metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Di­bromido­tetra­kis­(5-methyl-1H-pyrazole-κN2)manganese(II)

crossmark logo

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India, bDepartment of Chemistry, Periyar Maniammai Institute of Science and Technology, Vallam-613403, Thanjavur, Tamil Nadu, India, and cUGC-Faculty Recharge Programme, University Grant Commission, New Delhi,India
*Correspondence e-mail: l.nagarajan@bdu.ac.in

Edited by M. Zeller, Purdue University, USA (Received 16 January 2024; accepted 12 March 2024; online 19 March 2024)

The title compound, trans-di­bromido­tetra­kis­(5-methyl-1H-pyrazole-κN2)manganese(II), [MnBr2(C4H6N2)4] or [Mn(3-MePzH)4Br2] (1) crystallizes in the triclinic P[\overline{1}] space group with the cell parameters a = 7.6288 (3), b = 8.7530 (4), c = 9.3794 (4) Å and α = 90.707 (4), β = 106.138 (4), γ = 114.285 (5)°, V = 542.62 (5) Å3, T = 120 K. The asymmetric unit contains only half the mol­ecule with the manganese atom is situated on a crystallographic inversion center. The 3-MePzH ligands are present in an AABB type manner with two methyl groups pointing up and the other two down. The supra­molecular architecture is characterized by several inter­molecular C—H⋯N, N—H⋯Br, and C—H⋯π inter­actions. Earlier, a polymorphic structure of [Mn(3-MePzH)4Br2] (2) with a similar geometry and also an AABB arrangement for the pyrazole ligands was described [Reedijk et al. (1971[Reedijk, J., Stork-Blaisse, B. A. & Verschoor, G. C. (1971). Inorg. Chem. 10, 2594-2599.]). Inorg. Chem. 10, 2594–2599; a = 8.802 (6), b = 9.695 (5), c = 7.613 (8) Å and α = 105.12 (4), β = 114.98 (4), γ = 92.90 (3)°, V = 558.826 (5) Å3, T = 295 K]. A varying supra­molecular pattern was reported, with the structure of 1 featuring a herringbone type pattern while that of structure 2 shows a pillared network type of arrangement along the a axis. A nickel complex [Ni(3-MePzH)4Br2] isomorphic to 1 and the analogous chloro derivatives of FeII, CoII and CuII are also known.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Earth-abundant transition metals such as manganese have received much attention owing to their numerous applications in biological, industrial, and material sciences (Constable et al., 2021[Constable, E. C., Parkin, G. & Que, L. Jr (2021). Editors. Comprehensive coordination chemistry III, Vol 5. Amsterdam: Elsevier.]; Rice et al., 2017[Rice, D. B., Massie, A. A. & Jackson, T. A. (2017). Acc. Chem. Res. 50, 2706-2717.]; Zhang et al., 2007[Zhang, W. & Cheng, C. Y. (2007). Hydrometallurgy, 89, 137-159.]; Dell, 2000[Dell, R. M. (2000). Solid State Ionics, 134, 139-158.]). Apart from these applications, several mixed-valent multinuclear manganese cages have been assembled to understand their single mol­ecular magnetism (SMM) behavior (Zabala-Lekuona et al., 2021[Zabala-Lekuona, A., Seco, J. M. & Colacio, E. (2021). Coord. Chem. Rev. 441, 213984.]). In addition, the famous Jacobson catalyst consisting of an MnII–salen complex was developed for the enanti­oselective epoxidation of alkenes (Zhang et al., 1990[Zhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801-2803.]) while MnI carbonyls containing imidazolyl-based ligands have been used for the electrocatalytic-disproportionation of CO2 (Myren et al., 2020[Myren, T. H. T., Alherz, A., Thurston, J. R., Stinson, T. A., Huntzinger, C. G., Musgrave, C. B. & Luca, O. R. (2020). ACS Catal. 10, 1961-1968.]). Likewise, many MnI carbonyls containing various N-heterocyclic ligands were developed as biomimicking models for hydrogenase enzymes (Xu et al., 2016[Xu, T., Yin, C. M., Wodrich, M. D., Mazza, S., Schultz, K. M., Scopelliti, R. & Hu, X. (2016). J. Am. Chem. Soc. 138, 3270-3273.]; Pan et al., 2020[Pan, H.-J. & Hu, X. (2020). Angew. Chem. Int. Ed. 59, 4942-4946.].) and as CO-releasing mol­ecules (Mann, 2012[Mann, B. E. (2012). Organometallics, 31, 5728-5735.]; Cheng & Hu, 2021[Cheng, J. & Hu, J. (2021). ChemMedChem, 16, 3628-3634.]). Pyrazoles are one of the important classes of organic ligands used in many facets of coordination and organometallic chemistry (Trofimenko, 1972[Trofimenko, S. (1972). Chem. Rev. 72, 497-509.]; Halcrow, 2009[Halcrow, M. A. (2009). Dalton Trans. pp. 2059-2073.]).

We aim to synthesize various CO-releasing mol­ecules of the manganese family containing pyrazoles as primary ligands. In one such an attempt, a simple room-temperature stirring reaction involving the combination of Mn(CO)5Br, 5-methyl-1H-pyrazole and tri­ethyl­amine base (1:2:4) was found to release all CO mol­ecules and afforded yellow-colored crystals suitable for single-crystal X-ray diffraction analysis (SCXRD) from a di­chloro­methane-ethanol mixture (1:1) in qu­anti­tative yield. The SCXRD analysis reveals that it is trans-di­bromo tetra­kis­(5-methyl-1H-pyrazole-κ2N)manganese(II) (1). In other words, MnI was oxidized in situ to MnII and an octa­hedral heteroleptic complex containing two bromo ligands trans to each other in the axial position and four neutral 5-methyl-1H-pyrazoles in the equatorial position was obtained (Fig. 1[link]). The asymmetric unit contains half the mol­ecule with the manganese atom located on a crystallographic inversion center. The 3-MePzH ligands of the asymmetric unit are arranged in an AABB pattern with two neighboring pyrazole pointing upwards and the other two (their counterparts by inversion) downwards. The analysis reveals that it is a distorted octa­hedral complex with the axial distances to the larger bromine atoms [Mn1—Br1 = 2.7274 (3) Å] longer than the equatorial distances [Mn1—N1 = 2.251 (2) Å and Mn1—N3 = 2.261 (2) Å]. Angles at the manganese atom are close to 90° [N1—Mn1—Br1 = 89.10 (5)° and N3—Mn1—Br1 = 91.45 (5)°] and neighboring 3-MePzH rings are mutually perpendicular to each other with the dihedral angle between their planes being 87.08 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound 1 with 50% probability displacement ellipsoids. The unlabeled atoms are related by symmetry.

Earlier, many transition-metal pyrazoles were reported (Reedijk et al., 1971[Reedijk, J., Stork-Blaisse, B. A. & Verschoor, G. C. (1971). Inorg. Chem. 10, 2594-2599.]; Bieller et al., 2006[Bieller, S., Haghiri, A., Bolte, M., Bats, J. W., Wagner, M. & Lerner, H.-W. (2006). Inorg. Chim. Acta, 359, 1559-1572.]; Cotton et al., 2002[Cotton, S. A., Franckevicius, V. & Fawcett, J. (2002). Polyhedron, 21, 2055-2061.]; Nelana et al., 2004[Nelana, S. M., Darkwa, J., Guzei, I. A. & Mapolie, S. F. (2004). J. Organomet. Chem. 689, 1835-1842.]; Khan et al., 2014[Khan, S. A., Noor, A., Kempe, R., Subhan, H., Shah, A. & Khan, E. (2014). J. Coord. Chem. 67, 2425-2434.]; Al Isawi et al., 2023[Al Isawi, W. A., Zeller, M. & Mezei, G. (2023). Acta Cryst. E79, 1199-1206.]). In particular, Reedijk et al. (1971[Reedijk, J., Stork-Blaisse, B. A. & Verschoor, G. C. (1971). Inorg. Chem. 10, 2594-2599.]) synthesized many of the first transition-metal 5-methyl-1H-pyrazole complexes, including a polymorphic form of the title compound [Mn(3-MePzH)4Br2] (2), which was synthesized using MnBr2 and ethyl orthoformate as a dehydrating agent. It is inter­esting to note that the crystal data for compound 1 were collected at 120 K [a = 7.6288 (3), b = 8.7530 (4), c = 9.3794 (4) Å and α = 90.707 (4), β = 106.138 (4), γ = 114.285 (5)°, V = 542.62 (5) Å3] while compound 2 data were collected at 295 K [a = 8.802 (6), b = 9.695 (5), c = 7.613 (8) Å and α = 105.12 (4), β = 114.98 (4), γ = 92.90 (3)°, V = 558.826 (5) Å3]. A root-mean-square (r.m.s.) overlay of the mol­ecules of 1 and 2 using Mercury 4.0 (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) is shown in Fig. 2[link] and reveals that in Reedijk's polymorphic form, the 3-MePzH units are also placed in an AABB pattern with an r.m.s. deviation of 0.0612 Å. The analogous MnII, CoII, NiII, CuII bromo complexes isomorphic with Reedijk's polymorph 2 were reported (Cotton et al., 2002[Cotton, S. A., Franckevicius, V. & Fawcett, J. (2002). Polyhedron, 21, 2055-2061.]; Nelana et al., 2004[Nelana, S. M., Darkwa, J., Guzei, I. A. & Mapolie, S. F. (2004). J. Organomet. Chem. 689, 1835-1842.]; Khan et al., 2014[Khan, S. A., Noor, A., Kempe, R., Subhan, H., Shah, A. & Khan, E. (2014). J. Coord. Chem. 67, 2425-2434.]) and the bond parameters of 1 and 2 are both in good agreement with those reported structures. Inter­estingly, the NiII bromo complex (Nelana et al., 2004[Nelana, S. M., Darkwa, J., Guzei, I. A. & Mapolie, S. F. (2004). J. Organomet. Chem. 689, 1835-1842.]) is isomorphic with compound 1. It was synthesized using (1,2-di­meth­oxy­ethane)2NiBr2 as the metal source.

[Figure 2]
Figure 2
Overlay of the compounds 1 and 2 showing a slight deviation of 0.0612 Å (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Compound 1 contains various intra- and inter­molecular inter­actions in the form of N—H⋯Br and C—H⋯N inter­actions as well as C—H⋯π inter­actions (see Table 1[link]). A perspective view of the supra­molecular architecture of 1 is given in Fig. 3[link], which shows the presence of the various C—H⋯π inter­actions, leading to the formation of a herringbone-type of arrangement (Fig. 4[link]a) along the a axis. In contrast, a pillared network along the a axis is seen in the structure of 2 (Fig. 5[link]a). Further investigation reveals that along the b axis, the Br—Mn—Br moieties are stacked one over another in compound 1 while in 2, they are arranged in a zigzag fashion (Fig. 4[link]b and 5b). The view along c axis is also different in both the compounds (Fig. 4[link]c and 5c). Overall, the supra­molecular architectures clearly distinguish the two polymorphic forms 1 and 2.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/N2/C2–C4 and N3/N4/ C5–C7 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Br1 0.84 (3) 2.70 (3) 3.343 (2) 134 (2)
C1—H1C⋯Br1i 0.98 3.11 3.951 (3) 145
N2—H2⋯Br1 0.84 (3) 2.70 (3) 3.343 (2) 134 (2)
N2—H2⋯Br1i 0.84 (3) 3.05 (3) 3.704 (2) 137 (2)
N4—H7⋯Br1ii 0.80 (3) 3.00 (3) 3.636 (2) 138 (3)
N4—H7⋯Br1iii 0.80 (3) 2.76 (3) 3.351 (2) 132 (3)
C3—H3⋯N4iv 0.95 2.76 3.659 (3) 158
C8—H8A⋯N2v 0.98 2.86 3.744 (3) 151
C8—H8ACg1v 0.98 2.61 3.586 (3) 173
C3—H3⋯Cg2vi 0.95 2.84 3.667 (4) 146
Symmetry codes: (i) [-x+2, -y, -z]; (ii) [x-1, y, z]; (iii) [-x+1, -y, -z]; (iv) [x, y-1, z]; (v) [-x+1, -y, -z+1]; (vi) [-x+1, -y+1, -z+1].
[Figure 3]
Figure 3
Perspective view of the supra­molecular pattern of compound 1 showing the presence of inter­molecular C—H⋯π inter­actions.
[Figure 4]
Figure 4
Supra­molecular architecture of compound 1. (a) View along the a axis showing a herringbone-type arrangement; (b) and (c) the stacking of Br—Mn—Br along the respective axes.
[Figure 5]
Figure 5
Supra­molecular architecture of compound 2. (a) View along the a axis showing a pillared network arrangement; (b) a view along the b axis showing the zigzag pattern of Br—Mn—Br and (c) a view along the c axis.

Synthesis and crystallization

50 mg (0.19 mmol) of Mn(CO)5Br [bromo­penta­carbonyl­manganese(I)] and 30.6 µL (0.38 mmol) of 5-methyl-1H-pyrazole were dissolved in 20 ml of ethanol. After stirring for a few minutes, 105 µL (0.76 mmol) of tri­ethyl­amine were added to the reaction mixture and the resultant straw-yellow-colored solution was stirred at room temperature for 20 h. Light-yellow crystals were obtained by the slow evaporation method of a 1:1 di­chloro­methane–ethanol solvent mixture. Crystal yield 60%. ESI–MS data: m/z 540.53290 [M – H]+.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [MnBr2(C4H6N2)4]
Mr 543.19
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 7.6288 (3), 8.7530 (4), 9.3794 (4)
α, β, γ (°) 90.707 (4), 106.138 (4), 114.285 (5)
V3) 542.62 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 4.31
Crystal size (mm) 0.17 × 0.14 × 0.12
 
Data collection
Diffractometer XtaLAB AFC12 (RINC): Kappa single
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2017[Rigaku OD. (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.706, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11690, 2574, 2115
Rint 0.060
(sin θ/λ)max−1) 0.680
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.064, 1.04
No. of reflections 2574
No. of parameters 134
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.50, −0.38
Computer programs: CrysAlis PRO (Rigaku OD, 2017[Rigaku OD. (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows2020 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Diamond (Brandenburg et al., 2014[Brandenburg, K., Berndt, M. & Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

trans-Dibromidotetrakis(5-methyl-1H-pyrazole-κN2)\ manganese(II) top
Crystal data top
[MnBr2(C4H6N2)4]Z = 1
Mr = 543.19F(000) = 271
Triclinic, P1Dx = 1.662 Mg m3
a = 7.6288 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7530 (4) ÅCell parameters from 4000 reflections
c = 9.3794 (4) Åθ = 3.1–28.0°
α = 90.707 (4)°µ = 4.31 mm1
β = 106.138 (4)°T = 120 K
γ = 114.285 (5)°Block, yellow
V = 542.62 (5) Å30.17 × 0.14 × 0.12 mm
Data collection top
XtaLAB AFC12 (RINC): Kappa single
diffractometer
Rint = 0.060
Radiation source: fine-focus sealed X-ray tubeθmax = 28.9°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2017)
k = 1011
Tmin = 0.706, Tmax = 1.000l = 1211
11690 measured reflections3 standard reflections every 20 reflections
2574 independent reflections intensity decay: none
2115 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0225P)2 + 0.1264P]
where P = (Fo2 + 2Fc2)/3
2574 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8781 (4)0.4193 (4)0.2379 (3)0.0248 (6)
H1A0.8415830.5352040.1955890.037*
H1B0.9242720.4076460.3477000.037*
H1C0.9867720.3393480.2033900.037*
C20.6971 (4)0.3823 (3)0.1878 (3)0.0177 (5)
C30.5014 (4)0.4665 (3)0.1909 (3)0.0196 (6)
H30.4434460.5715430.2259500.024*
C40.4061 (4)0.3654 (3)0.1319 (3)0.0191 (5)
H40.2685060.3922890.1204520.023*
C50.6662 (4)0.1767 (4)0.3552 (3)0.0234 (6)
H50.8031960.1998340.3682710.028*
C60.5970 (4)0.2174 (4)0.4670 (3)0.0251 (6)
H60.6752540.2718080.5667270.030*
C70.3930 (4)0.1625 (3)0.4026 (3)0.0201 (6)
C80.2336 (4)0.1681 (4)0.4618 (3)0.0329 (7)
H8A0.2643060.1525490.5676830.049*
H8B0.1019770.0775340.4044520.049*
H8C0.2294120.2780490.4521660.049*
Br10.91038 (4)0.16217 (3)0.06734 (3)0.01922 (10)
Mn10.5000000.0000000.0000000.01496 (13)
N10.5313 (3)0.2264 (3)0.0935 (2)0.0169 (4)
N20.7090 (3)0.2395 (3)0.1301 (2)0.0177 (5)
N30.5156 (3)0.1016 (3)0.2283 (2)0.0175 (5)
N40.3507 (3)0.0941 (3)0.2610 (2)0.0193 (5)
H20.804 (4)0.166 (4)0.106 (3)0.013 (7)*
H70.244 (5)0.058 (4)0.196 (3)0.025 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0248 (15)0.0259 (15)0.0293 (15)0.0154 (13)0.0098 (12)0.0085 (12)
C20.0219 (13)0.0169 (13)0.0145 (12)0.0100 (11)0.0038 (10)0.0005 (10)
C30.0258 (14)0.0163 (13)0.0177 (13)0.0092 (11)0.0079 (11)0.0036 (10)
C40.0184 (13)0.0187 (14)0.0208 (13)0.0069 (11)0.0088 (10)0.0018 (10)
C50.0165 (13)0.0293 (16)0.0253 (14)0.0116 (12)0.0052 (11)0.0054 (12)
C60.0237 (14)0.0349 (17)0.0161 (13)0.0124 (13)0.0058 (11)0.0008 (11)
C70.0216 (14)0.0229 (14)0.0165 (13)0.0086 (11)0.0087 (11)0.0027 (10)
C80.0276 (16)0.055 (2)0.0204 (14)0.0201 (15)0.0104 (12)0.0017 (13)
Br10.01626 (14)0.01839 (15)0.02480 (15)0.00854 (11)0.00746 (10)0.00161 (10)
Mn10.0161 (3)0.0151 (3)0.0174 (3)0.0090 (2)0.0070 (2)0.0023 (2)
N10.0180 (11)0.0168 (11)0.0181 (11)0.0106 (9)0.0042 (9)0.0020 (8)
N20.0148 (11)0.0175 (12)0.0208 (12)0.0061 (10)0.0065 (9)0.0040 (9)
N30.0163 (11)0.0204 (12)0.0203 (11)0.0098 (9)0.0092 (9)0.0030 (9)
N40.0159 (12)0.0201 (12)0.0195 (12)0.0054 (10)0.0056 (10)0.0013 (9)
Geometric parameters (Å, º) top
C1—C21.497 (3)C7—N41.346 (3)
C1—H1A0.9800C7—C81.488 (4)
C1—H1B0.9800C8—H8A0.9800
C1—H1C0.9800C8—H8B0.9800
C2—N21.348 (3)C8—H8C0.9800
C2—C31.376 (4)Br1—Br10.0000 (10)
C3—C41.391 (4)Br1—Mn12.7274 (3)
C3—H30.9500Mn1—N12.251 (2)
C4—N11.330 (3)Mn1—N1i2.251 (2)
C4—H40.9500Mn1—N32.2612 (19)
C5—N31.330 (3)Mn1—N3i2.2613 (19)
C5—C61.400 (4)N1—N21.356 (3)
C5—H50.9500N2—H20.84 (3)
C6—C71.368 (4)N3—N41.352 (3)
C6—H60.9500N4—H70.80 (3)
C2—C1—H1A109.5N1—Mn1—N389.74 (7)
C2—C1—H1B109.5N1i—Mn1—N390.26 (7)
H1A—C1—H1B109.5N1—Mn1—N3i90.26 (7)
C2—C1—H1C109.5N1i—Mn1—N3i89.74 (7)
H1A—C1—H1C109.5N3—Mn1—N3i180.0
H1B—C1—H1C109.5N1—Mn1—Br189.10 (5)
N2—C2—C3105.9 (2)N1i—Mn1—Br190.90 (5)
N2—C2—C1121.2 (2)N3—Mn1—Br191.45 (5)
C3—C2—C1132.9 (2)N3i—Mn1—Br188.55 (5)
C2—C3—C4105.5 (2)N1—Mn1—Br189.10 (5)
C2—C3—H3127.3N1i—Mn1—Br190.90 (5)
C4—C3—H3127.3N3—Mn1—Br191.45 (5)
N1—C4—C3111.7 (2)N3i—Mn1—Br188.55 (5)
N1—C4—H4124.1Br1—Mn1—Br10.000 (16)
C3—C4—H4124.1N1—Mn1—Br1i90.90 (5)
N3—C5—C6111.3 (2)N1i—Mn1—Br1i89.10 (5)
N3—C5—H5124.3N3—Mn1—Br1i88.55 (5)
C6—C5—H5124.3N3i—Mn1—Br1i91.45 (5)
C7—C6—C5105.6 (2)Br1—Mn1—Br1i180.0
C7—C6—H6127.2Br1—Mn1—Br1i180.0
C5—C6—H6127.2C4—N1—N2104.0 (2)
N4—C7—C6105.9 (2)C4—N1—Mn1133.75 (17)
N4—C7—C8122.0 (2)N2—N1—Mn1122.16 (16)
C6—C7—C8132.1 (2)C2—N2—N1112.9 (2)
C7—C8—H8A109.5C2—N2—H2129.5 (18)
C7—C8—H8B109.5N1—N2—H2117.2 (18)
H8A—C8—H8B109.5C5—N3—N4104.0 (2)
C7—C8—H8C109.5C5—N3—Mn1133.35 (17)
H8A—C8—H8C109.5N4—N3—Mn1122.65 (15)
H8B—C8—H8C109.5C7—N4—N3113.2 (2)
Br1—Br1—Mn10.00 (2)C7—N4—H7127 (2)
N1—Mn1—N1i180.0N3—N4—H7119 (2)
N2—C2—C3—C40.4 (3)C1—C2—N2—N1178.9 (2)
C1—C2—C3—C4178.2 (3)C4—N1—N2—C20.8 (3)
C2—C3—C4—N10.1 (3)Mn1—N1—N2—C2178.32 (15)
N3—C5—C6—C70.3 (3)C6—C5—N3—N40.4 (3)
C5—C6—C7—N40.0 (3)C6—C5—N3—Mn1179.66 (18)
C5—C6—C7—C8180.0 (3)C6—C7—N4—N30.3 (3)
C3—C4—N1—N20.5 (3)C8—C7—N4—N3179.7 (2)
C3—C4—N1—Mn1177.60 (16)C5—N3—N4—C70.4 (3)
C3—C2—N2—N10.8 (3)Mn1—N3—N4—C7179.64 (17)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N2/C2–C4 and N3/N4/ C5–C7 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···Br10.84 (3)2.70 (3)3.343 (2)134 (2)
C1—H1C···Br1ii0.983.113.951 (3)145
N2—H2···Br10.84 (3)2.70 (3)3.343 (2)134 (2)
N2—H2···Br1ii0.84 (3)3.05 (3)3.704 (2)137 (2)
N4—H7···Br1iii0.80 (3)3.00 (3)3.636 (2)138 (3)
N4—H7···Br1i0.80 (3)2.76 (3)3.351 (2)132 (3)
C3—H3···N4iv0.952.763.659 (3)158
C8—H8A···N2v0.982.863.744 (3)151
C8—H8A···Cg1v0.982.613.586 (3)173
C3—H3···Cg2vi0.952.843.667 (4)146
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x1, y, z; (iv) x, y1, z; (v) x+1, y, z+1; (vi) x+1, y+1, z+1.
 

Acknowledgements

Dr Orbett Alexander, Department of Chemistry, University of Western Cape, South Africa, is thanked for crystallographic software assistance.

Funding information

Funding for this research was provided by: Science and Engineering Research Board, India, Early Career Research Award (award No. ECR/2016/001966 to Nagarajan Loganathan; grant No. EEQ2018/001373); Rashtriya Uchchatar Shiksha Abhiyan, Physical Sciences 2.0 (grant to Nagarajan Loganathan).

References

First citationAl Isawi, W. A., Zeller, M. & Mezei, G. (2023). Acta Cryst. E79, 1199–1206.  CSD CrossRef IUCr Journals Google Scholar
First citationBieller, S., Haghiri, A., Bolte, M., Bats, J. W., Wagner, M. & Lerner, H.-W. (2006). Inorg. Chim. Acta, 359, 1559–1572.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K., Berndt, M. & Putz, H. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCheng, J. & Hu, J. (2021). ChemMedChem, 16, 3628–3634.  CrossRef CAS PubMed Google Scholar
First citationConstable, E. C., Parkin, G. & Que, L. Jr (2021). Editors. Comprehensive coordination chemistry III, Vol 5. Amsterdam: Elsevier.  Google Scholar
First citationCotton, S. A., Franckevicius, V. & Fawcett, J. (2002). Polyhedron, 21, 2055–2061.  CSD CrossRef CAS Google Scholar
First citationDell, R. M. (2000). Solid State Ionics, 134, 139–158.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHalcrow, M. A. (2009). Dalton Trans. pp. 2059–2073.  Web of Science CrossRef Google Scholar
First citationKhan, S. A., Noor, A., Kempe, R., Subhan, H., Shah, A. & Khan, E. (2014). J. Coord. Chem. 67, 2425–2434.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMann, B. E. (2012). Organometallics, 31, 5728–5735.  CrossRef CAS Google Scholar
First citationMyren, T. H. T., Alherz, A., Thurston, J. R., Stinson, T. A., Huntzinger, C. G., Musgrave, C. B. & Luca, O. R. (2020). ACS Catal. 10, 1961–1968.  CrossRef CAS Google Scholar
First citationNelana, S. M., Darkwa, J., Guzei, I. A. & Mapolie, S. F. (2004). J. Organomet. Chem. 689, 1835–1842.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, H.-J. & Hu, X. (2020). Angew. Chem. Int. Ed. 59, 4942–4946.  CSD CrossRef CAS Google Scholar
First citationReedijk, J., Stork-Blaisse, B. A. & Verschoor, G. C. (1971). Inorg. Chem. 10, 2594–2599.  CSD CrossRef CAS Google Scholar
First citationRice, D. B., Massie, A. A. & Jackson, T. A. (2017). Acc. Chem. Res. 50, 2706–2717.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD. (2017). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrofimenko, S. (1972). Chem. Rev. 72, 497–509.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, T., Yin, C. M., Wodrich, M. D., Mazza, S., Schultz, K. M., Scopelliti, R. & Hu, X. (2016). J. Am. Chem. Soc. 138, 3270–3273.  CSD CrossRef CAS PubMed Google Scholar
First citationZabala-Lekuona, A., Seco, J. M. & Colacio, E. (2021). Coord. Chem. Rev. 441, 213984.  Google Scholar
First citationZhang, W. & Cheng, C. Y. (2007). Hydrometallurgy, 89, 137–159.  CrossRef CAS Google Scholar
First citationZhang, W., Loebach, J. L., Wilson, S. R. & Jacobsen, E. N. (1990). J. Am. Chem. Soc. 112, 2801–2803.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146