organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

erythro-{1-Bromo-1-[(1-phenyl­eth­yl)sulfon­yl]eth­yl}benzene

crossmark logo

aDepartment of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458, USA
*Correspondence e-mail: pcorfield@fordham.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 February 2024; accepted 26 February 2024; online 6 March 2024)

The title compound, C16H17BrO2S, crystallizes as the erythro (RR/SS) isomer of a pair of sulfones that were diastereomeric due to chirality of the α-carbon atoms on the sulfone sulfur atom. The structural analysis was pivotal in showing that the 1,3 elimination reactions of these compounds, which lead to substituted stilbenes, occur with inversion at each asymmetric carbon atom. In the crystal, C—H⋯Br and C—H⋯O hydrogen bonds link the mol­ecules into a tri-periodic inter­molecular network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In an earlier paper (Bordwell et al., 1970[Bordwell, F. G., Doomes, E. & Corfield, P. W. R. (1970). J. Am. Chem. Soc. 92, 2581-2583.]), we described how two mono­bromo sulfone diastereomers with melting points of 349 and 385 K had been prepared. The final products from a Ramberg–Bäcklung reaction on these compounds were primarily cis-α,α'-di­methyl­stilbene for the higher melting stereoisomer, and trans-α,α'-di­methyl­stilbene for the lower melting isomer. The crystal-structure determination of the title compound, which is the higher melting isomer, enabled the determination that the reactions involved inversion at each of the asymmetric α-C atoms, but no crystallographic details were given in the above paper. Continuing inter­est in the stereochemistry of such reactions (Düfert, 2023[Düfert, A. (2023). Pericyclic reactions. In: Organic Synthesis Methods. Berlin, Heidelberg: Springer Spektrum. https://doi. org/10.1007/978-3-662-65244-2_5]; Paquette, 2001[Paquette, L. A. (2001). The electrophilic and radical behavior of α-halosulfonyl systems. Synlett, no. 01, 0001-0012.]) prompted this publication to give details of the structure analysis of the title compound, C16H17BrO2S.

The structure of the mol­ecule, with displacement ellipsoids, is shown in Fig. 1[link], where it is evident that the stereochemistries of the two α-C atoms to the sulfone group are RR. As the sample was present as a racemic mixture, there are equal numbers of mol­ecules in the crystal with the SS configuration – these configurations are referred to as erythro in the 1970 publication (Bordwell et al., 1970[Bordwell, F. G., Doomes, E. & Corfield, P. W. R. (1970). J. Am. Chem. Soc. 92, 2581-2583.]). While the phenyl group C11–C16 is trans to the S1—C1 bond in the mol­ecule, phenyl group C5–C10 is gauche to the S1—C2 bond, with the Br1 atom taking the trans position. The planes of the two phenyl groups are inclined at 49.4 (2)° with one another.

[Figure 1]
Figure 1
View of the title mol­ecule showing the atomic numbering and displacement ellipsoids at the 50% probability level.

The S=O distances of 1.426 (3) and 1.436 (4) Å are close to the mean of 1.437 Å found for 1142 sulfones with tetra­hedral α-C atoms in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The C1—Br1 bond length in the present structure is 1.976 (5) Å, close to the mean of 1.950 (2) Å found for 11000 aliphatic C—Br bond lengths in the database. The only other sulfone in the database with a phenyl group on each α-C atom and a bromine atom on at least one of the α-C atoms is entry WAVWOJ (Corfield, 2022[Corfield, P. W. R. (2022). IUCrData, 7, x2113151.]). That analysis resulted from a similar collaboration with the Bordwell laboratory.

Table 1[link] lists four C—H⋯O and C—H⋯Br hydrogen bonds, chosen for contacts with C⋯O and C⋯Br distances close to the sum of the van der Waals radii and with C—H⋯O and C—H⋯Br angles of 140° or larger. These hydrogen bonds are shown in Fig. 2[link]. The C—H⋯Br and C—H⋯O1 hydrogen bonds link the mol­ecules into sheets parallel to the ab plane, while the C—H⋯O2 hydrogen bonds complete the tri-periodic inter­molecular network via hydrogen bonds to mol­ecules related by a screw axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.67 3.468 (4) 145
C8—H8⋯O2ii 0.93 2.67 3.483 (4) 147
C12—H12⋯Br1iii 0.93 3.01 3.795 (3) 143
C14—H14⋯Br1iv 0.93 3.19 3.967 (3) 143
Symmetry codes: (i) [x+1, y, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Projection of the crystal structure down the b axis. Atom colors: Br green, S yellow, O red, C,H black. C—H⋯Br and C—H⋯O hydrogen bonds are shown in green and red, respectively. The reference mol­ecule is bolded, with O1 and O2 labeled.

Analysis of the Hirshfeld surface of the mol­ecule carried out with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) confirmed that the hydrogen bonds are the most significant inter­molecular contacts. The dnorm surface shown in Fig. 3[link] is colored blue for points where closest contacts are greater than the sum of the relevant van der Waals radii, while the red areas correspond to contacts closer than that sum. In the view shown, there are red areas corresponding to inter­molecular contacts for all of the four C—H donors and for two of the acceptors. There are also C⋯H contacts of 3.4–3.5 Å between phenyl rings C5–C10 related by the screw axes, which may be reflected in the red area at the lower right of Fig. 3[link]. There are, however, no C⋯C contacts less than 4.0 Å between these screw-related phenyl rings.

[Figure 3]
Figure 3
Hirshfeld dnorm surface for the title compound.

Synthesis and crystallization

The diastereomer was obtained by bromination of DL-bis-α-methyl­benzyl sulfone with N-bromo­succinimide. Details of similar syntheses by the Bordwell group are given in Carpino et al. (1971[Carpino, L. A., McAdams, L. V. III, Rynbrandt, R. H. & Spiewak, J. W. (1971). J. Am. Chem. Soc. 93, 476-484.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The data were collected in 1969 with a linear diffractometer unit. The (4 5 6) reflection was omitted due to a clear typewriter error in the data listing. Frequent system errors were common at that time, so that data collection could take much more time than is usual with today's equipment. This is why the data do not reach the resolution expected in today's work and why almost no symmetry equivalents were collected. No absorption corrections were made when the data was first processed, but the use of XABS2 (Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]) in our current final refinements led to a smoother final difference map and somewhat lower reliability factors. XABS2 rescales the observed data, using a tensor analysis. In Table 2[link], the minimum and maximum XABS2 corrections of 0.84 and 1.12 for the transmission coefficients have been multiplied by exp (–μr), with μ = 4.754 mm−1 and r = 0.23 mm.

Table 2
Experimental details

Crystal data
Chemical formula C16H17BrO2S
Mr 353.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 295
a, b, c (Å) 9.1051 (13), 10.665 (2), 16.688 (3)
β (°) 102.16 (2)
V3) 1584.1 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.75
Crystal size (mm) 0.50 × 0.13 × 0.05
 
Data collection
Diffractometer Picker 4-circle diffractometer
Absorption correction Empirical (using intensity measurements); four-dimensional tensor analysis (Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.])
Tmin, Tmax 0.28, 0.38
No. of measured, independent and observed [I > 2σ(I)] reflections 1821, 1678, 1373
Rint 0.012
θmax (°) 50.8
(sin θ/λ)max−1) 0.503
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.03
No. of reflections 1678
No. of parameters 159
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.32
Data reduction followed procedures in Corfield et al. (1973[Corfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). Inorg. Chem. 12, 1734-1740.]) with p = 0.06. Computer programs: Local Programs (Corfield & Gainsford, 1972[Corfield, P. W. R. & Gainsford, G. J. (1972). Local versions of standard programs, written at the Ohio State University.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The phenyl groups were refined as rigid hexa­gons, in order to reduce the number of parameters varied. C—C distances of 1.38 Å were chosen to minimize the reliability factors. C—H distances were constrained at 0.98 Å for the methine C2 atom, 0.96 Å for the methyl groups at C3 and C4, and 0.93 Å for the phenyl H atoms, while the H atom displacement parameters were set at 1.2Ueq of the parental C atoms.

Structural data


Computing details top

erythro-{1-Bromo-1-[(1-phenylethyl)sulfonyl]ethyl}benzene top
Crystal data top
C16H17BrO2SDx = 1.481 Mg m3
Mr = 353.26Melting point: 385 K
Monoclinic, P21/cCu Kα radiation, λ = 1.5405 Å
a = 9.1051 (13) ÅCell parameters from 7 reflections
b = 10.665 (2) Åθ = 22.1–43.1°
c = 16.688 (3) ŵ = 4.75 mm1
β = 102.16 (2)°T = 295 K
V = 1584.1 (5) Å3Block, colorless
Z = 40.50 × 0.13 × 0.05 mm
F(000) = 720
Data collection top
Picker 4-circle
diffractometer
1373 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.012
Oriented graphite 200 reflection monochromatorθmax = 50.8°, θmin = 5.0°
θ/2θ scansh = 09
Absorption correction: empirical (using intensity measurements)
Four-dimensional tensor analysis (Parkin et al., 1995)
k = 010
Tmin = 0.28, Tmax = 0.38l = 1616
1821 measured reflections3 standard reflections every 150 reflections
1678 independent reflections intensity decay: 7(4)
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.P)2 + 1.890P]
where P = (Fo2 + 2Fc2)/3
1678 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. At the time when this dataset was collected, mechanical failures were frequent enough that minimum redundancy was sought. This accounts for the low resolution of the data and the lack of many symmetry equivalents.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.20607 (7)0.25910 (6)0.43308 (4)0.0668 (3)
S10.05864 (13)0.18503 (11)0.26327 (7)0.0437 (4)
O10.0819 (4)0.2157 (3)0.2845 (2)0.0587 (10)
O20.1378 (4)0.2843 (3)0.2337 (2)0.0546 (9)
C10.1784 (5)0.1156 (5)0.3565 (3)0.0478 (13)
C20.0240 (5)0.0609 (5)0.1867 (3)0.0512 (14)
H20.0053950.0148500.2126020.061*
C30.0847 (6)0.0181 (5)0.3923 (3)0.0600 (15)
H3A0.0094180.0547260.3970500.072*
H3B0.1387330.0076780.4455470.072*
H3C0.0664470.0534910.3567340.072*
C40.1613 (6)0.0309 (6)0.1531 (4)0.080 (2)
H4A0.2339220.0115310.1942110.096*
H4B0.2041060.1071840.1377200.096*
H4C0.1333610.0221960.1058330.096*
C50.3308 (3)0.0729 (3)0.3438 (2)0.0449 (13)
C60.4283 (4)0.1569 (3)0.3197 (2)0.0505 (13)
H60.4002150.2403100.3101290.061*
C70.5676 (3)0.1172 (4)0.3097 (2)0.0665 (16)
H70.6333610.1737690.2934600.080*
C80.6093 (3)0.0066 (4)0.3239 (2)0.083 (2)
H80.7032080.0333870.3171770.100*
C90.5118 (5)0.0906 (3)0.3480 (3)0.089 (2)
H90.5399100.1740040.3575630.107*
C100.3725 (4)0.0509 (3)0.3580 (2)0.0685 (17)
H100.3067640.1074660.3742330.082*
C110.1105 (3)0.1051 (3)0.12212 (18)0.0447 (13)
C120.0907 (3)0.1791 (3)0.0573 (2)0.0553 (14)
H120.0053390.2036840.0531440.066*
C130.2136 (5)0.2166 (3)0.00117 (18)0.0706 (17)
H130.2002930.2663990.0448210.085*
C140.3562 (4)0.1801 (4)0.0051 (2)0.0786 (19)
H140.4389430.2053080.0343750.094*
C150.3759 (3)0.1061 (4)0.0698 (3)0.0762 (19)
H150.4719620.0815010.0740370.091*
C160.2530 (4)0.0686 (3)0.1284 (2)0.0607 (15)
H160.2663310.0187830.1720030.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0632 (4)0.0751 (5)0.0627 (4)0.0016 (3)0.0149 (3)0.0201 (3)
S10.0398 (7)0.0383 (7)0.0520 (8)0.0021 (6)0.0073 (6)0.0049 (6)
O10.039 (2)0.065 (2)0.070 (2)0.0087 (18)0.0075 (18)0.0142 (19)
O20.056 (2)0.038 (2)0.068 (2)0.0030 (17)0.0089 (18)0.0074 (17)
C10.049 (3)0.046 (3)0.048 (3)0.001 (3)0.008 (2)0.000 (3)
C20.060 (3)0.034 (3)0.056 (3)0.001 (3)0.006 (3)0.010 (2)
C30.051 (3)0.063 (4)0.069 (4)0.007 (3)0.018 (3)0.016 (3)
C40.069 (4)0.091 (5)0.075 (4)0.035 (4)0.005 (3)0.028 (4)
C50.041 (3)0.046 (3)0.047 (3)0.008 (3)0.007 (2)0.005 (2)
C60.037 (3)0.059 (3)0.056 (3)0.003 (3)0.012 (2)0.007 (3)
C70.045 (4)0.088 (5)0.066 (4)0.005 (3)0.013 (3)0.011 (3)
C80.055 (4)0.118 (6)0.077 (4)0.035 (4)0.015 (3)0.002 (4)
C90.089 (5)0.080 (5)0.102 (5)0.037 (4)0.027 (4)0.016 (4)
C100.067 (4)0.060 (4)0.083 (4)0.015 (3)0.026 (3)0.012 (3)
C110.047 (3)0.039 (3)0.045 (3)0.005 (2)0.004 (2)0.010 (3)
C120.057 (3)0.056 (3)0.054 (4)0.004 (3)0.015 (3)0.007 (3)
C130.090 (5)0.075 (4)0.042 (3)0.004 (4)0.002 (3)0.002 (3)
C140.080 (5)0.072 (4)0.069 (4)0.020 (4)0.018 (4)0.015 (4)
C150.049 (4)0.087 (5)0.088 (5)0.011 (3)0.003 (4)0.025 (4)
C160.070 (4)0.053 (3)0.058 (4)0.011 (3)0.010 (3)0.008 (3)
Geometric parameters (Å, º) top
Br1—C11.976 (5)C6—H60.9300
S1—O21.426 (3)C7—C81.3800
S1—O11.436 (4)C7—H70.9300
S1—C21.820 (5)C8—C91.3800
S1—C11.856 (5)C8—H80.9300
C1—C51.516 (5)C9—C101.3800
C1—C31.543 (7)C9—H90.9300
C2—C41.509 (7)C10—H100.9300
C2—C111.525 (5)C11—C121.3800
C2—H20.9800C11—C161.3800
C3—H3A0.9600C12—C131.3800
C3—H3B0.9600C12—H120.9300
C3—H3C0.9600C13—C141.3800
C4—H4A0.9600C13—H130.9300
C4—H4B0.9600C14—C151.3800
C4—H4C0.9600C14—H140.9300
C5—C61.3800C15—C161.3800
C5—C101.3800C15—H150.9300
C6—C71.3800C16—H160.9300
O2—S1—O1117.2 (2)C5—C6—C7120.0
O2—S1—C2108.8 (2)C5—C6—H6120.0
O1—S1—C2107.9 (2)C7—C6—H6120.0
O2—S1—C1109.6 (2)C8—C7—C6120.0
O1—S1—C1106.3 (2)C8—C7—H7120.0
C2—S1—C1106.4 (2)C6—C7—H7120.0
C5—C1—C3116.7 (4)C7—C8—C9120.0
C5—C1—S1113.3 (3)C7—C8—H8120.0
C3—C1—S1108.6 (3)C9—C8—H8120.0
C5—C1—Br1109.1 (3)C10—C9—C8120.0
C3—C1—Br1106.1 (3)C10—C9—H9120.0
S1—C1—Br1101.8 (2)C8—C9—H9120.0
C4—C2—C11114.0 (4)C9—C10—C5120.0
C4—C2—S1112.4 (4)C9—C10—H10120.0
C11—C2—S1105.4 (3)C5—C10—H10120.0
C4—C2—H2108.3C12—C11—C16120.0
C11—C2—H2108.3C12—C11—C2120.8 (3)
S1—C2—H2108.3C16—C11—C2119.2 (3)
C1—C3—H3A109.5C13—C12—C11120.0
C1—C3—H3B109.5C13—C12—H12120.0
H3A—C3—H3B109.5C11—C12—H12120.0
C1—C3—H3C109.5C12—C13—C14120.0
H3A—C3—H3C109.5C12—C13—H13120.0
H3B—C3—H3C109.5C14—C13—H13120.0
C2—C4—H4A109.5C13—C14—C15120.0
C2—C4—H4B109.5C13—C14—H14120.0
H4A—C4—H4B109.5C15—C14—H14120.0
C2—C4—H4C109.5C16—C15—C14120.0
H4A—C4—H4C109.5C16—C15—H15120.0
H4B—C4—H4C109.5C14—C15—H15120.0
C6—C5—C10120.0C15—C16—C11120.0
C6—C5—C1120.7 (3)C15—C16—H16120.0
C10—C5—C1119.3 (3)C11—C16—H16120.0
O2—S1—C1—C554.5 (4)C10—C5—C6—C70.0
O1—S1—C1—C5177.9 (3)C1—C5—C6—C7178.9 (3)
C2—S1—C1—C563.0 (4)C5—C6—C7—C80.0
O2—S1—C1—C3174.1 (3)C6—C7—C8—C90.0
O1—S1—C1—C346.5 (4)C7—C8—C9—C100.0
C2—S1—C1—C368.3 (4)C8—C9—C10—C50.0
O2—S1—C1—Br162.5 (3)C6—C5—C10—C90.0
O1—S1—C1—Br165.1 (3)C1—C5—C10—C9178.9 (3)
C2—S1—C1—Br1180.0 (2)C4—C2—C11—C1236.1 (5)
O2—S1—C2—C445.6 (5)S1—C2—C11—C1287.6 (3)
O1—S1—C2—C4173.8 (4)C4—C2—C11—C16142.9 (4)
C1—S1—C2—C472.5 (5)S1—C2—C11—C1693.3 (3)
O2—S1—C2—C1179.2 (3)C16—C11—C12—C130.0
O1—S1—C2—C1149.0 (4)C2—C11—C12—C13179.0 (3)
C1—S1—C2—C11162.7 (3)C11—C12—C13—C140.0
C3—C1—C5—C6173.6 (3)C12—C13—C14—C150.0
S1—C1—C5—C659.2 (4)C13—C14—C15—C160.0
Br1—C1—C5—C653.5 (4)C14—C15—C16—C110.0
C3—C1—C5—C105.3 (5)C12—C11—C16—C150.0
S1—C1—C5—C10121.9 (3)C2—C11—C16—C15179.0 (3)
Br1—C1—C5—C10125.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.673.468 (4)145
C8—H8···O2ii0.932.673.483 (4)147
C12—H12···Br1iii0.933.013.795 (3)143
C14—H14···Br1iv0.933.193.967 (3)143
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x1, y+1/2, z1/2.
 

Acknowledgements

I acknowledge with pleasure collaboration with F. G. Bordwell of Northwestern University, whose laboratory supplied the crystalline sample.

Funding information

Funding for this research was provided by: National Science Foundation Equipment Grant (grant No. GP8534).

References

First citationBordwell, F. G., Doomes, E. & Corfield, P. W. R. (1970). J. Am. Chem. Soc. 92, 2581–2583.  CSD CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCarpino, L. A., McAdams, L. V. III, Rynbrandt, R. H. & Spiewak, J. W. (1971). J. Am. Chem. Soc. 93, 476–484.  CrossRef CAS Web of Science Google Scholar
First citationCorfield, P. W. R. (2022). IUCrData, 7, x2113151.  Google Scholar
First citationCorfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). Inorg. Chem. 12, 1734–1740.  CSD CrossRef CAS Web of Science Google Scholar
First citationCorfield, P. W. R. & Gainsford, G. J. (1972). Local versions of standard programs, written at the Ohio State University.  Google Scholar
First citationDüfert, A. (2023). Pericyclic reactions. In: Organic Synthesis Methods. Berlin, Heidelberg: Springer Spektrum. https://doi. org/10.1007/978-3-662-65244-2_5  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPaquette, L. A. (2001). The electrophilic and radical behavior of α-halosulfonyl systems. Synlett, no. 01, 0001-0012.  Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146