metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[S-octyl 3-(2-methyl­propyl­­idene)di­thio­carb­az­ato-κ2N3,S]nickel(II)

crossmark logo

aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
*Correspondence e-mail: mbhhowlader@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 January 2024; accepted 26 February 2024; online 6 March 2024)

The central NiII atom in the title complex, [Ni(C13H25N2S2)2], is located on an inversion center and adopts a roughly square-planar coordination environment defined by two chelating N,S donor sets of two symmetry-related ligands in a trans configuration. The Ni—N and Ni—S bond lenghts are 1.9193 (14) and 2.1788 (5) Å, respectively, with a chelating N—Ni—S bond angle of 86.05 (4)°. These data are compared with those measured for similar di­thio­carbazato ligands that bear n-octyl or n-hexyl alkyl chains. Slight differences are observed with respect to the phenyl­ethyl­idene derivative where the ligands are bound cis relative to one another.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Di­thio­carbazate Schiff base derivatives have emerged as prospective ligands in medicinal chemistry as a result of their various pharmaceutical and biological activities (Gou et al., 2022[Gou, Y., Jia, X., Hou, L. X., Deng, J. G., Huang, G. J., Jiang, H. W. & Yang, F. (2022). J. Med. Chem. 65, 6677-6689.]; Low et al., 2016[Low, M. L., Maigre, L., Tahir, M. I., Tiekink, E. R., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J. M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1-12.]; Malik et al., 2020[Malik, M. A., Lone, S. A., Wani, M. Y., Talukdar, M. I. A., Dar, O. A., Ahmad, A. & Hashmi, A. A. (2020). Bioorg. Chem. 98, 103771.]). For some years, we have been undertaking a study of N,S-chelating di­thio­carbazato ligands and their corresponding metal complexes, which were observed to crystallize with ligands both in trans and cis configurations (Begum et al., 2020[Begum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692-696.]). Considering the above aspects, and in a continuation of our research, we report herein a novel NiII complex with a di­thio­carbazato Schiff base ligand bearing an octyl alkyl chain.

In the title complex (Fig. 1[link]), [Ni(C13H25N2S2)2], the NiII atom is located on an inversion center and exhibits a square-planar coordination environment, defined by two negatively charged N,S-chelating ligands in a trans configuration. The Ni—N1 and Ni—S1 bond lengths are 1.9193 (14) and 2.1788 (5) Å, respectively, with a chelating N1—Ni—S1 bond angle of 86.05 (4)°. With the exception of methyl groups C1 and C2, all of the non-H atoms of the title complex are coplanar, with Ni1 (+0.16 Å) and S1 (–0.15 Å) deviating the most from the least-squares plane (r.m.s. deviation of fitted atoms = 0.073 Å). The long alkyl chain is in a staggered conformation with torsion angles along the chain between 178.20 (19) and 179.81 (15)°. The mol­ecular structure is stabilized by an intra­molecular non-conventional C4—H4⋯S1i hydrogen bond with a C4⋯S1i distance of 3.0965 (16) Å and a C4—H4⋯S1i angle of 121° [symmetry code: (i): 1 − x, 1 − y, 1 − z].

[Figure 1]
Figure 1
Mol­ecular structure of the title complex [Ni(C13H25N2S2)2] with displace­ment ellipsoids drawn at the 50% probability level.

A number of NiII complexes with ligands bearing n-octyl or n-hexyl alkyl chains have been structurally characterized and a comparison of relevant bond lengths and angles is compiled in Table 1[link]. The corresponding values reported above are consistent with those measured in bis-chelated NiII complexes built with similar ligands bearing a meth­oxy­benzyl­idene (Begum et al., 2018[Begum, K., Zangrando, E., Begum, M. S., Sheikh, C. & Miyatake, R. (2018). IUCrData, 3, x181684.]) or thio­phenmethyl­idene (Khan et al., 2023a[Khan, S. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2023a). Acta Cryst. E79, 714-717.]) ligand. On the contrary, in the phenyl­ethyl­idene complex (Khan et al., 2023b[Khan, S. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Zangrando, E. & Ansary, M. R. H. (2023b). Acta Cryst. E79, 1137-1141.]) the two independent Ni—N bond lengths are 0.02 Å longer with respect to those calculated in the present work, while the Ni—S ones are shorter by ca 0.02 Å. It is worth noting that the latter complex exhibits a cis configuration of the ligands. A similar trend is also observed in the complex with the S-n-hexyl 3-(1-phenyl­ethyl­idene)di­thio­carbazate ligand (Begum et al., 2020[Begum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692-696.]). Nickel(II) and copper(II) complexes with di­thio­carbazato ligands have been reported to crystallize in both cis and trans configurations, although the latter are slightly more frequent (Begum et al., 2020[Begum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692-696.]). However, the chelating N,S bond angles in these complexes are similar within their standard deviations and fall into the range 85.67 (5)–86.40 (5)°.

Table 1
Comparative geometrical parameters (Å, °) for bis-chelated Ni complexes with di­thio­carbazato ligands bearing an S-oct­yl/S-hexyl (n) alkyl chain

Complex CSD Refcode n Ni—N Ni—S N—Ni—S
This work 8 1.9193 (14) 2.1788 (5) 86.05 (4)
1 BIQTIH 8 1.9310 (19) 2.1796 (6) 85.67 (5)
2 MIMTIG 8 1.9168 (19) 2.1735 (7) 85.88 (6)
3, ligand 1 QIVYUT 8 1.9318 (16) 2.1506 (6) 86.26 (5)
3, ligand 2 QIVYUT 8 1.9392 (16) 2.1573 (6) 86.40 (5)
4 LUBYAK 6 1.933 (3) 2.1775 (10) 86.04 (9)
5, ligand 1 JUYCAJ 6 1.9112 (12) 2.1785 (4) 85.74 (3)
5, ligand 2 JUYCAJ 6 1.9177 (12) 2.1812 (4) 86.03 (4)
6 WEGKEB 6 1.915 (2) 2.1788 (8) 85.58 (8)
7 TILVUJ 6 1.9295 (10) 2.1600 (4) 85.68 (3)
Notes: Complex 1 (Begum et al., 2018[Begum, K., Zangrando, E., Begum, M. S., Sheikh, C. & Miyatake, R. (2018). IUCrData, 3, x181684.]); 2 (Kahn et al., 2023a[Khan, S. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2023a). Acta Cryst. E79, 714-717.]); 3 (Kahn et al., 2023b[Khan, S. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Zangrando, E. & Ansary, M. R. H. (2023b). Acta Cryst. E79, 1137-1141.]); 4 (Howlader et al., 2015[Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26-m27.]); 5 (Begum et al., 2016[Begum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56-61.]); 6 (Begum et al., 2017[Begum, M. S., Zangrando, E., Sheikh, M. C., Miyatake, R., Howlader, M. B. H., Rahman, M. N. & Ghosh, A. (2017). Transit. Met. Chem. 42, 553-563.]); 7 (Begum et al., 2020[Begum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692-696.]). Complexes 3 and 7 show a cis configuration of ligands.

The packing of the complex is shown in Fig. 2[link]; the complexes stack with an Ni⋯Ni separation of 7.8973 (2) Å along the c axis.

[Figure 2]
Figure 2
View of the crystal packing of the title complex [Ni(C13H25N2S2)2] in a view along [102]; H atoms are not shown for clarity.

Synthesis and crystallization

A solution of Ni(CH3COO)2·4H2O (0.124 g, 0.5 mmol) in 10 ml of methanol was added to a solution of S-octyl-3-(2-methyl­propyl­idene)di­thio­carbazate (0.274 g, 1.0 mmol) in 30 ml of methanol. The resulting mixture was stirred at room temperature for 5 h. The green precipitate that formed was filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Green single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation from a mixture of chloro­form and aceto­nitrile (1:1, v/v) after 7 d.

Yield: 72%; m. p. 333–334 K. FT–IR (KBr discs, cm−1): ν(C—H, alk­yl) 2964, 2922, ν(C=N—N=C) 1634. 1H NMR (400 MHz, CDCl3, p.p.m.) δ: 6.99 (d, 2×1H, C-4, CH=N), 3.29 (m, 2×1H, C-3), 2.98 (t, 2×2H, C-6, –SCH2), 1.65 (m, 2×2H, C-7), 1.38–1.12 (m, 2×10H, C-8, 9, 10, 11, 12), 1.00 (d, 2×6H, C-1, 2, CH3), 0.87 (t, 2×3H, C-13, CH3). HRMS (FAB) Calculated for C26H50N4NiS4 [M + H]+: 605.23494, found [M + H]+: 605.23445.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C13H25N2S2)2]
Mr 605.65
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 11.5962 (4), 18.4606 (5), 7.8973 (2)
β (°) 106.532 (7)
V3) 1620.71 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.88
Crystal size (mm) 0.18 × 0.06 × 0.02
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.781, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 15550, 3702, 2920
Rint 0.049
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.072, 1.04
No. of reflections 3702
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.21
Computer programs: RAPID-AUTO (Rigaku, 2018[Rigaku (2018). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Bis[S-octyl 3-(2-methylpropylidene)dithiocarbazato-κ2N3,S]nickel(II) top
Crystal data top
[Ni(C13H25N2S2)2]F(000) = 652
Mr = 605.65Dx = 1.241 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 11.5962 (4) ÅCell parameters from 11425 reflections
b = 18.4606 (5) Åθ = 1.8–27.5°
c = 7.8973 (2) ŵ = 0.88 mm1
β = 106.532 (7)°T = 173 K
V = 1620.71 (10) Å3Platelet, green
Z = 20.18 × 0.06 × 0.02 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2920 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.049
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1515
Tmin = 0.781, Tmax = 0.983k = 2323
15550 measured reflectionsl = 109
3702 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0305P)2 + 0.4396P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3702 reflectionsΔρmax = 0.37 e Å3
163 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.5000000.5000000.5000000.02167 (9)
S10.60829 (5)0.43196 (2)0.71132 (6)0.02979 (12)
S20.72948 (5)0.47341 (3)1.07771 (6)0.02978 (12)
N10.50276 (14)0.56970 (8)0.68145 (18)0.0234 (3)
N20.58197 (14)0.56067 (8)0.85404 (18)0.0256 (3)
C10.3208 (2)0.71961 (11)0.7769 (3)0.0404 (5)
H1A0.3240680.7544900.8717440.049*
H1B0.2580030.6836410.7735190.049*
H1C0.3023750.7451140.6635530.049*
C20.5430 (2)0.73600 (11)0.8188 (3)0.0428 (5)
H2A0.5263920.7617870.7059320.051*
H2B0.6197370.7102160.8411940.051*
H2C0.5474340.7708330.9140720.051*
C30.44208 (19)0.68158 (10)0.8112 (2)0.0313 (5)
H30.4598400.6557770.9271340.038*
C40.43794 (19)0.62718 (10)0.6691 (2)0.0296 (4)
H40.3813390.6360020.5577530.035*
C50.63166 (16)0.49751 (10)0.8740 (2)0.0236 (4)
C60.71997 (18)0.54982 (10)1.2175 (2)0.0284 (4)
H6A0.7461340.5947071.1705360.034*
H6B0.6360150.5564351.2212530.034*
C70.80161 (19)0.53402 (11)1.4016 (2)0.0318 (4)
H7A0.7748900.4885451.4451970.038*
H7B0.8846090.5263911.3944990.038*
C80.80273 (18)0.59419 (11)1.5335 (2)0.0318 (4)
H8A0.7203710.6008571.5441460.038*
H8B0.8273960.6400711.4889450.038*
C90.88802 (19)0.57782 (12)1.7150 (2)0.0348 (5)
H9A0.8642910.5311261.7569450.042*
H9B0.9703030.5719411.7034760.042*
C100.8907 (2)0.63547 (11)1.8535 (2)0.0351 (5)
H10A0.8092070.6402561.8686140.042*
H10B0.9122170.6825441.8106290.042*
C110.97951 (19)0.61888 (12)2.0320 (2)0.0349 (5)
H11A0.9565430.5723832.0758700.042*
H11B1.0604680.6125542.0157730.042*
C120.9864 (2)0.67654 (12)2.1710 (3)0.0391 (5)
H12A0.9052930.6836472.1859850.047*
H12B1.0113610.7228532.1288010.047*
C131.0734 (2)0.65819 (14)2.3487 (3)0.0470 (6)
H13A1.1532650.6488142.3342340.056*
H13B1.0451220.6149562.3968740.056*
H13C1.0781510.6989272.4299760.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02940 (18)0.01765 (16)0.01852 (16)0.00189 (14)0.00771 (13)0.00255 (13)
S10.0423 (3)0.0221 (2)0.0226 (2)0.0069 (2)0.0055 (2)0.00327 (19)
S20.0348 (3)0.0295 (2)0.0225 (2)0.0061 (2)0.0041 (2)0.0013 (2)
N10.0317 (9)0.0195 (7)0.0187 (7)0.0016 (6)0.0066 (6)0.0007 (6)
N20.0314 (9)0.0245 (8)0.0193 (7)0.0011 (6)0.0050 (6)0.0028 (6)
C10.0578 (15)0.0326 (11)0.0314 (11)0.0130 (10)0.0134 (10)0.0055 (9)
C20.0600 (15)0.0315 (11)0.0382 (11)0.0013 (10)0.0159 (11)0.0078 (9)
C30.0490 (13)0.0223 (9)0.0220 (9)0.0080 (9)0.0091 (9)0.0031 (8)
C40.0434 (12)0.0243 (9)0.0203 (9)0.0065 (8)0.0080 (8)0.0005 (8)
C50.0276 (9)0.0232 (8)0.0209 (8)0.0011 (8)0.0082 (7)0.0016 (8)
C60.0313 (11)0.0297 (10)0.0244 (9)0.0006 (8)0.0083 (8)0.0027 (8)
C70.0351 (11)0.0349 (11)0.0234 (9)0.0026 (9)0.0051 (8)0.0035 (9)
C80.0354 (11)0.0355 (10)0.0236 (9)0.0011 (9)0.0069 (8)0.0033 (9)
C90.0363 (11)0.0414 (12)0.0245 (9)0.0019 (9)0.0053 (8)0.0037 (9)
C100.0434 (13)0.0330 (11)0.0278 (10)0.0023 (9)0.0082 (9)0.0041 (9)
C110.0360 (12)0.0395 (11)0.0281 (10)0.0012 (9)0.0073 (9)0.0083 (9)
C120.0469 (13)0.0388 (12)0.0314 (10)0.0079 (10)0.0110 (9)0.0087 (9)
C130.0447 (14)0.0614 (15)0.0323 (11)0.0070 (11)0.0069 (10)0.0129 (11)
Geometric parameters (Å, º) top
Ni1—N11.9193 (14)C6—H6B0.9900
Ni1—N1i1.9193 (14)C7—C81.520 (3)
Ni1—S1i2.1788 (5)C7—H7A0.9900
Ni1—S12.1788 (5)C7—H7B0.9900
S1—C51.7295 (18)C8—C91.522 (3)
S2—C51.7416 (18)C8—H8A0.9900
S2—C61.8138 (19)C8—H8B0.9900
N1—C41.288 (2)C9—C101.520 (3)
N1—N21.420 (2)C9—H9A0.9900
N2—C51.290 (2)C9—H9B0.9900
C1—C31.526 (3)C10—C111.521 (3)
C1—H1A0.9800C10—H10A0.9900
C1—H1B0.9800C10—H10B0.9900
C1—H1C0.9800C11—C121.514 (3)
C2—C31.530 (3)C11—H11A0.9900
C2—H2A0.9800C11—H11B0.9900
C2—H2B0.9800C12—C131.516 (3)
C2—H2C0.9800C12—H12A0.9900
C3—C41.496 (2)C12—H12B0.9900
C3—H31.0000C13—H13A0.9800
C4—H40.9500C13—H13B0.9800
C6—C71.521 (2)C13—H13C0.9800
C6—H6A0.9900
N1—Ni1—N1i180.0C8—C7—C6113.37 (16)
N1—Ni1—S1i93.95 (4)C8—C7—H7A108.9
N1i—Ni1—S1i86.05 (4)C6—C7—H7A108.9
N1—Ni1—S186.05 (4)C8—C7—H7B108.9
N1i—Ni1—S193.95 (4)C6—C7—H7B108.9
S1i—Ni1—S1180.00 (2)H7A—C7—H7B107.7
C5—S1—Ni195.74 (6)C7—C8—C9112.13 (16)
C5—S2—C6103.11 (8)C7—C8—H8A109.2
C4—N1—N2111.92 (14)C9—C8—H8A109.2
C4—N1—Ni1127.63 (13)C7—C8—H8B109.2
N2—N1—Ni1120.45 (11)C9—C8—H8B109.2
C5—N2—N1111.59 (14)H8A—C8—H8B107.9
C3—C1—H1A109.5C10—C9—C8114.43 (17)
C3—C1—H1B109.5C10—C9—H9A108.7
H1A—C1—H1B109.5C8—C9—H9A108.7
C3—C1—H1C109.5C10—C9—H9B108.7
H1A—C1—H1C109.5C8—C9—H9B108.7
H1B—C1—H1C109.5H9A—C9—H9B107.6
C3—C2—H2A109.5C9—C10—C11113.32 (17)
C3—C2—H2B109.5C9—C10—H10A108.9
H2A—C2—H2B109.5C11—C10—H10A108.9
C3—C2—H2C109.5C9—C10—H10B108.9
H2A—C2—H2C109.5C11—C10—H10B108.9
H2B—C2—H2C109.5H10A—C10—H10B107.7
C4—C3—C1110.15 (16)C12—C11—C10114.35 (17)
C4—C3—C2109.32 (17)C12—C11—H11A108.7
C1—C3—C2111.16 (17)C10—C11—H11A108.7
C4—C3—H3108.7C12—C11—H11B108.7
C1—C3—H3108.7C10—C11—H11B108.7
C2—C3—H3108.7H11A—C11—H11B107.6
N1—C4—C3127.07 (17)C11—C12—C13113.45 (18)
N1—C4—H4116.5C11—C12—H12A108.9
C3—C4—H4116.5C13—C12—H12A108.9
N2—C5—S1124.84 (14)C11—C12—H12B108.9
N2—C5—S2119.66 (13)C13—C12—H12B108.9
S1—C5—S2115.50 (10)H12A—C12—H12B107.7
C7—C6—S2107.68 (13)C12—C13—H13A109.5
C7—C6—H6A110.2C12—C13—H13B109.5
S2—C6—H6A110.2H13A—C13—H13B109.5
C7—C6—H6B110.2C12—C13—H13C109.5
S2—C6—H6B110.2H13A—C13—H13C109.5
H6A—C6—H6B108.5H13B—C13—H13C109.5
C4—N1—N2—C5169.13 (17)C6—S2—C5—N25.12 (18)
Ni1—N1—N2—C510.2 (2)C6—S2—C5—S1174.45 (11)
N2—N1—C4—C31.5 (3)C5—S2—C6—C7179.27 (14)
Ni1—N1—C4—C3179.19 (15)S2—C6—C7—C8179.81 (15)
C1—C3—C4—N1154.1 (2)C6—C7—C8—C9178.30 (18)
C2—C3—C4—N183.5 (2)C7—C8—C9—C10178.72 (18)
N1—N2—C5—S11.2 (2)C8—C9—C10—C11178.20 (19)
N1—N2—C5—S2178.29 (12)C9—C10—C11—C12178.39 (19)
Ni1—S1—C5—N26.18 (17)C10—C11—C12—C13178.8 (2)
Ni1—S1—C5—S2174.28 (9)
Symmetry code: (i) x+1, y+1, z+1.
Comparative geometrical parameters (Å, °) for bis-chelated Ni complexes with dithiocarbazato ligands bearing an S-octyl/S-hexyl (n) alkyl chain top
ComplexCSD RefcodenNi—NNi—SN—Ni—S
This work81.9193 (14)2.1788 (5)86.05 (4)
1BIQTIH81.9310 (19)2.1796 (6)85.67 (5)
2MIMTIG81.9168 (19)2.1735 (7)85.88 (6)
3, ligand 1QIVYUT81.9318 (16)2.1506 (6)86.26 (5)
3, ligand 2QIVYUT81.9392 (16)2.1573 (6)86.40 (5)
4LUBYAK61.933 (3)2.1775 (10)86.04 (9)
5, ligand 1JUYCAJ61.9112 (12)2.1785 (4)85.74 (3)
5, ligand 2JUYCAJ61.9177 (12)2.1812 (4)86.03 (4)
6WEGKEB61.915 (2)2.1788 (8)85.58 (8)
7TILVUJ61.9295 (10)2.1600 (4)85.68 (3)
Notes: Complex 1 (Begum et al., 2018); 2 (Kahn et al., 2023a); 3 (Kahn et al., 2023b); 4 (Howlader et al., 2015); 5 (Begum et al., 2016); 6 (Begum et al., 2017); 7 (Begum et al., 2020). Complexes 3 and 7 show a cis configuration of ligands.
 

Acknowledgements

MBHH and SSK are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University Toyama, for providing facilities for single-crystal X-ray analyses.

References

First citationBegum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692–696.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBegum, K., Zangrando, E., Begum, M. S., Sheikh, C. & Miyatake, R. (2018). IUCrData, 3, x181684.  Google Scholar
First citationBegum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationBegum, M. S., Zangrando, E., Sheikh, M. C., Miyatake, R., Howlader, M. B. H., Rahman, M. N. & Ghosh, A. (2017). Transit. Met. Chem. 42, 553–563.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGou, Y., Jia, X., Hou, L. X., Deng, J. G., Huang, G. J., Jiang, H. W. & Yang, F. (2022). J. Med. Chem. 65, 6677–6689.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHowlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26–m27.  CSD CrossRef IUCr Journals Google Scholar
First citationKhan, S. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2023a). Acta Cryst. E79, 714–717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, S. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Zangrando, E. & Ansary, M. R. H. (2023b). Acta Cryst. E79, 1137–1141.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLow, M. L., Maigre, L., Tahir, M. I., Tiekink, E. R., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J. M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1–12.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMalik, M. A., Lone, S. A., Wani, M. Y., Talukdar, M. I. A., Dar, O. A., Ahmad, A. & Hashmi, A. A. (2020). Bioorg. Chem. 98, 103771.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2018). RAPID AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146