metal-organic compounds
Bis[S-octyl 3-(2-methylpropylidene)dithiocarbazato-κ2N3,S]nickel(II)
aDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, bDepartment of Applied Science, Faculty of Science, Okayama University of Science, Japan, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Sciences, University of Trieste, Italy
*Correspondence e-mail: mbhhowlader@yahoo.com
The central NiII atom in the title complex, [Ni(C13H25N2S2)2], is located on an inversion center and adopts a roughly square-planar coordination environment defined by two chelating N,S donor sets of two symmetry-related ligands in a trans configuration. The Ni—N and Ni—S bond lenghts are 1.9193 (14) and 2.1788 (5) Å, respectively, with a chelating N—Ni—S bond angle of 86.05 (4)°. These data are compared with those measured for similar dithiocarbazato ligands that bear n-octyl or n-hexyl alkyl chains. Slight differences are observed with respect to the phenylethylidene derivative where the ligands are bound cis relative to one another.
Keywords: crystal structure; dithiocarbazato ligand; NiII complex; trans configuration complex; octyl alkyl chain.
CCDC reference: 2335121
Structure description
Dithiocarbazate Schiff base derivatives have emerged as prospective ligands in medicinal chemistry as a result of their various pharmaceutical and biological activities (Gou et al., 2022; Low et al., 2016; Malik et al., 2020). For some years, we have been undertaking a study of N,S-chelating dithiocarbazato ligands and their corresponding metal complexes, which were observed to crystallize with ligands both in trans and cis configurations (Begum et al., 2020). Considering the above aspects, and in a continuation of our research, we report herein a novel NiII complex with a dithiocarbazato Schiff base ligand bearing an octyl alkyl chain.
In the title complex (Fig. 1), [Ni(C13H25N2S2)2], the NiII atom is located on an inversion center and exhibits a square-planar coordination environment, defined by two negatively charged N,S-chelating ligands in a trans configuration. The Ni—N1 and Ni—S1 bond lengths are 1.9193 (14) and 2.1788 (5) Å, respectively, with a chelating N1—Ni—S1 bond angle of 86.05 (4)°. With the exception of methyl groups C1 and C2, all of the non-H atoms of the title complex are coplanar, with Ni1 (+0.16 Å) and S1 (–0.15 Å) deviating the most from the least-squares plane (r.m.s. deviation of fitted atoms = 0.073 Å). The long alkyl chain is in a with torsion angles along the chain between 178.20 (19) and 179.81 (15)°. The molecular structure is stabilized by an intramolecular non-conventional C4—H4⋯S1i hydrogen bond with a C4⋯S1i distance of 3.0965 (16) Å and a C4—H4⋯S1i angle of 121° [symmetry code: (i): 1 − x, 1 − y, 1 − z].
A number of NiII complexes with ligands bearing n-octyl or n-hexyl alkyl chains have been structurally characterized and a comparison of relevant bond lengths and angles is compiled in Table 1. The corresponding values reported above are consistent with those measured in bis-chelated NiII complexes built with similar ligands bearing a methoxybenzylidene (Begum et al., 2018) or thiophenmethylidene (Khan et al., 2023a) ligand. On the contrary, in the phenylethylidene complex (Khan et al., 2023b) the two independent Ni—N bond lengths are 0.02 Å longer with respect to those calculated in the present work, while the Ni—S ones are shorter by ca 0.02 Å. It is worth noting that the latter complex exhibits a cis configuration of the ligands. A similar trend is also observed in the complex with the S-n-hexyl 3-(1-phenylethylidene)dithiocarbazate ligand (Begum et al., 2020). Nickel(II) and copper(II) complexes with dithiocarbazato ligands have been reported to crystallize in both cis and trans configurations, although the latter are slightly more frequent (Begum et al., 2020). However, the chelating N,S bond angles in these complexes are similar within their standard deviations and fall into the range 85.67 (5)–86.40 (5)°.
The packing of the complex is shown in Fig. 2; the complexes stack with an Ni⋯Ni separation of 7.8973 (2) Å along the c axis.
Synthesis and crystallization
A solution of Ni(CH3COO)2·4H2O (0.124 g, 0.5 mmol) in 10 ml of methanol was added to a solution of S-octyl-3-(2-methylpropylidene)dithiocarbazate (0.274 g, 1.0 mmol) in 30 ml of methanol. The resulting mixture was stirred at room temperature for 5 h. The green precipitate that formed was filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Green single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation from a mixture of chloroform and acetonitrile (1:1, v/v) after 7 d.
Yield: 72%; m. p. 333–334 K. FT–IR (KBr discs, cm−1): ν(C—H, alkyl) 2964, 2922, ν(C=N—N=C) 1634. 1H NMR (400 MHz, CDCl3, p.p.m.) δ: 6.99 (d, 2×1H, C-4, CH=N), 3.29 (m, 2×1H, C-3), 2.98 (t, 2×2H, C-6, –SCH2), 1.65 (m, 2×2H, C-7), 1.38–1.12 (m, 2×10H, C-8, 9, 10, 11, 12), 1.00 (d, 2×6H, C-1, 2, CH3), 0.87 (t, 2×3H, C-13, CH3). HRMS (FAB) Calculated for C26H50N4NiS4 [M + H]+: 605.23494, found [M + H]+: 605.23445.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2335121
https://doi.org/10.1107/S241431462400186X/wm4208sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S241431462400186X/wm4208Isup2.hkl
[Ni(C13H25N2S2)2] | F(000) = 652 |
Mr = 605.65 | Dx = 1.241 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
a = 11.5962 (4) Å | Cell parameters from 11425 reflections |
b = 18.4606 (5) Å | θ = 1.8–27.5° |
c = 7.8973 (2) Å | µ = 0.88 mm−1 |
β = 106.532 (7)° | T = 173 K |
V = 1620.71 (10) Å3 | Platelet, green |
Z = 2 | 0.18 × 0.06 × 0.02 mm |
Rigaku R-AXIS RAPID diffractometer | 2920 reflections with I > 2σ(I) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.049 |
ω scans | θmax = 27.5°, θmin = 2.2° |
Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) | h = −15→15 |
Tmin = 0.781, Tmax = 0.983 | k = −23→23 |
15550 measured reflections | l = −10→9 |
3702 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.072 | w = 1/[σ2(Fo2) + (0.0305P)2 + 0.4396P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
3702 reflections | Δρmax = 0.37 e Å−3 |
163 parameters | Δρmin = −0.21 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.500000 | 0.500000 | 0.500000 | 0.02167 (9) | |
S1 | 0.60829 (5) | 0.43196 (2) | 0.71132 (6) | 0.02979 (12) | |
S2 | 0.72948 (5) | 0.47341 (3) | 1.07771 (6) | 0.02978 (12) | |
N1 | 0.50276 (14) | 0.56970 (8) | 0.68145 (18) | 0.0234 (3) | |
N2 | 0.58197 (14) | 0.56067 (8) | 0.85404 (18) | 0.0256 (3) | |
C1 | 0.3208 (2) | 0.71961 (11) | 0.7769 (3) | 0.0404 (5) | |
H1A | 0.324068 | 0.754490 | 0.871744 | 0.049* | |
H1B | 0.258003 | 0.683641 | 0.773519 | 0.049* | |
H1C | 0.302375 | 0.745114 | 0.663553 | 0.049* | |
C2 | 0.5430 (2) | 0.73600 (11) | 0.8188 (3) | 0.0428 (5) | |
H2A | 0.526392 | 0.761787 | 0.705932 | 0.051* | |
H2B | 0.619737 | 0.710216 | 0.841194 | 0.051* | |
H2C | 0.547434 | 0.770833 | 0.914072 | 0.051* | |
C3 | 0.44208 (19) | 0.68158 (10) | 0.8112 (2) | 0.0313 (5) | |
H3 | 0.459840 | 0.655777 | 0.927134 | 0.038* | |
C4 | 0.43794 (19) | 0.62718 (10) | 0.6691 (2) | 0.0296 (4) | |
H4 | 0.381339 | 0.636002 | 0.557753 | 0.035* | |
C5 | 0.63166 (16) | 0.49751 (10) | 0.8740 (2) | 0.0236 (4) | |
C6 | 0.71997 (18) | 0.54982 (10) | 1.2175 (2) | 0.0284 (4) | |
H6A | 0.746134 | 0.594707 | 1.170536 | 0.034* | |
H6B | 0.636015 | 0.556435 | 1.221253 | 0.034* | |
C7 | 0.80161 (19) | 0.53402 (11) | 1.4016 (2) | 0.0318 (4) | |
H7A | 0.774890 | 0.488545 | 1.445197 | 0.038* | |
H7B | 0.884609 | 0.526391 | 1.394499 | 0.038* | |
C8 | 0.80273 (18) | 0.59419 (11) | 1.5335 (2) | 0.0318 (4) | |
H8A | 0.720371 | 0.600857 | 1.544146 | 0.038* | |
H8B | 0.827396 | 0.640071 | 1.488945 | 0.038* | |
C9 | 0.88802 (19) | 0.57782 (12) | 1.7150 (2) | 0.0348 (5) | |
H9A | 0.864291 | 0.531126 | 1.756945 | 0.042* | |
H9B | 0.970303 | 0.571941 | 1.703476 | 0.042* | |
C10 | 0.8907 (2) | 0.63547 (11) | 1.8535 (2) | 0.0351 (5) | |
H10A | 0.809207 | 0.640256 | 1.868614 | 0.042* | |
H10B | 0.912217 | 0.682544 | 1.810629 | 0.042* | |
C11 | 0.97951 (19) | 0.61888 (12) | 2.0320 (2) | 0.0349 (5) | |
H11A | 0.956543 | 0.572383 | 2.075870 | 0.042* | |
H11B | 1.060468 | 0.612554 | 2.015773 | 0.042* | |
C12 | 0.9864 (2) | 0.67654 (12) | 2.1710 (3) | 0.0391 (5) | |
H12A | 0.905293 | 0.683647 | 2.185985 | 0.047* | |
H12B | 1.011361 | 0.722853 | 2.128801 | 0.047* | |
C13 | 1.0734 (2) | 0.65819 (14) | 2.3487 (3) | 0.0470 (6) | |
H13A | 1.153265 | 0.648814 | 2.334234 | 0.056* | |
H13B | 1.045122 | 0.614956 | 2.396874 | 0.056* | |
H13C | 1.078151 | 0.698927 | 2.429976 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02940 (18) | 0.01765 (16) | 0.01852 (16) | 0.00189 (14) | 0.00771 (13) | −0.00255 (13) |
S1 | 0.0423 (3) | 0.0221 (2) | 0.0226 (2) | 0.0069 (2) | 0.0055 (2) | −0.00327 (19) |
S2 | 0.0348 (3) | 0.0295 (2) | 0.0225 (2) | 0.0061 (2) | 0.0041 (2) | −0.0013 (2) |
N1 | 0.0317 (9) | 0.0195 (7) | 0.0187 (7) | 0.0016 (6) | 0.0066 (6) | −0.0007 (6) |
N2 | 0.0314 (9) | 0.0245 (8) | 0.0193 (7) | 0.0011 (6) | 0.0050 (6) | −0.0028 (6) |
C1 | 0.0578 (15) | 0.0326 (11) | 0.0314 (11) | 0.0130 (10) | 0.0134 (10) | −0.0055 (9) |
C2 | 0.0600 (15) | 0.0315 (11) | 0.0382 (11) | 0.0013 (10) | 0.0159 (11) | −0.0078 (9) |
C3 | 0.0490 (13) | 0.0223 (9) | 0.0220 (9) | 0.0080 (9) | 0.0091 (9) | −0.0031 (8) |
C4 | 0.0434 (12) | 0.0243 (9) | 0.0203 (9) | 0.0065 (8) | 0.0080 (8) | 0.0005 (8) |
C5 | 0.0276 (9) | 0.0232 (8) | 0.0209 (8) | −0.0011 (8) | 0.0082 (7) | −0.0016 (8) |
C6 | 0.0313 (11) | 0.0297 (10) | 0.0244 (9) | 0.0006 (8) | 0.0083 (8) | −0.0027 (8) |
C7 | 0.0351 (11) | 0.0349 (11) | 0.0234 (9) | 0.0026 (9) | 0.0051 (8) | −0.0035 (9) |
C8 | 0.0354 (11) | 0.0355 (10) | 0.0236 (9) | −0.0011 (9) | 0.0069 (8) | −0.0033 (9) |
C9 | 0.0363 (11) | 0.0414 (12) | 0.0245 (9) | 0.0019 (9) | 0.0053 (8) | −0.0037 (9) |
C10 | 0.0434 (13) | 0.0330 (11) | 0.0278 (10) | −0.0023 (9) | 0.0082 (9) | −0.0041 (9) |
C11 | 0.0360 (12) | 0.0395 (11) | 0.0281 (10) | −0.0012 (9) | 0.0073 (9) | −0.0083 (9) |
C12 | 0.0469 (13) | 0.0388 (12) | 0.0314 (10) | −0.0079 (10) | 0.0110 (9) | −0.0087 (9) |
C13 | 0.0447 (14) | 0.0614 (15) | 0.0323 (11) | −0.0070 (11) | 0.0069 (10) | −0.0129 (11) |
Ni1—N1 | 1.9193 (14) | C6—H6B | 0.9900 |
Ni1—N1i | 1.9193 (14) | C7—C8 | 1.520 (3) |
Ni1—S1i | 2.1788 (5) | C7—H7A | 0.9900 |
Ni1—S1 | 2.1788 (5) | C7—H7B | 0.9900 |
S1—C5 | 1.7295 (18) | C8—C9 | 1.522 (3) |
S2—C5 | 1.7416 (18) | C8—H8A | 0.9900 |
S2—C6 | 1.8138 (19) | C8—H8B | 0.9900 |
N1—C4 | 1.288 (2) | C9—C10 | 1.520 (3) |
N1—N2 | 1.420 (2) | C9—H9A | 0.9900 |
N2—C5 | 1.290 (2) | C9—H9B | 0.9900 |
C1—C3 | 1.526 (3) | C10—C11 | 1.521 (3) |
C1—H1A | 0.9800 | C10—H10A | 0.9900 |
C1—H1B | 0.9800 | C10—H10B | 0.9900 |
C1—H1C | 0.9800 | C11—C12 | 1.514 (3) |
C2—C3 | 1.530 (3) | C11—H11A | 0.9900 |
C2—H2A | 0.9800 | C11—H11B | 0.9900 |
C2—H2B | 0.9800 | C12—C13 | 1.516 (3) |
C2—H2C | 0.9800 | C12—H12A | 0.9900 |
C3—C4 | 1.496 (2) | C12—H12B | 0.9900 |
C3—H3 | 1.0000 | C13—H13A | 0.9800 |
C4—H4 | 0.9500 | C13—H13B | 0.9800 |
C6—C7 | 1.521 (2) | C13—H13C | 0.9800 |
C6—H6A | 0.9900 | ||
N1—Ni1—N1i | 180.0 | C8—C7—C6 | 113.37 (16) |
N1—Ni1—S1i | 93.95 (4) | C8—C7—H7A | 108.9 |
N1i—Ni1—S1i | 86.05 (4) | C6—C7—H7A | 108.9 |
N1—Ni1—S1 | 86.05 (4) | C8—C7—H7B | 108.9 |
N1i—Ni1—S1 | 93.95 (4) | C6—C7—H7B | 108.9 |
S1i—Ni1—S1 | 180.00 (2) | H7A—C7—H7B | 107.7 |
C5—S1—Ni1 | 95.74 (6) | C7—C8—C9 | 112.13 (16) |
C5—S2—C6 | 103.11 (8) | C7—C8—H8A | 109.2 |
C4—N1—N2 | 111.92 (14) | C9—C8—H8A | 109.2 |
C4—N1—Ni1 | 127.63 (13) | C7—C8—H8B | 109.2 |
N2—N1—Ni1 | 120.45 (11) | C9—C8—H8B | 109.2 |
C5—N2—N1 | 111.59 (14) | H8A—C8—H8B | 107.9 |
C3—C1—H1A | 109.5 | C10—C9—C8 | 114.43 (17) |
C3—C1—H1B | 109.5 | C10—C9—H9A | 108.7 |
H1A—C1—H1B | 109.5 | C8—C9—H9A | 108.7 |
C3—C1—H1C | 109.5 | C10—C9—H9B | 108.7 |
H1A—C1—H1C | 109.5 | C8—C9—H9B | 108.7 |
H1B—C1—H1C | 109.5 | H9A—C9—H9B | 107.6 |
C3—C2—H2A | 109.5 | C9—C10—C11 | 113.32 (17) |
C3—C2—H2B | 109.5 | C9—C10—H10A | 108.9 |
H2A—C2—H2B | 109.5 | C11—C10—H10A | 108.9 |
C3—C2—H2C | 109.5 | C9—C10—H10B | 108.9 |
H2A—C2—H2C | 109.5 | C11—C10—H10B | 108.9 |
H2B—C2—H2C | 109.5 | H10A—C10—H10B | 107.7 |
C4—C3—C1 | 110.15 (16) | C12—C11—C10 | 114.35 (17) |
C4—C3—C2 | 109.32 (17) | C12—C11—H11A | 108.7 |
C1—C3—C2 | 111.16 (17) | C10—C11—H11A | 108.7 |
C4—C3—H3 | 108.7 | C12—C11—H11B | 108.7 |
C1—C3—H3 | 108.7 | C10—C11—H11B | 108.7 |
C2—C3—H3 | 108.7 | H11A—C11—H11B | 107.6 |
N1—C4—C3 | 127.07 (17) | C11—C12—C13 | 113.45 (18) |
N1—C4—H4 | 116.5 | C11—C12—H12A | 108.9 |
C3—C4—H4 | 116.5 | C13—C12—H12A | 108.9 |
N2—C5—S1 | 124.84 (14) | C11—C12—H12B | 108.9 |
N2—C5—S2 | 119.66 (13) | C13—C12—H12B | 108.9 |
S1—C5—S2 | 115.50 (10) | H12A—C12—H12B | 107.7 |
C7—C6—S2 | 107.68 (13) | C12—C13—H13A | 109.5 |
C7—C6—H6A | 110.2 | C12—C13—H13B | 109.5 |
S2—C6—H6A | 110.2 | H13A—C13—H13B | 109.5 |
C7—C6—H6B | 110.2 | C12—C13—H13C | 109.5 |
S2—C6—H6B | 110.2 | H13A—C13—H13C | 109.5 |
H6A—C6—H6B | 108.5 | H13B—C13—H13C | 109.5 |
C4—N1—N2—C5 | 169.13 (17) | C6—S2—C5—N2 | 5.12 (18) |
Ni1—N1—N2—C5 | −10.2 (2) | C6—S2—C5—S1 | −174.45 (11) |
N2—N1—C4—C3 | 1.5 (3) | C5—S2—C6—C7 | 179.27 (14) |
Ni1—N1—C4—C3 | −179.19 (15) | S2—C6—C7—C8 | 179.81 (15) |
C1—C3—C4—N1 | −154.1 (2) | C6—C7—C8—C9 | −178.30 (18) |
C2—C3—C4—N1 | 83.5 (2) | C7—C8—C9—C10 | −178.72 (18) |
N1—N2—C5—S1 | 1.2 (2) | C8—C9—C10—C11 | −178.20 (19) |
N1—N2—C5—S2 | −178.29 (12) | C9—C10—C11—C12 | 178.39 (19) |
Ni1—S1—C5—N2 | 6.18 (17) | C10—C11—C12—C13 | 178.8 (2) |
Ni1—S1—C5—S2 | −174.28 (9) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Complex | CSD Refcode | n | Ni—N | Ni—S | N—Ni—S |
This work | – | 8 | 1.9193 (14) | 2.1788 (5) | 86.05 (4) |
1 | BIQTIH | 8 | 1.9310 (19) | 2.1796 (6) | 85.67 (5) |
2 | MIMTIG | 8 | 1.9168 (19) | 2.1735 (7) | 85.88 (6) |
3, ligand 1 | QIVYUT | 8 | 1.9318 (16) | 2.1506 (6) | 86.26 (5) |
3, ligand 2 | QIVYUT | 8 | 1.9392 (16) | 2.1573 (6) | 86.40 (5) |
4 | LUBYAK | 6 | 1.933 (3) | 2.1775 (10) | 86.04 (9) |
5, ligand 1 | JUYCAJ | 6 | 1.9112 (12) | 2.1785 (4) | 85.74 (3) |
5, ligand 2 | JUYCAJ | 6 | 1.9177 (12) | 2.1812 (4) | 86.03 (4) |
6 | WEGKEB | 6 | 1.915 (2) | 2.1788 (8) | 85.58 (8) |
7 | TILVUJ | 6 | 1.9295 (10) | 2.1600 (4) | 85.68 (3) |
Notes: Complex 1 (Begum et al., 2018); 2 (Kahn et al., 2023a); 3 (Kahn et al., 2023b); 4 (Howlader et al., 2015); 5 (Begum et al., 2016); 6 (Begum et al., 2017); 7 (Begum et al., 2020). Complexes 3 and 7 show a cis configuration of ligands. |
Acknowledgements
MBHH and SSK are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS and RM acknowledge the Center for Environmental Conservation and Research Safety, University Toyama, for providing facilities for single-crystal X-ray analyses.
References
Begum, K., Begum, S., Sheikh, C., Miyatake, R. & Zangrando, E. (2020). Acta Cryst. E76, 692–696. Web of Science CSD CrossRef IUCr Journals Google Scholar
Begum, K., Zangrando, E., Begum, M. S., Sheikh, C. & Miyatake, R. (2018). IUCrData, 3, x181684. Google Scholar
Begum, M. S., Zangrando, E., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Hossain, M. M., Alam, M. M. & Hasnat, M. A. (2016). Polyhedron, 105, 56–61. Web of Science CSD CrossRef CAS Google Scholar
Begum, M. S., Zangrando, E., Sheikh, M. C., Miyatake, R., Howlader, M. B. H., Rahman, M. N. & Ghosh, A. (2017). Transit. Met. Chem. 42, 553–563. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gou, Y., Jia, X., Hou, L. X., Deng, J. G., Huang, G. J., Jiang, H. W. & Yang, F. (2022). J. Med. Chem. 65, 6677–6689. Web of Science CSD CrossRef CAS PubMed Google Scholar
Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26–m27. CSD CrossRef IUCr Journals Google Scholar
Khan, S. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2023a). Acta Cryst. E79, 714–717. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khan, S. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R., Zangrando, E. & Ansary, M. R. H. (2023b). Acta Cryst. E79, 1137–1141. Web of Science CSD CrossRef IUCr Journals Google Scholar
Low, M. L., Maigre, L., Tahir, M. I., Tiekink, E. R., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J. M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). Eur. J. Med. Chem. 120, 1–12. Web of Science CSD CrossRef CAS PubMed Google Scholar
Malik, M. A., Lone, S. A., Wani, M. Y., Talukdar, M. I. A., Dar, O. A., Ahmad, A. & Hashmi, A. A. (2020). Bioorg. Chem. 98, 103771. Web of Science CrossRef PubMed Google Scholar
Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2018). RAPID AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.