1S0.924 (3)0.3269 (10)0.394 (2)0.0262 (8)0.328 (6)
H1S1.0075350.3224280.4136640.039*0.328 (6)
C1S0.8922 (6)0.3926 (3)0.3797 (5)0.0262 (8)0.328 (6)
H1A0.8287780.4047630.4269640.039*0.328 (6)
H1B0.8510110.4003770.3041680.039*0.328 (6)
H1C0.9752250.4172420.3980230.039*0.328 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00948 (9)0.00951 (9)0.01260 (9)0.00096 (6)0.00196 (7)0.00092 (7)
S10.01215 (16)0.01128 (16)0.01730 (18)0.00052 (12)0.00392 (13)0.00194 (13)
S20.01316 (16)0.01044 (15)0.01588 (17)0.00003 (12)0.00072 (13)0.00007 (13)
N10.0099 (5)0.0132 (6)0.0148 (6)0.0006 (4)0.0033 (5)0.0001 (5)
N20.0094 (5)0.0121 (5)0.0122 (6)0.0006 (4)0.0012 (4)0.0004 (4)
N30.0100 (5)0.0128 (6)0.0152 (6)0.0021 (4)0.0031 (5)0.0008 (5)
N40.0120 (6)0.0154 (6)0.0202 (7)0.0020 (5)0.0054 (5)0.0030 (5)
N50.0104 (5)0.0125 (6)0.0130 (6)0.0002 (4)0.0025 (4)0.0002 (4)
N60.0100 (5)0.0131 (6)0.0122 (6)0.0018 (4)0.0022 (4)0.0007 (4)
N70.0137 (6)0.0126 (6)0.0122 (6)0.0010 (4)0.0004 (5)0.0006 (5)
N80.0180 (6)0.0141 (6)0.0142 (6)0.0001 (5)0.0012 (5)0.0008 (5)
C10.0117 (6)0.0154 (7)0.0155 (7)0.0011 (5)0.0018 (5)0.0005 (5)
C20.0163 (7)0.0166 (7)0.0297 (9)0.0037 (6)0.0094 (7)0.0032 (6)
C30.0182 (8)0.0192 (8)0.0377 (10)0.0053 (6)0.0104 (7)0.0014 (7)
C40.0127 (7)0.0245 (8)0.0298 (9)0.0040 (6)0.0067 (6)0.0035 (7)
C50.0114 (7)0.0242 (8)0.0219 (8)0.0004 (6)0.0062 (6)0.0036 (6)
C60.0103 (6)0.0195 (7)0.0148 (7)0.0008 (5)0.0025 (5)0.0015 (6)
C70.0140 (7)0.0202 (7)0.0147 (7)0.0026 (6)0.0040 (5)0.0010 (6)
C80.0138 (7)0.0152 (7)0.0148 (7)0.0019 (5)0.0026 (5)0.0023 (5)
C90.0127 (6)0.0131 (6)0.0113 (6)0.0006 (5)0.0017 (5)0.0000 (5)
C100.0122 (6)0.0107 (6)0.0144 (7)0.0005 (5)0.0024 (5)0.0010 (5)
C110.0112 (6)0.0133 (6)0.0124 (6)0.0006 (5)0.0015 (5)0.0000 (5)
C120.0131 (7)0.0189 (7)0.0198 (8)0.0066 (6)0.0037 (6)0.0035 (6)
C130.0232 (8)0.0183 (8)0.0269 (9)0.0053 (6)0.0041 (7)0.0009 (7)
C140.0098 (6)0.0141 (6)0.0133 (7)0.0001 (5)0.0024 (5)0.0002 (5)
C150.0155 (7)0.0136 (7)0.0146 (7)0.0011 (5)0.0017 (5)0.0003 (5)
C160.0159 (7)0.0159 (7)0.0168 (7)0.0021 (5)0.0015 (6)0.0020 (6)
C170.0171 (7)0.0202 (7)0.0155 (7)0.0005 (6)0.0012 (6)0.0001 (6)
C180.0183 (7)0.0170 (7)0.0153 (7)0.0018 (6)0.0009 (6)0.0024 (6)
C190.0137 (7)0.0143 (7)0.0145 (7)0.0012 (5)0.0020 (5)0.0006 (5)
C200.0209 (8)0.0134 (7)0.0160 (7)0.0019 (6)0.0009 (6)0.0020 (6)
C210.0201 (7)0.0117 (6)0.0170 (7)0.0008 (5)0.0030 (6)0.0004 (5)
C220.0119 (6)0.0124 (6)0.0140 (7)0.0002 (5)0.0026 (5)0.0000 (5)
C230.0144 (7)0.0115 (6)0.0146 (7)0.0010 (5)0.0021 (5)0.0019 (5)
C240.0093 (6)0.0132 (6)0.0138 (7)0.0006 (5)0.0022 (5)0.0006 (5)
C250.030 (5)0.014 (2)0.017 (2)0.004 (3)0.002 (3)0.0074 (18)
C260.028 (2)0.031 (2)0.068 (4)0.0062 (17)0.017 (3)0.003 (3)
C25A0.010 (3)0.022 (4)0.016 (3)0.001 (3)0.006 (2)0.003 (3)
C26A0.030 (3)0.037 (4)0.049 (5)0.002 (3)0.011 (3)0.020 (3)
O1W0.0180 (11)0.033 (2)0.0285 (12)0.0032 (15)0.0077 (8)0.0046 (16)
O1S0.0180 (11)0.033 (2)0.0285 (12)0.0032 (15)0.0077 (8)0.0046 (16)
C1S0.0180 (11)0.033 (2)0.0285 (12)0.0032 (15)0.0077 (8)0.0046 (16)
Geometric parameters (Å, º) top
Ni1—N62.0339 (13)C12—C131.518 (2)
Ni1—N22.0384 (13)C12—H12A0.9900
Ni1—N12.1808 (13)C12—H12B0.9900
Ni1—N52.2120 (13)C13—H13A0.9800
Ni1—S12.3731 (4)C13—H13B0.9800
Ni1—S22.4264 (4)C13—H13C0.9800
S1—C111.7303 (15)C14—C151.416 (2)
S2—C241.7359 (15)C14—C191.426 (2)
N1—C91.3395 (19)C15—C161.373 (2)
N1—C11.3730 (19)C15—H150.9500
N2—C101.2935 (19)C16—C171.408 (2)
N2—N31.3625 (17)C16—H160.9500
N3—C111.3438 (19)C17—C181.370 (2)
N4—C111.3376 (19)C17—H170.9500
N4—C121.457 (2)C18—C191.413 (2)
N4—H40.84 (2)C18—H180.9500
N5—C221.3381 (19)C19—C201.413 (2)
N5—C141.3720 (19)C20—C211.363 (2)
N6—C231.294 (2)C20—H200.9500
N6—N71.3578 (18)C21—C221.418 (2)
N7—C241.3355 (19)C21—H210.9500
N8—C241.343 (2)C22—C231.451 (2)
N8—C25A1.40 (2)C23—H230.9500
N8—C251.499 (15)C25—C261.474 (15)
N8—H80.85 (2)C25—H25A0.9900
C1—C21.417 (2)C25—H25B0.9900
C1—C61.422 (2)C26—H26A0.9800
C2—C31.373 (2)C26—H26B0.9800
C2—H20.9500C26—H26C0.9800
C3—C41.412 (3)C25A—C26A1.56 (2)
C3—H30.9500C25A—H25C0.9900
C4—C51.366 (3)C25A—H25D0.9900
C4—H4A0.9500C26A—H26D0.9800
C5—C61.416 (2)C26A—H26E0.9800
C5—H50.9500C26A—H26F0.9800
C6—C71.412 (2)O1W—H1W0.8700
C7—C81.365 (2)O1W—H2W0.8700
C7—H70.9500O1S—C1S1.44 (2)
C8—C91.416 (2)O1S—H1S0.8400
C8—H8A0.9500C1S—H1A0.9800
C9—C101.455 (2)C1S—H1B0.9800
C10—H100.9500C1S—H1C0.9800
N6—Ni1—N2171.31 (5)N4—C12—H12B109.1
N6—Ni1—N1108.87 (5)C13—C12—H12B109.1
N2—Ni1—N178.34 (5)H12A—C12—H12B107.8
N6—Ni1—N577.74 (5)C12—C13—H13A109.5
N2—Ni1—N5107.56 (5)C12—C13—H13B109.5
N1—Ni1—N590.43 (5)H13A—C13—H13B109.5
N6—Ni1—S192.69 (4)C12—C13—H13C109.5
N2—Ni1—S180.56 (4)H13A—C13—H13C109.5
N1—Ni1—S1158.05 (4)H13B—C13—H13C109.5
N5—Ni1—S190.18 (4)N5—C14—C15119.67 (14)
N6—Ni1—S280.04 (4)N5—C14—C19121.82 (14)
N2—Ni1—S295.23 (4)C15—C14—C19118.50 (14)
N1—Ni1—S291.16 (4)C16—C15—C14120.50 (15)
N5—Ni1—S2157.00 (4)C16—C15—H15119.7
S1—Ni1—S296.747 (15)C14—C15—H15119.7
C11—S1—Ni196.00 (5)C15—C16—C17120.78 (15)
C24—S2—Ni194.75 (5)C15—C16—H16119.6
C9—N1—C1117.82 (13)C17—C16—H16119.6
C9—N1—Ni1110.17 (10)C18—C17—C16120.13 (15)
C1—N1—Ni1131.89 (11)C18—C17—H17119.9
C10—N2—N3117.81 (13)C16—C17—H17119.9
C10—N2—Ni1116.44 (10)C17—C18—C19120.52 (15)
N3—N2—Ni1125.69 (10)C17—C18—H18119.7
C11—N3—N2111.78 (12)C19—C18—H18119.7
C11—N4—C12125.70 (14)C18—C19—C20122.34 (15)
C11—N4—H4117.6 (16)C18—C19—C14119.52 (14)
C12—N4—H4116.6 (16)C20—C19—C14118.15 (14)
C22—N5—C14117.88 (13)C21—C20—C19119.66 (15)
C22—N5—Ni1109.80 (10)C21—C20—H20120.2
C14—N5—Ni1132.30 (10)C19—C20—H20120.2
C23—N6—N7116.66 (13)C20—C21—C22119.02 (15)
C23—N6—Ni1117.15 (10)C20—C21—H21120.5
N7—N6—Ni1125.86 (10)C22—C21—H21120.5
C24—N7—N6112.77 (12)N5—C22—C21123.45 (14)
C24—N8—C25A123.8 (9)N5—C22—C23117.36 (13)
C24—N8—C25124.9 (7)C21—C22—C23119.19 (14)
C24—N8—H8117.5 (16)N6—C23—C22117.65 (14)
C25A—N8—H8118.5 (19)N6—C23—H23121.2
C25—N8—H8117.6 (17)C22—C23—H23121.2
N1—C1—C2119.21 (14)N7—C24—N8116.68 (14)
N1—C1—C6121.95 (14)N7—C24—S2125.94 (12)
C2—C1—C6118.83 (14)N8—C24—S2117.37 (12)
C3—C2—C1120.07 (16)C26—C25—N8112.6 (10)
C3—C2—H2120.0C26—C25—H25A109.1
C1—C2—H2120.0N8—C25—H25A109.1
C2—C3—C4121.03 (17)C26—C25—H25B109.1
C2—C3—H3119.5N8—C25—H25B109.1
C4—C3—H3119.5H25A—C25—H25B107.8
C5—C4—C3119.96 (16)C25—C26—H26A109.5
C5—C4—H4A120.0C25—C26—H26B109.5
C3—C4—H4A120.0H26A—C26—H26B109.5
C4—C5—C6120.58 (16)C25—C26—H26C109.5
C4—C5—H5119.7H26A—C26—H26C109.5
C6—C5—H5119.7H26B—C26—H26C109.5
C7—C6—C5122.16 (15)N8—C25A—C26A110.7 (14)
C7—C6—C1118.33 (14)N8—C25A—H25C109.5
C5—C6—C1119.50 (15)C26A—C25A—H25C109.5
C8—C7—C6119.31 (15)N8—C25A—H25D109.5
C8—C7—H7120.3C26A—C25A—H25D109.5
C6—C7—H7120.3H25C—C25A—H25D108.1
C7—C8—C9119.38 (15)C25A—C26A—H26D109.5
C7—C8—H8A120.3C25A—C26A—H26E109.5
C9—C8—H8A120.3H26D—C26A—H26E109.5
N1—C9—C8123.19 (14)C25A—C26A—H26F109.5
N1—C9—C10117.21 (13)H26D—C26A—H26F109.5
C8—C9—C10119.61 (14)H26E—C26A—H26F109.5
N2—C10—C9117.62 (13)H1W—O1W—H2W104.5
N2—C10—H10121.2C1S—O1S—H1S109.5
C9—C10—H10121.2O1S—C1S—H1A109.5
N4—C11—N3117.59 (14)O1S—C1S—H1B109.5
N4—C11—S1116.67 (12)H1A—C1S—H1B109.5
N3—C11—S1125.74 (12)O1S—C1S—H1C109.5
N4—C12—C13112.58 (14)H1A—C1S—H1C109.5
N4—C12—H12A109.1H1B—C1S—H1C109.5
C13—C12—H12A109.1
C10—N2—N3—C11178.48 (14)C22—N5—C14—C15177.83 (14)
Ni1—N2—N3—C114.53 (18)Ni1—N5—C14—C150.2 (2)
C23—N6—N7—C24179.47 (13)C22—N5—C14—C191.7 (2)
Ni1—N6—N7—C246.23 (18)Ni1—N5—C14—C19179.77 (11)
C9—N1—C1—C2178.43 (15)N5—C14—C15—C16178.22 (15)
Ni1—N1—C1—C26.1 (2)C19—C14—C15—C162.2 (2)
C9—N1—C1—C61.1 (2)C14—C15—C16—C170.6 (2)
Ni1—N1—C1—C6174.43 (11)C15—C16—C17—C181.4 (3)
N1—C1—C2—C3179.27 (17)C16—C17—C18—C191.6 (3)
C6—C1—C2—C31.2 (3)C17—C18—C19—C20179.83 (16)
C1—C2—C3—C40.4 (3)C17—C18—C19—C140.1 (2)
C2—C3—C4—C50.6 (3)N5—C14—C19—C18178.44 (14)
C3—C4—C5—C60.6 (3)C15—C14—C19—C182.0 (2)
C4—C5—C6—C7179.03 (16)N5—C14—C19—C201.6 (2)
C4—C5—C6—C10.2 (3)C15—C14—C19—C20177.97 (15)
N1—C1—C6—C71.3 (2)C18—C19—C20—C21179.63 (16)
C2—C1—C6—C7178.14 (15)C14—C19—C20—C210.4 (2)
N1—C1—C6—C5179.35 (15)C19—C20—C21—C220.6 (2)
C2—C1—C6—C51.2 (2)C14—N5—C22—C210.7 (2)
C5—C6—C7—C8179.50 (16)Ni1—N5—C22—C21179.18 (12)
C1—C6—C7—C80.2 (2)C14—N5—C22—C23179.15 (13)
C6—C7—C8—C91.1 (2)Ni1—N5—C22—C230.68 (17)
C1—N1—C9—C80.3 (2)C20—C21—C22—N50.4 (2)
Ni1—N1—C9—C8176.77 (12)C20—C21—C22—C23179.71 (15)
C1—N1—C9—C10179.83 (13)N7—N6—C23—C22179.89 (13)
Ni1—N1—C9—C103.41 (16)Ni1—N6—C23—C226.25 (18)
C7—C8—C9—N11.4 (2)N5—C22—C23—N63.5 (2)
C7—C8—C9—C10178.73 (14)C21—C22—C23—N6176.61 (14)
N3—N2—C10—C9179.06 (13)N6—N7—C24—N8179.73 (13)
Ni1—N2—C10—C93.66 (18)N6—N7—C24—S21.23 (19)
N1—C9—C10—N20.1 (2)C25A—N8—C24—N74.5 (11)
C8—C9—C10—N2179.93 (14)C25—N8—C24—N72.6 (8)
C12—N4—C11—N32.8 (2)C25A—N8—C24—S2176.4 (11)
C12—N4—C11—S1177.32 (13)C25—N8—C24—S2176.5 (8)
N2—N3—C11—N4179.34 (13)Ni1—S2—C24—N75.77 (14)
N2—N3—C11—S10.52 (19)Ni1—S2—C24—N8175.20 (12)
Ni1—S1—C11—N4177.62 (12)C24—N8—C25—C26103.1 (11)
Ni1—S1—C11—N32.52 (14)C24—N8—C25A—C26A129.9 (12)
C11—N4—C12—C1382.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O1W0.84 (2)2.10 (3)2.936 (12)174 (2)
N4—H4···O1S0.84 (2)2.08 (4)2.91 (3)170 (2)
O1S—H1S···S2i0.842.463.24 (2)154
N8—H8···N3ii0.85 (2)2.29 (2)3.1349 (19)174 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

We are grateful for the support of the Chemical Sciences, Faculty of Science at Universiti Brunei Darussalam and the National University of Singapore for running the elemental, NMR, MS and single-crystal X-ray diffraction analyses.

Funding information

Funding for this research was provided by: Government of Brunei Darussalam (scholarship to Raudhatul Nadhirah Awang Adam; grant No. UBD/RSCH/1.4/FICBF(b)/2022/043 to Natasha Ann Keasberry; grant No. UBD/RSCH/1.4/FICBF(b)/2020/024 to Malai Haniti Sheikh Abdul Hamid).

References

First citationArif, R., Akrema, , Pulaganti, M., Rubab, U., Ali, A., Khan, M. S. & Uddin, R. (2024). Chem. Pap. 78, 2867–2883.  Google Scholar
First citationArulmurugan, S., Kavitha, H. P. & Venkatraman, B. R. (2010). Rasayan J. Chem. 3, 385–410.  Google Scholar
First citationBisceglie, F., Musiari, A., Pinelli, S., Alinovi, R., Menozzi, I., Polverini, E., Tarasconi, P., Tavone, M. & Pelosi, G. (2015). J. Inorg. Biochem. 152, 10–19.  CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaturvedi, D. (2012). Tetrahedron, 68, 15–45.  CrossRef CAS Google Scholar
First citationDamit, N. S. H. H., Hamid, M. H. S. A., Rahman, N. S. R. H. A., Ilias, S. N. H. H. & Keasberry, N. A. (2021). Inorg. Chim. Acta, 527, 120557.  CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJayakumar, K., Seena, E. B., Kurup, M. R. P., Kaya, S., Serdaroğlu, G., Suresh, E. & Marzouki, R. (2022). J. Mol. Struct. 1253, 132257.  CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, R., Singh, A. A., Kumar, U., Jain, P., Sharma, A. K., Kant, C. & Haque Faizi, M. S. (2023). J. Mol. Struct. 1294, 136346.  CrossRef Google Scholar
First citationLatheef, L., Kurup, M. R. P. & Suresh, E. (2021). Chem. Data Coll. 35, 100758.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMin, R., Fan, X.-R., Zhou, P., Yan, J., Zhou, J.-L. & Zhang, S.-C. (2014). Chin. J. Inorg. Chem. 30, 1771–1777.  CAS Google Scholar
First citationMontalbano, S., Buschini, A., Pelosi, G. & Bisceglie, F. (2023). Molecules, 28, 2778.  CrossRef PubMed Google Scholar
First citationOsman, U. M., Silvarajoo, S., Kamarudin, K. H., Tahir, M. I. M. & Kwong, H. C. (2021). J. Mol. Struct. 1223, 128994.  CSD CrossRef Google Scholar
First citationSankar, R. & Sharmila, T. M. (2023). Results Chem. 6, 101179.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146