inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Crystal structure of defect scheelite-type Nd2/3[WO4]

crossmark logo

aUniversity of Stuttgart, Institute of Inorganic Chemistry, Pfaffenwaldring 55, 70569 Stuttgart, Germany
*Correspondence e-mail: ingo.hartenbach@iac.uni-stuttgart.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 January 2024; accepted 22 February 2024; online 6 March 2024)

Neodymium(III) ortho-oxidotungstate(VI) was synthesized as a side-product in an unsuccessful synthesis attempt at fluoride derivatives of neodymium tungstate in fused silica ampoules, using neodymium(III) oxide, neodymium(III) fluoride and tungsten trioxide. Violet, platelet-shaped single crystals of the title compound emerged of the bulk, which crystallize in the defect scheelite type with a trigonal dodeca­hedral coordination of oxide anions around the Nd3+ cations and the hexa­valent tungsten cations situated in the centers of oxide tetra­hedra.

3D view (loading...)
[Scheme 3D1]

Structure description

Nd2/3[WO4] crystallizes in the defect scheelite structure type (space group I41/a, Dickinson, 1920[Dickinson, R. G. (1920). J. Am. Chem. Soc. 42, 85-93.]; see Fig. 1[link]). The tungsten cations (Wyckoff position 4a, site symmetry [\overline{4}]) form regular tetra­hedra [WO4]2− together with four oxide anions, exhibiting a bond length of 1.783 (4) Å. The neodymium cations (Wyckoff position 4b, site symmetry [\overline{4}]) are coord­inated by eight oxide anions, forming a slightly distorted trigonal dodeca­hedron, in which two different bond lengths, 2.483 (4) Å and 2.516 (4) Å, each one appearing four times, are found (Fig. 2[link]). The distance between two neodymium cations is 3.9116 (2) Å. The corresponding oxidomolybdate(IV), Nd2/3[MoO4], crystallizes in the same structure type (Schustereit et al., 2011[Schustereit, T., Müller, S. L., Schleid, T. & Hartenbach, I. (2011). Crystals, 1, 244-253.]).

[Figure 1]
Figure 1
Augmented unit cell of Nd2/3[WO4] in a view along [100], with [WO4]2− anions in polyhedral representation and displacement ellipsoids drawn at the 95% probability level.
[Figure 2]
Figure 2
Cationic coordination sphere around the Nd3+ cation in the shape of a trigonal [NdO8]13− dodeca­hedron; displacement ellipsoids are drawn at the 95% probability level. [Symmetry codes: (i) y − [{1\over 4}], −x + [{3\over 4}], z + [{3\over 4}]; (ii) x − [{1\over 2}], y, −z + [{1\over 2}]; (iii) −x + [{1\over 2}], −y + [{1\over 2}], −z + [{1\over 2}]; (iv) −y + [{1\over 4}], x − [{1\over 4}], z + [{3\over 4}]; (v) x − [{1\over 2}], y − [{1\over 2}], z + [{1\over 2}]; (vi) −x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (vii) −y + [{3\over 4}], x − [{1\over 4}], −z + [{3\over 4}]; (viii) y − [{3\over 4}], −x + [{3\over 4}], −z + [{3\over 4}]].

Another, formula-analogous polymorph of neodymium(III) ortho-oxidotungstate(VI) with the composition Nd2[WO4]3 is already known in literature (Weil et al., 2009[Weil, M., Stöger, B. & Aleksandrov, L. (2009). Acta Cryst. E65, i45.]), with this compound crystallizing in the scheelite-derived Eu2[WO4]3 structure type (space group C2/c; Templeton & Zalkin, 1963[Templeton, D. H. & Zalkin, A. (1963). Acta Cryst. 16, 762-766.]). The main difference between these polymorphs is the emergence of a fifth, slightly longer distance from W6+ to O2− in Nd2[WO4]3, resulting in [W2O8]4– entities, built of two edge-sharing rectangular pyramids being present in its crystal structure, while in the title compound Nd2/3[WO4] the [WO4]2− tetra­hedra remain isolated from each other. A rare-earth metal oxidotungstate(VI), crystallizing in the scheelite-type with a fully occupied cationic position is known with Eu2+ cations, namely Eu[WO4] (López-Moreno et al., 2011[López-Moreno, S., Rodríguez-Hernández, P., Muñoz, A., Romero, A. H. & Errandonea, D. (2011). Phys. Rev. B, 84, 064108.]).

Synthesis and crystallization

Single-crystals of Nd2/3[WO4] formed in an unsuccessful synthesis attempt to achieve fluoride derivatives of neodym­ium tungstate, which was performed in fused silica ampoules, utilizing neodymium trifluoride, neodymium(III) oxide and tungsten trioxide as starting materials at approximately 1123 K. The crystals emerged as violet platelets and remained stable under atmospheric conditions.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The site occupancy of the neo­dym­ium cations was fixed at 2/3 to maintain electroneutrality.

Table 1
Experimental details

Crystal data
Chemical formula Nd2/3[WO4]
Mr 344.01
Crystal system, space group Tetragonal, I41/a
Temperature (K) 293
a, c (Å) 5.3048 (3), 11.4999 (9)
V3) 323.62 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 45.98
Crystal size (mm) 0.09 × 0.08 × 0.06
 
Data collection
Diffractometer Stoe IPDS
Absorption correction Numerical [X-SHAPE (Stoe & Cie, 1997[Stoe & Cie. (1997). X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); HABITUS (Herrendorf, 1995[Herrendorf, W. (1995). HABITUS. Universities of Karlsruhe and Giessen, Germany.])]
Tmin, Tmax 0.015, 0.060
No. of measured, independent and observed [I > 2σ(I)] reflections 2201, 291, 231
Rint 0.061
(sin θ/λ)max−1) 0.754
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 1.01
No. of reflections 291
No. of parameters 15
Δρmax, Δρmin (e Å−3) 1.08, −1.26
Computer programs: DIF4 and REDU4 (Stoe & Cie, 1991[Stoe & Cie. (1991). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Neodymium(III) ortho-oxidotungstate(VI) top
Crystal data top
Nd0.67[WO4]Dx = 7.061 Mg m3
Mr = 344.01Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 1393 reflections
a = 5.3048 (3) Åθ = 2.9–33.0°
c = 11.4999 (9) ŵ = 45.98 mm1
V = 323.62 (4) Å3T = 293 K
Z = 4Platelet, violet
F(000) = 5840.09 × 0.08 × 0.06 mm
Data collection top
Stoe IPDS
diffractometer
291 independent reflections
Radiation source: fine-focus sealed tube231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω–scansθmax = 32.4°, θmin = 4.2°
Absorption correction: numerical
[X-SHAPE (Stoe & Cie, 1997); HABITUS (Herrendorf, 1995)]
h = 87
Tmin = 0.015, Tmax = 0.060k = 87
2201 measured reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0265P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max < 0.001
wR(F2) = 0.050Δρmax = 1.08 e Å3
S = 1.01Δρmin = 1.26 e Å3
291 reflectionsExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
15 parametersExtinction coefficient: 0.088 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nd0.0000000.2500000.6250000.0163 (2)0.6667
W0.0000000.2500000.1250000.0135 (2)
O0.2382 (8)0.3998 (7)0.0401 (3)0.0221 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd0.0176 (3)0.0176 (3)0.0139 (4)0.0000.0000.000
W0.0138 (2)0.0138 (2)0.0130 (3)0.0000.0000.000
O0.026 (2)0.022 (2)0.0185 (17)0.0001 (15)0.0047 (16)0.0011 (16)
Geometric parameters (Å, º) top
Nd—Oi2.483 (4)Nd—Ndix3.9116 (2)
Nd—Oii2.483 (4)Nd—Ndx3.9116 (2)
Nd—Oiii2.483 (4)Nd—Ndxi3.9116 (2)
Nd—Oiv2.483 (4)Nd—Ndxii3.9116 (2)
Nd—Ov2.516 (4)W—Oxiii1.783 (4)
Nd—Ovi2.516 (4)W—Oxiv1.783 (4)
Nd—Ovii2.516 (4)W—Oxv1.783 (4)
Nd—Oviii2.516 (4)W—O1.783 (4)
Oi—Nd—Oii125.78 (12)Ov—Nd—Ovii98.65 (6)
Oi—Nd—Oiii125.78 (12)Ovi—Nd—Ovii98.65 (7)
Oii—Nd—Oiii80.25 (19)Oi—Nd—Oviii68.34 (10)
Oi—Nd—Oiv80.2 (2)Oii—Nd—Oviii72.96 (8)
Oii—Nd—Oiv125.78 (12)Oiii—Nd—Oviii152.39 (16)
Oiii—Nd—Oiv125.78 (12)Oiv—Nd—Oviii77.05 (15)
Oi—Nd—Ov152.39 (16)Ov—Nd—Oviii98.65 (7)
Oii—Nd—Ov68.34 (10)Ovi—Nd—Oviii98.65 (6)
Oiii—Nd—Ov77.05 (15)Ovii—Nd—Oviii134.35 (18)
Oiv—Nd—Ov72.96 (8)Oxiii—W—Oxiv107.43 (13)
Oi—Nd—Ovi72.96 (8)Oxiii—W—Oxv107.43 (13)
Oii—Nd—Ovi77.05 (15)Oxiv—W—Oxv113.6 (3)
Oiii—Nd—Ovi68.34 (10)Oxiii—W—O113.6 (3)
Oiv—Nd—Ovi152.39 (16)Oxiv—W—O107.43 (13)
Ov—Nd—Ovi134.35 (18)Oxv—W—O107.43 (13)
Oi—Nd—Ovii77.05 (15)W—O—Ndiii132.2 (2)
Oii—Nd—Ovii152.39 (16)W—O—Ndxvi120.51 (19)
Oiii—Nd—Ovii72.96 (8)Ndiii—O—Ndxvi102.95 (15)
Oiv—Nd—Ovii68.34 (10)
Symmetry codes: (i) y1/4, x+3/4, z+3/4; (ii) x1/2, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) y+1/4, x1/4, z+3/4; (v) x1/2, y1/2, z+1/2; (vi) x+1/2, y+1, z+1/2; (vii) y+3/4, x1/4, z+3/4; (viii) y3/4, x+3/4, z+3/4; (ix) x, y, z+1; (x) x+1/2, y+1/2, z+3/2; (xi) x1/2, y+1/2, z+3/2; (xii) x, y+1, z+1; (xiii) x, y+1/2, z; (xiv) y+1/4, x+1/4, z+1/4; (xv) y1/4, x+1/4, z+1/4; (xvi) x+1/2, y+1/2, z1/2.
 

Funding information

Funding for this research was provided by: a German Research Foundation (DFG) grant ‘Open Access Publication Funding/2023–2024/University of Stuttgart’ (512689491).

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDickinson, R. G. (1920). J. Am. Chem. Soc. 42, 85–93.  CrossRef ICSD CAS Google Scholar
First citationHerrendorf, W. (1995). HABITUS. Universities of Karlsruhe and Giessen, Germany.  Google Scholar
First citationLópez-Moreno, S., Rodríguez-Hernández, P., Muñoz, A., Romero, A. H. & Errandonea, D. (2011). Phys. Rev. B, 84, 064108.  Google Scholar
First citationSchustereit, T., Müller, S. L., Schleid, T. & Hartenbach, I. (2011). Crystals, 1, 244–253.  Web of Science CrossRef ICSD CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie. (1991). DIF4 and REDU4. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStoe & Cie. (1997). X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTempleton, D. H. & Zalkin, A. (1963). Acta Cryst. 16, 762–766.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationWeil, M., Stöger, B. & Aleksandrov, L. (2009). Acta Cryst. E65, i45.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146