metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[(μ-2,3-di­ethyl-7,8-di­methyl­quinoxaline-κ2N:N)(2,3-di­ethyl-7,8-di­methyl­quinoxaline-κN)-μ-nitrato-κ2O:O′-nitrato-κ2O,O′-disilver(I)]

crossmark logo

aCentral Connecticut State University, Department of Chemistry & Biochemistry, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu

Edited by M. Zeller, Purdue University, USA (Received 29 February 2024; accepted 14 March 2024; online 21 March 2024)

The structure of the title compound, [C14H18N2)2Ag2](NO3)2, contains subtle differences in ligand, metal, and counter-anion coordination. One quinoxaline ligand uses one of its quinoxaline N atoms to bond to one silver cation. That silver cation is bound to a second quinoxaline which, in turn, is bound to a second silver atom; thereby using both of its quinoxaline N atoms. A nitrate group bonds with one of its O atoms to the first silver and uses the same oxygen to bond to a silver atom (related by symmetry to the second), thereby forming an extended network. The second nitrate group on the other silver bonds via two nitrate O atoms; one silver cation therefore has a coordination number of three whereas the second has a coordination number of four. One of the quinoxaline ligands has a disordered ethyl group.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

There are many known structures of polymeric silver(I) quinoxaline complexes. Yeh et al. (2009[Yeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595-2603.]) have made catena complexes of silver and 2,3-di­phenyl­quinoxaline with tetra­fluoro­borate in water, tetra­fluoro­borate in aceto­nitrile, perchlorate in aceto­nitrile, tri­fluoro­methane­sulfonate, and hexa­fluoro­anti­monate salts. When they used nitrate salts, be they in water, di­methyl­formamide, or aceto­nitrile, the nitrate counter-anions acted as bridging ligands; in addition, in all of the structures, regardless of solvent or counter-anion, the quinoxaline ligands are always bidentate and bridge silver cations. Patra et al. (2007[Patra, G. K., Goldberg, I., De, S. & Datta, D. (2007). CrystEngComm, 9, 828-832.]) also studied several catena complexes of 1:1 molar amounts of silver with 2,3-di­phenyl­quinoxaline–silver perchlorate from methanol, silver tetra­fluoro­borate from ethanol, and again with silver nitrate to name a few. In all of these structures, the quinoxaline is bidentate and bridging and nitrate ions (if present) bridge silver cations. Finally, cationic silver–di­phenyl­quinoxaline polymeric networks can even be isolated with large phosphato–molybdenum oxide anion clusters (Tian et al., 2016[Tian, A., Tian, Y., Ning, Y., Hou, X., Ni, H., Ji, X., Liu, G. & Ying, J. (2016). Dalton Trans. 45, 13925-13936.]). As with the other complexes, the quinoxalines are bidentate and bridge silver cations.

This is the first structure of a silver catena complex with 2,3-diethyl-7,8-di­methyl­quinoxaline; however, unlike previous structures, the bonding behavior of the quinoxaline ligand is varied. There are subtle differences in ligand, metal, and counter-anion coordination in the crystal. The structure can be described loosely as a dimer – two sets of a metal, a ligand, and an anion; however, each part of those two sets has inter­esting differences. As can be seen in Fig. 1[link], the first silver atom (Ag1) is bound to a bidentate nitrate anion [with Ag—O distances of 2.498 (2) Å and 2.512 (2) Å] and a quinoxaline nitro­gen (N1) at 2.2600 (17) Å. What is not seen in the ORTEP is that the silver is also bound to a bridging oxygen from the second nitrate (O4) at 2.3195 (19) Å, making the silver four-coord­inate. The first quinoxaline (on the left in Fig. 1[link]) is bidentate and bridging; making a bond with the second silver (Ag2) at 2.2492 (17) Å. The di­methyl­quinoxaline portion of the ligand is essentially flat, whereas the ethyl groups dangle above and below the plane formed by the dimer. The second silver (Ag2) is three-coordinate and bridges the two quinoxalines [Ag2—N3 has a bond distance of 2.2552 (17) Å], while also being bound to a bridging nitrate anion oxygen at a distance of 2.5956 (19) Å. The N2—Ag2—N3 bond angle is essentially linear at 173.50 (6)° which is commonly seen in bis- and catena complexes of silver(I). Finally, the dimer is capped by a second 2,3-diethyl-7,8-di­methyl­quinoxaline ligand. This ligand is monodentate and is not bridging. Also, unlike the other ligand, this quinoxaline exhibits a positional disorder of its outer ethyl group. The disordered ethyl group was refined to be 59.6 (1)/40.4 (1)%.

[Figure 1]
Figure 1
A view of the title compound (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]). Displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

Silver nitrate was used as received from Fisher Scientific. The ligand, 2,3-diethyl-7,8-di­methyl­quinoxaline, was synthesized from the condensation of 4,5-dimethyl-1,2-phenyl­enedi­amine with 3,4-hexa­nedione. Purity of the ligand was confirmed prior to use by 1H NMR. A 30 ml solution of 43 mg (0.20 mmol) of 2,3-diethyl-7,8-di­methyl­quinoxaline in warmed methanol was combined with a 10 ml methanol solution of 34 g (0.20 mmol) of silver nitrate and stirred for 1 minute. The solution was taken off heat and pipetted into test tubes which were covered with parafilm and place in amber vials in a drawer to keep them from direct light. Diffraction-quality, colorless crystals formed via slow evaporation of the solvent within 48–72 h. Crystals were harvested from the evaporating solutions and used immediately due to the decay of the silver(I) complex in light.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. One of the ethyl groups in a 2,3-diethyl-7,8-di­methyl­quinoxaline are disordered. The thermal displacement parameters of the disordered carbons in the group were restrained as the amount of disorder was refined. The percent disorder of the ethyl group was determined to be 59.6 (1)/40.4 (1)%. Thermal displacement parameters for the nitrate atoms were also restrained during refinement.

Table 1
Experimental details

Crystal data
Chemical formula [Ag2(NO3)2(C14H18N2)2]
Mr 768.37
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 10.3048 (2), 24.1140 (6), 12.6416 (4)
β (°) 100.911 (3)
V3) 3084.53 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.32
Crystal size (mm) 0.41 × 0.33 × 0.25
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.775, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36657, 11225, 6825
Rint 0.030
(sin θ/λ)max−1) 0.778
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.00
No. of reflections 11225
No. of parameters 407
No. of restraints 102
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.49
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Poly[(µ-2,3-diethyl-7,8-dimethylquinoxaline-κ2N:N)(2,3-diethyl-7,8-dimethylquinoxaline-κN)-µ-nitrato-κ2O:O'-nitrato-κ2O,O'-disilver(I)] top
Crystal data top
[Ag2(NO3)2(C14H18N2)2]F(000) = 1552
Mr = 768.37Dx = 1.655 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.3048 (2) ÅCell parameters from 7239 reflections
b = 24.1140 (6) Åθ = 3.2–31.2°
c = 12.6416 (4) ŵ = 1.32 mm1
β = 100.911 (3)°T = 293 K
V = 3084.53 (13) Å3Block, colorless
Z = 40.41 × 0.33 × 0.25 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
11225 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source6825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.1790 pixels mm-1θmax = 33.6°, θmin = 2.9°
ω scansh = 1216
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 3637
Tmin = 0.775, Tmax = 1.000l = 1919
36657 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.7322P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
11225 reflectionsΔρmax = 0.36 e Å3
407 parametersΔρmin = 0.49 e Å3
102 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms on sp2 and sp3 carbons were placed at calculated positions with a C—H distance of 0.93 Å and 0.96 Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq or 1.5Ueq of the carrier atom, respectively.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.14525 (2)0.20877 (2)0.97995 (2)0.07499 (8)
Ag20.46103 (2)0.14066 (2)0.79131 (2)0.05543 (7)
O10.2455 (3)0.30344 (10)0.96797 (18)0.0987 (8)
O20.1200 (2)0.28503 (9)1.11773 (16)0.0775 (6)
O30.2180 (3)0.36261 (12)1.0993 (2)0.1337 (12)
O40.65506 (19)0.16154 (10)0.94950 (16)0.0773 (6)
O50.7486 (3)0.13377 (12)1.1028 (2)0.1105 (9)
O60.5601 (3)0.09973 (12)1.0286 (2)0.1210 (9)
N10.04723 (17)0.18545 (7)0.93064 (14)0.0420 (4)
N20.28512 (17)0.15893 (7)0.86719 (14)0.0432 (4)
N30.63183 (17)0.11208 (7)0.71683 (14)0.0456 (4)
N40.8581 (2)0.07533 (9)0.64542 (19)0.0641 (5)
N50.1946 (3)0.31748 (11)1.0619 (2)0.0733 (6)
N60.6550 (2)0.12997 (11)1.0286 (2)0.0679 (6)
C10.0822 (2)0.13332 (8)0.92080 (17)0.0427 (4)
C20.2046 (2)0.11947 (9)0.88956 (18)0.0446 (5)
C30.2505 (2)0.21320 (8)0.87823 (16)0.0395 (4)
C40.3359 (2)0.25626 (9)0.85985 (17)0.0488 (5)
H40.4164240.2474540.8410480.059*
C50.3027 (2)0.31103 (9)0.86910 (17)0.0502 (5)
C60.1787 (2)0.32432 (9)0.89600 (17)0.0507 (5)
C70.0972 (2)0.28286 (9)0.91814 (17)0.0472 (5)
H70.0180400.2919690.9391030.057*
C80.1309 (2)0.22665 (8)0.90976 (16)0.0397 (4)
C90.3989 (3)0.35595 (11)0.8517 (2)0.0707 (8)
H9A0.4810810.3393710.8434800.106*
H9B0.4136600.3804710.9125740.106*
H9C0.3628480.3765250.7878260.106*
C100.1338 (3)0.38397 (10)0.8971 (3)0.0752 (8)
H10A0.2012480.4056020.9413530.113*
H10B0.0539140.3858280.9255880.113*
H10C0.1176780.3983470.8249580.113*
C110.0104 (2)0.08953 (10)0.9478 (2)0.0578 (6)
H11A0.0028090.0565450.9055280.069*
H11B0.1005950.1028730.9286720.069*
C120.0193 (3)0.07459 (12)1.0669 (2)0.0775 (8)
H12A0.0440230.0478371.0815790.116*
H12B0.0140140.1073201.1091460.116*
H12C0.1065520.0591821.0852050.116*
C130.2465 (2)0.06016 (9)0.8794 (2)0.0554 (6)
H13A0.2163300.0380350.9340570.066*
H13B0.3422990.0584250.8927420.066*
C140.1930 (3)0.03547 (11)0.7699 (2)0.0715 (7)
H14A0.2256520.0562050.7155900.107*
H14B0.0982370.0369480.7561650.107*
H14C0.2212570.0024130.7684220.107*
C150.6497 (2)0.05903 (10)0.6971 (2)0.0540 (5)
C160.7649 (3)0.04099 (11)0.6597 (2)0.0690 (7)
C170.8409 (2)0.13033 (10)0.66478 (18)0.0502 (5)
C180.9360 (2)0.16915 (11)0.64532 (19)0.0557 (6)
H181.0124290.1565290.6240600.067*
C190.9188 (2)0.22453 (11)0.65687 (17)0.0532 (6)
C200.8031 (2)0.24404 (9)0.69231 (17)0.0485 (5)
C210.7112 (2)0.20651 (9)0.71427 (18)0.0476 (5)
H210.6371170.2192010.7391080.057*
C220.7273 (2)0.14926 (9)0.69975 (17)0.0430 (5)
C231.0185 (3)0.26514 (13)0.6288 (2)0.0705 (8)
H23A1.0906850.2451820.6086500.106*
H23B1.0510320.2880950.6901120.106*
H23C0.9771480.2879680.5697130.106*
C240.7797 (3)0.30509 (11)0.7034 (2)0.0699 (7)
H24A0.8493400.3205290.7565300.105*
H24B0.6964770.3107170.7253580.105*
H24C0.7784440.3230400.6354320.105*
C250.5457 (3)0.01907 (11)0.7192 (2)0.0708 (7)
H25A0.5343150.0100840.6654010.085*
H25B0.4621540.0384690.7132750.085*
C260.5819 (4)0.00665 (15)0.8302 (3)0.1045 (12)
H26A0.6598520.0289570.8340560.157*
H26B0.5103430.0294520.8434950.157*
H26C0.5985970.0221600.8834860.157*
C270.7664 (9)0.0197 (4)0.6193 (9)0.088 (2)0.596 (10)
H27A0.7773630.0446310.6805280.105*0.596 (10)
H27B0.6822080.0279630.5731770.105*0.596 (10)
C280.8758 (9)0.0294 (3)0.5578 (7)0.125 (3)0.596 (10)
H28A0.8528520.0127330.4878170.187*0.596 (10)
H28B0.8883760.0685230.5502610.187*0.596 (10)
H28C0.9560430.0130870.5962360.187*0.596 (10)
C27B0.8116 (14)0.0203 (7)0.6527 (12)0.082 (3)0.404 (10)
H27C0.9071710.0231510.6698580.099*0.404 (10)
H27D0.7738390.0442870.7006210.099*0.404 (10)
C28B0.7591 (16)0.0344 (5)0.5362 (10)0.123 (4)0.404 (10)
H28D0.7775080.0726230.5235810.185*0.404 (10)
H28E0.8011200.0112600.4908950.185*0.404 (10)
H28F0.6654000.0283410.5201120.185*0.404 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05433 (12)0.06584 (14)0.1134 (2)0.00078 (9)0.03772 (12)0.00521 (12)
Ag20.04237 (10)0.05675 (11)0.07309 (13)0.00201 (7)0.02599 (8)0.00126 (9)
O10.1078 (18)0.1112 (18)0.0684 (13)0.0367 (14)0.0053 (12)0.0201 (12)
O20.0752 (13)0.0839 (14)0.0710 (12)0.0089 (11)0.0079 (10)0.0057 (11)
O30.163 (3)0.108 (2)0.115 (2)0.0615 (19)0.0098 (19)0.0460 (16)
O40.0605 (11)0.1091 (16)0.0630 (12)0.0214 (11)0.0131 (9)0.0019 (11)
O50.0779 (16)0.168 (3)0.0800 (15)0.0122 (16)0.0001 (13)0.0222 (16)
O60.105 (2)0.120 (2)0.142 (2)0.0468 (17)0.0317 (17)0.0218 (18)
N10.0381 (9)0.0437 (9)0.0460 (10)0.0011 (7)0.0125 (7)0.0001 (7)
N20.0389 (9)0.0446 (9)0.0483 (10)0.0020 (7)0.0138 (7)0.0011 (8)
N30.0433 (9)0.0449 (10)0.0517 (10)0.0019 (8)0.0170 (8)0.0005 (8)
N40.0604 (13)0.0612 (13)0.0779 (15)0.0082 (10)0.0314 (11)0.0059 (11)
N50.0711 (15)0.0812 (16)0.0682 (15)0.0140 (13)0.0150 (12)0.0149 (13)
N60.0596 (14)0.0778 (16)0.0700 (15)0.0021 (11)0.0220 (12)0.0061 (12)
C10.0392 (10)0.0417 (11)0.0489 (12)0.0019 (8)0.0125 (9)0.0015 (9)
C20.0404 (11)0.0440 (11)0.0511 (12)0.0006 (9)0.0131 (9)0.0010 (9)
C30.0396 (10)0.0424 (11)0.0369 (10)0.0036 (8)0.0081 (8)0.0008 (8)
C40.0483 (12)0.0527 (13)0.0467 (12)0.0096 (10)0.0124 (9)0.0004 (10)
C50.0594 (14)0.0473 (12)0.0415 (12)0.0128 (10)0.0035 (10)0.0030 (9)
C60.0647 (15)0.0406 (11)0.0427 (12)0.0022 (10)0.0002 (10)0.0009 (9)
C70.0505 (12)0.0447 (12)0.0465 (12)0.0031 (9)0.0092 (10)0.0007 (9)
C80.0397 (10)0.0418 (10)0.0375 (10)0.0006 (8)0.0072 (8)0.0014 (8)
C90.0795 (19)0.0568 (15)0.0760 (18)0.0250 (14)0.0152 (15)0.0048 (13)
C100.092 (2)0.0421 (13)0.088 (2)0.0035 (14)0.0079 (17)0.0009 (13)
C110.0519 (13)0.0433 (12)0.0850 (18)0.0076 (10)0.0303 (12)0.0016 (11)
C120.084 (2)0.0665 (17)0.092 (2)0.0005 (15)0.0425 (17)0.0214 (15)
C130.0517 (13)0.0430 (12)0.0767 (16)0.0006 (10)0.0256 (12)0.0024 (11)
C140.0704 (17)0.0570 (15)0.091 (2)0.0047 (13)0.0242 (15)0.0164 (14)
C150.0548 (13)0.0485 (12)0.0611 (14)0.0027 (10)0.0172 (11)0.0005 (10)
C160.0757 (17)0.0535 (14)0.0841 (18)0.0063 (13)0.0315 (15)0.0099 (13)
C170.0448 (12)0.0623 (14)0.0462 (12)0.0015 (10)0.0155 (9)0.0012 (10)
C180.0415 (12)0.0792 (18)0.0498 (13)0.0044 (11)0.0169 (10)0.0004 (12)
C190.0478 (12)0.0741 (16)0.0376 (11)0.0157 (11)0.0075 (9)0.0038 (11)
C200.0510 (12)0.0516 (13)0.0418 (11)0.0075 (10)0.0059 (9)0.0057 (9)
C210.0449 (11)0.0492 (12)0.0514 (13)0.0006 (9)0.0159 (10)0.0003 (10)
C220.0390 (10)0.0485 (12)0.0434 (11)0.0017 (8)0.0127 (8)0.0012 (9)
C230.0617 (16)0.093 (2)0.0579 (15)0.0292 (15)0.0132 (12)0.0092 (14)
C240.0794 (19)0.0534 (15)0.0748 (18)0.0118 (13)0.0093 (15)0.0089 (13)
C250.0675 (17)0.0489 (14)0.101 (2)0.0106 (12)0.0276 (15)0.0025 (14)
C260.111 (3)0.086 (2)0.128 (3)0.000 (2)0.051 (2)0.033 (2)
C270.093 (5)0.059 (3)0.116 (6)0.014 (4)0.030 (4)0.026 (4)
C280.095 (5)0.105 (5)0.170 (6)0.020 (4)0.018 (5)0.073 (4)
C27B0.081 (6)0.070 (4)0.096 (6)0.006 (5)0.018 (5)0.015 (5)
C28B0.148 (9)0.094 (6)0.122 (7)0.016 (6)0.011 (7)0.039 (6)
Geometric parameters (Å, º) top
Ag1—O12.498 (2)C12—H12C0.9600
Ag1—O22.512 (2)C13—H13A0.9700
Ag1—O4i2.3195 (19)C13—H13B0.9700
Ag1—N12.2600 (17)C13—C141.512 (4)
Ag2—O42.5956 (19)C14—H14A0.9600
Ag2—N22.2492 (17)C14—H14B0.9600
Ag2—N32.2552 (17)C14—H14C0.9600
O1—N51.251 (3)C15—C161.427 (4)
O2—N51.223 (3)C15—C251.506 (3)
O3—N51.229 (3)C16—C271.550 (10)
O4—N61.257 (3)C16—C27B1.563 (17)
O5—N61.215 (3)C17—C181.410 (3)
O6—N61.220 (3)C17—C221.403 (3)
N1—C11.320 (3)C18—H180.9300
N1—C81.373 (3)C18—C191.359 (4)
N2—C21.328 (3)C19—C201.430 (3)
N2—C31.371 (3)C19—C231.510 (3)
N3—C151.323 (3)C20—C211.376 (3)
N3—C221.378 (3)C20—C241.503 (3)
N4—C161.306 (3)C21—H210.9300
N4—C171.366 (3)C21—C221.407 (3)
C1—C21.430 (3)C23—H23A0.9600
C1—C111.505 (3)C23—H23B0.9600
C2—C131.507 (3)C23—H23C0.9600
C3—C41.408 (3)C24—H24A0.9600
C3—C81.403 (3)C24—H24B0.9600
C4—H40.9300C24—H24C0.9600
C4—C51.375 (3)C25—H25A0.9700
C5—C61.421 (3)C25—H25B0.9700
C5—C91.512 (3)C25—C261.515 (4)
C6—C71.368 (3)C26—H26A0.9600
C6—C101.512 (3)C26—H26B0.9600
C7—H70.9300C26—H26C0.9600
C7—C81.408 (3)C27—H27A0.9700
C9—H9A0.9600C27—H27B0.9700
C9—H9B0.9600C27—C281.504 (13)
C9—H9C0.9600C28—H28A0.9600
C10—H10A0.9600C28—H28B0.9600
C10—H10B0.9600C28—H28C0.9600
C10—H10C0.9600C27B—H27C0.9700
C11—H11A0.9700C27B—H27D0.9700
C11—H11B0.9700C27B—C28B1.508 (19)
C11—C121.522 (4)C28B—H28D0.9600
C12—H12A0.9600C28B—H28E0.9600
C12—H12B0.9600C28B—H28F0.9600
O1—Ag1—O250.25 (7)C14—C13—H13A109.0
O4i—Ag1—O195.46 (9)C14—C13—H13B109.0
O4i—Ag1—O2116.53 (7)C13—C14—H14A109.5
N1—Ag1—O1125.80 (8)C13—C14—H14B109.5
N1—Ag1—O2113.10 (7)C13—C14—H14C109.5
N1—Ag1—O4i129.00 (7)H14A—C14—H14B109.5
N2—Ag2—O4101.47 (6)H14A—C14—H14C109.5
N2—Ag2—N3173.50 (6)H14B—C14—H14C109.5
N3—Ag2—O480.37 (7)N3—C15—C16120.8 (2)
N5—O1—Ag195.48 (17)N3—C15—C25117.0 (2)
N5—O2—Ag195.56 (16)C16—C15—C25122.2 (2)
Ag1ii—O4—Ag2138.85 (9)N4—C16—C15122.2 (2)
N6—O4—Ag1ii107.43 (16)N4—C16—C27120.0 (4)
N6—O4—Ag2112.28 (16)N4—C16—C27B110.5 (6)
C1—N1—Ag1122.18 (13)C15—C16—C27117.2 (4)
C1—N1—C8118.57 (18)C15—C16—C27B126.3 (6)
C8—N1—Ag1119.25 (14)N4—C17—C18119.7 (2)
C2—N2—Ag2122.50 (14)N4—C17—C22121.1 (2)
C2—N2—C3118.51 (18)C22—C17—C18119.2 (2)
C3—N2—Ag2118.47 (13)C17—C18—H18119.2
C15—N3—Ag2121.44 (15)C19—C18—C17121.6 (2)
C15—N3—C22118.08 (19)C19—C18—H18119.2
C22—N3—Ag2120.23 (14)C18—C19—C20119.4 (2)
C16—N4—C17117.8 (2)C18—C19—C23120.2 (2)
O2—N5—O1118.7 (2)C20—C19—C23120.3 (2)
O2—N5—O3119.5 (3)C19—C20—C24120.6 (2)
O3—N5—O1121.8 (3)C21—C20—C19119.6 (2)
O5—N6—O4116.6 (2)C21—C20—C24119.8 (2)
O5—N6—O6124.3 (3)C20—C21—H21119.5
O6—N6—O4118.9 (3)C20—C21—C22121.0 (2)
N1—C1—C2121.28 (18)C22—C21—H21119.5
N1—C1—C11116.77 (19)N3—C22—C17120.0 (2)
C2—C1—C11121.92 (19)N3—C22—C21120.81 (19)
N2—C2—C1120.71 (19)C17—C22—C21119.1 (2)
N2—C2—C13117.43 (19)C19—C23—H23A109.5
C1—C2—C13121.85 (19)C19—C23—H23B109.5
N2—C3—C4120.30 (19)C19—C23—H23C109.5
N2—C3—C8120.60 (18)H23A—C23—H23B109.5
C8—C3—C4119.09 (19)H23A—C23—H23C109.5
C3—C4—H4119.3H23B—C23—H23C109.5
C5—C4—C3121.4 (2)C20—C24—H24A109.5
C5—C4—H4119.3C20—C24—H24B109.5
C4—C5—C6119.1 (2)C20—C24—H24C109.5
C4—C5—C9119.7 (2)H24A—C24—H24B109.5
C6—C5—C9121.2 (2)H24A—C24—H24C109.5
C5—C6—C10120.5 (2)H24B—C24—H24C109.5
C7—C6—C5120.0 (2)C15—C25—H25A109.2
C7—C6—C10119.5 (2)C15—C25—H25B109.2
C6—C7—H7119.4C15—C25—C26112.0 (3)
C6—C7—C8121.2 (2)H25A—C25—H25B107.9
C8—C7—H7119.4C26—C25—H25A109.2
N1—C8—C3120.29 (18)C26—C25—H25B109.2
N1—C8—C7120.59 (19)C25—C26—H26A109.5
C3—C8—C7119.11 (19)C25—C26—H26B109.5
C5—C9—H9A109.5C25—C26—H26C109.5
C5—C9—H9B109.5H26A—C26—H26B109.5
C5—C9—H9C109.5H26A—C26—H26C109.5
H9A—C9—H9B109.5H26B—C26—H26C109.5
H9A—C9—H9C109.5C16—C27—H27A109.2
H9B—C9—H9C109.5C16—C27—H27B109.2
C6—C10—H10A109.5H27A—C27—H27B107.9
C6—C10—H10B109.5C28—C27—C16111.8 (7)
C6—C10—H10C109.5C28—C27—H27A109.2
H10A—C10—H10B109.5C28—C27—H27B109.2
H10A—C10—H10C109.5C27—C28—H28A109.5
H10B—C10—H10C109.5C27—C28—H28B109.5
C1—C11—H11A109.2C27—C28—H28C109.5
C1—C11—H11B109.2H28A—C28—H28B109.5
C1—C11—C12111.9 (2)H28A—C28—H28C109.5
H11A—C11—H11B107.9H28B—C28—H28C109.5
C12—C11—H11A109.2C16—C27B—H27C111.3
C12—C11—H11B109.2C16—C27B—H27D111.3
C11—C12—H12A109.5H27C—C27B—H27D109.2
C11—C12—H12B109.5C28B—C27B—C16102.2 (10)
C11—C12—H12C109.5C28B—C27B—H27C111.3
H12A—C12—H12B109.5C28B—C27B—H27D111.3
H12A—C12—H12C109.5C27B—C28B—H28D109.5
H12B—C12—H12C109.5C27B—C28B—H28E109.5
C2—C13—H13A109.0C27B—C28B—H28F109.5
C2—C13—H13B109.0H28D—C28B—H28E109.5
C2—C13—C14113.0 (2)H28D—C28B—H28F109.5
H13A—C13—H13B107.8H28E—C28B—H28F109.5
Ag1—O1—N5—O22.3 (3)C3—C4—C5—C9178.3 (2)
Ag1—O1—N5—O3177.4 (3)C4—C3—C8—N1178.48 (18)
Ag1—O2—N5—O12.2 (3)C4—C3—C8—C72.4 (3)
Ag1—O2—N5—O3177.4 (3)C4—C5—C6—C73.6 (3)
Ag1ii—O4—N6—O55.1 (3)C4—C5—C6—C10174.5 (2)
Ag1ii—O4—N6—O6178.1 (2)C5—C6—C7—C83.1 (3)
Ag1—N1—C1—C2179.96 (15)C6—C7—C8—N1179.0 (2)
Ag1—N1—C1—C112.1 (3)C6—C7—C8—C30.1 (3)
Ag1—N1—C8—C3179.52 (14)C8—N1—C1—C20.2 (3)
Ag1—N1—C8—C70.4 (3)C8—N1—C1—C11178.1 (2)
Ag2—O4—N6—O5174.1 (2)C8—C3—C4—C51.9 (3)
Ag2—O4—N6—O69.1 (3)C9—C5—C6—C7175.8 (2)
Ag2—N2—C2—C1169.46 (15)C9—C5—C6—C106.1 (3)
Ag2—N2—C2—C139.8 (3)C10—C6—C7—C8175.0 (2)
Ag2—N2—C3—C410.8 (3)C11—C1—C2—N2179.3 (2)
Ag2—N2—C3—C8170.33 (14)C11—C1—C2—C131.4 (3)
Ag2—N3—C15—C16173.9 (2)C15—N3—C22—C171.4 (3)
Ag2—N3—C15—C254.2 (3)C15—N3—C22—C21176.9 (2)
Ag2—N3—C22—C17172.84 (16)C15—C16—C27—C28166.0 (6)
Ag2—N3—C22—C218.8 (3)C15—C16—C27B—C28B97.3 (11)
N1—C1—C2—N21.5 (3)C16—N4—C17—C18176.9 (2)
N1—C1—C2—C13179.2 (2)C16—N4—C17—C220.5 (4)
N1—C1—C11—C1288.0 (3)C16—C15—C25—C2683.2 (3)
N2—C2—C13—C1492.9 (3)C17—N4—C16—C151.7 (4)
N2—C3—C4—C5179.20 (19)C17—N4—C16—C27168.7 (5)
N2—C3—C8—N10.4 (3)C17—N4—C16—C27B170.5 (6)
N2—C3—C8—C7178.69 (19)C17—C18—C19—C201.7 (3)
N3—C15—C16—N41.3 (4)C17—C18—C19—C23176.2 (2)
N3—C15—C16—C27169.3 (5)C18—C17—C22—N3178.5 (2)
N3—C15—C16—C27B168.4 (6)C18—C17—C22—C210.1 (3)
N3—C15—C25—C2694.9 (3)C18—C19—C20—C210.1 (3)
N4—C16—C27—C284.8 (10)C18—C19—C20—C24178.6 (2)
N4—C16—C27B—C28B94.4 (11)C19—C20—C21—C221.7 (3)
N4—C17—C18—C19175.7 (2)C20—C21—C22—N3176.8 (2)
N4—C17—C22—N31.1 (3)C20—C21—C22—C171.6 (3)
N4—C17—C22—C21177.3 (2)C22—N3—C15—C160.3 (4)
C1—N1—C8—C30.3 (3)C22—N3—C15—C25178.4 (2)
C1—N1—C8—C7179.36 (19)C22—C17—C18—C191.8 (3)
C1—C2—C13—C1486.4 (3)C23—C19—C20—C21177.9 (2)
C2—N2—C3—C4177.23 (19)C23—C19—C20—C240.7 (3)
C2—N2—C3—C81.6 (3)C24—C20—C21—C22177.0 (2)
C2—C1—C11—C1289.8 (3)C25—C15—C16—N4176.7 (3)
C3—N2—C2—C12.2 (3)C25—C15—C16—C2712.7 (6)
C3—N2—C2—C13178.54 (19)C25—C15—C16—C27B9.7 (7)
C3—C4—C5—C61.1 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors would like to thank CSU-AAUP for research funding.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatra, G. K., Goldberg, I., De, S. & Datta, D. (2007). CrystEngComm, 9, 828–832.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTian, A., Tian, Y., Ning, Y., Hou, X., Ni, H., Ji, X., Liu, G. & Ying, J. (2016). Dalton Trans. 45, 13925–13936.  CSD CrossRef CAS PubMed Google Scholar
First citationYeh, C.-W., Chen, T.-R., Chen, J.-D. & Wang, J.-C. (2009). Cryst. Growth Des. 9, 2595–2603.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146