organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

{N-[1-(2-Oxidophen­yl)ethyl­­idene]-DL-alaninato}(pentane-1,5-di­yl)silicon(IV)

crossmark logo

aInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 4 March 2024; accepted 8 March 2024; online 19 March 2024)

The title SiIV complex, C16H21NO3Si, is built up by a tridentate dinegative Schiff base ligand bound to a sila­cyclo­hexane unit. The coordination geometry of the penta­coordinated SiIV atom is a distorted trigonal bipyramid. The presence of the sila­cyclo­hexane ring in the complex leads to an unusual coordination geometry of the SiIV atom with the N atom from the Schiff base ligand and an alkyl-C atom in apical positions of the trigonal bipyramid. There is a disorder of the methyl group at the imine bond with two orientations resolved for the H atoms [major orientation = 0.55 (3)]. In the crystal, C—H⋯O inter­actions are found within corrugated layers of mol­ecules parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Schiff base ligands with additional O donor ligands are suitable ligands to generate penta­coordinated SiIV complexes (Wagler et al., 2014[Wagler, J., Böhme, U. & Kroke, E. (2014). Struct. Bond. 155, 29-106.]). The Schiff base N-[1-(2-hy­droxy­phen­yl)ethyl­idene]-DL-alanine has been utilized previously for the preparation of a CuII complex (Zhao et al., 2008[Zhao, G.-Q., Xue, L.-W., Hao, C.-J., Chen, L.-H. & Wu, H.-T. (2008). Acta Cryst. E64, m1553.]). The CuII atom of this complex is coordinated to the tridentate Schiff base ligand and the bidentate bis­(3,5-di­methyl­pyrazol-1-yl)methane ligand. This Schiff base ligand has not yet been used for the generation of silicon complexes. Schiff base ligands derived from salicyl aldehyde (Warncke et al., 2012[Warncke, G., Böhme, U., Günther, B. & Kronstein, M. (2012). Polyhedron, 47, 46-52.]), o-hy­droxy­aceto­phenone (Böhme et al., 2006[Böhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806-809.]) and naphthyl aldehyde (Schwarzer et al., 2018[Schwarzer, S., Böhme, U., Fels, S., Günther, B. & Brendler, E. (2018). Inorg. Chim. Acta, 483, 136-147.]) have been used for the preparation of related SiIV complexes.

The title compound, C16H21NO3Si, crystallizes with one molecule in the asymmetric unit (Fig. 1[link]). The Schiff base ligand is formally dinegatively charged and coordinates the SiIV atom via the phen­oxy-O1, imine-N1 and carboxyl-O2 atoms. The SiIV atom is part of a sila­cyclo­hexane ring and is bound therein via the C12 and C16 atoms. The coordination geometry of this penta­coordinate SiIV complex was analyzed with the parameter τ (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The largest bond angle β and the second largest angle α at the SiIV atom are used to calculate this parameter with τ = (β − α)/60°. A value of τ = 0 indicates a perfect square pyramid, whereas a value of τ = 1 indicates a perfect trigonal bipyramid. In the complex under investigation the largest angle at the SiIV atom is C16—Si1—N1 with 167.09 (8)°. The second largest angle is O1—Si1—O2 with 123.53 (7)° (see Table 1[link]). This leads to a parameter τ = 0.73, which corresponds to a distorted trigonal bipyramid. The apical positions are represented by N1 and C16, while the atoms O1, O2 and C12 are the atoms in the trigonal plane. Silicon complexes with tridentate O,N,O′-Schiff base ligands and two alkyl groups form mainly distorted trigonal bipyramidal geometries in the solid state (Schwarzer et al., 2018[Schwarzer, S., Böhme, U., Fels, S., Günther, B. & Brendler, E. (2018). Inorg. Chim. Acta, 483, 136-147.]; Böhme & Fels, 2023a[Böhme, U. & Fels, S. (2023a). IUCrData, 8, x230306.],b[Böhme, U. & Fels, S. (2023b). Z. Kristallogr. New Cryst. Struct. 238, 603-605.]). The apical positions of the coordination polyhedron are usually occupied by the two O atoms of the Schiff base, when there are two single alkyl groups bound to the SiIV atom. Having N and C atoms in apical positions has so far only been observed in the case of a sila­cyclo­butane derivative (Schwarzer et al., 2018[Schwarzer, S., Böhme, U., Fels, S., Günther, B. & Brendler, E. (2018). Inorg. Chim. Acta, 483, 136-147.]). The sila­cyclo­hexane ring in the complex under investigation leads to a similar coordination geometry as in the sila­cyclo­butane derivative.

Table 1
Selected geometric parameters (Å, °)

Si1—O1 1.7029 (13) Si1—C16 1.8961 (19)
Si1—O2 1.7474 (14) Si1—N1 2.0883 (16)
Si1—C12 1.8804 (19)    
       
O1—Si1—O2 123.53 (7) C12—Si1—C16 99.85 (8)
O1—Si1—C12 112.99 (8) O1—Si1—N1 85.08 (6)
O2—Si1—C12 121.46 (8) O2—Si1—N1 79.30 (6)
O1—Si1—C16 94.47 (8) C12—Si1—N1 92.16 (7)
O2—Si1—C16 90.31 (8) C16—Si1—N1 167.09 (8)
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

The Cremer–Pople puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) for the six-membered sila­cyclo­hexane ring are Q = 0.619 (2) Å, Θ = 177.96 (19)° and φ = 244 (3)°, which is indicative of a chair conformation (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]).

The Si1–O1 bond [1.7029 (13) Å] is shorter than Si1–O2 [1.7474 (14) Å], which is easily explained by the electronegative character of the phenyl bound O1 atom and the carboxyl type O2 atom. The Si1—C and Si1—N1 bonds, Table 1[link], have similar lengths to those in comparable penta­coordinate silicon complexes (Böhme et al., 2006[Böhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806-809.]; Böhme & Günther, 2007[Böhme, U. & Günther, B. (2007). Inorg. Chem. Commun. 10, 482-484.]; Böhme & Föhn, 2007[Böhme, U. & Foehn, I. C. (2007). Acta Cryst. C63, o613-o616.]; Schwarzer et al., 2018[Schwarzer, S., Böhme, U., Fels, S., Günther, B. & Brendler, E. (2018). Inorg. Chim. Acta, 483, 136-147.]).

Inter­molecular inter­actions are observed between C2—H2⋯O3 and C12—H12B⋯O3, Table 2[link]. The hydrogen bonds lead to corrugated layers of mol­ecules lying parallel to the crystallographic ab plane.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O3i 0.97 (2) 2.45 (2) 3.197 (2) 133.1 (17)
C12—H12B⋯O3ii 0.99 2.64 3.571 (2) 155
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+1, -y, -z].

Synthesis and crystallization

The sodium salt of the Schiff base ligand was prepared from 2-hy­droxy­aceto­phenone and alanine according to a literature procedure (Fels, 2015[Fels, S. (2015). Höherkoordinierte Komplexverbindungen des Siliciums, Germaniums und Zinns mit chiralen O, N, O'-Liganden. Dissertation (Ph. D. thesis), Freiberg, 2015.]). To a solution of 1.12 g (4.89 mmol) sodium{N-[1-(2-hy­droxy­phen­yl)ethyl­idene]-DL-alaninate} in 30 ml of dry THF was added 0.64 g (6.36 mmol) tri­ethyl­amine, which led to a yellow suspension. The ClSiMe3 (1.27 g, 11.74 mmol) precursor was added with a syringe via a septum. A white precipitate of tri­ethyl­ammonium chloride formed during stirring at 50°C for 1 h. The tri­ethyl­ammonium chloride was filtered off and the residue was washed with 10 ml THF. The filtrate was reduced in a vacuum and was carefully freed from volatile components at 90°C in a vacuum. The remaining pale-yellow liquid was dissolved in 20 ml of THF. 1,1-Di­chloro­sila­cyclo­hexane (0.71 g, 4.18 mmol) was diluted with 5 ml of THF and added with a syringe to the solution. A pale-yellow suspension formed. This suspension was stirred for 20 days at room temperature. Filtration of the suspension gave a pale-yellow solution, which was reduced in a vacuum to a gray–brown solid. Recrystallization from the mixed solvents of chloro­form (8 ml) and n-hexane (5 ml) yielded pale-yellow crystals suitable for crystal structure analysis, yield: 0.57 g (45%), m.p. = 435 K.

1H NMR (400 MHz, CDCl3) δ (p.p.m.): 1.49 (m, 3H, CH-CH3), 0.49–1.87 (mm, 10H, CH2), 2.47 (s, 3H, CH3—C=N), 4.30 (m, 1H, CH—COO), 6.94 (m, 1H, Har); 7.00 (m, 1H, Har); 7.41 (m, 1H, Har); 7.51 (m, 1H, Har); 13C NMR (101 MHz, CDCl3) δ (p.p.m.): 17.2 (CH3—C=N), 17.9 (CH2—Si—CH2), 19.5 (CH—CH3), 24.8, 25.1, 28.8 (3 CH2), 56.6 (CH—COO), 119.5, 120.0, 121.1, 127.6, 134.5 (5 Car), 157.9 (CH=N), 170.5 (Car—O), 171.3 (COO); 29Si NMR (CDCl3, 79.5 MHz) δ (p.p.m.): −67.0.

Refinement

Crystal data, data collection and structure refinement details for the title compound are summarized in Table 3[link]. There is disorder at the C5-methyl group, which was resolved with two positions of the methyl-H atoms; the major orientation had a site occupancy of 0.55 (3).

Table 3
Experimental details

Crystal data
Chemical formula C16H21NO3Si
Mr 303.43
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 6.7236 (5), 7.2935 (5), 16.1649 (11)
α, β, γ (°) 77.570 (6), 80.354 (5), 89.412 (6)
V3) 762.90 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.30 × 0.15 × 0.05
 
Data collection
Diffractometer STOE IPDS 2
Absorption correction Integration (X-RED; Stoe & Cie, 2009[Stoe & Cie. (2009). X-RED & X-AREA, Darmstadt, Germany.])
Tmin, Tmax 0.832, 0.984
No. of measured, independent and observed [I > 2σ(I)] reflections 21687, 3289, 2700
Rint 0.090
(sin θ/λ)max−1) 0.637
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.107, 1.10
No. of reflections 3289
No. of parameters 197
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.28
Computer programs: X-AREA and X-RED (Stoe & Cie, 2009[Stoe & Cie. (2009). X-RED & X-AREA, Darmstadt, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

{N-[1-(2-Oxidophenyl)ethylidene]-DL-alaninato}(pentane-1,5-diyl)silicon(IV) top
Crystal data top
C16H21NO3SiZ = 2
Mr = 303.43F(000) = 324
Triclinic, P1Dx = 1.321 Mg m3
a = 6.7236 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.2935 (5) ÅCell parameters from 21687 reflections
c = 16.1649 (11) Åθ = 2.6–27.3°
α = 77.570 (6)°µ = 0.16 mm1
β = 80.354 (5)°T = 173 K
γ = 89.412 (6)°Prism, colourless
V = 762.90 (10) Å30.30 × 0.15 × 0.05 mm
Data collection top
STOE IPDS 2
diffractometer
3289 independent reflections
Radiation source: fine-focus sealed tube2700 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
Detector resolution: 6.67 pixels mm-1θmax = 26.9°, θmin = 2.6°
rotation method, ω scansh = 88
Absorption correction: integration
(X-RED; Stoe & Cie, 2009)
k = 99
Tmin = 0.832, Tmax = 0.984l = 2020
21687 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.4037P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
3289 reflectionsΔρmax = 0.37 e Å3
197 parametersΔρmin = 0.28 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Si10.46505 (7)0.07538 (7)0.20401 (3)0.02309 (14)
O10.44797 (19)0.20645 (18)0.28018 (9)0.0275 (3)
O20.5843 (2)0.15539 (19)0.09769 (8)0.0298 (3)
O30.5822 (2)0.2919 (2)0.04004 (9)0.0378 (3)
N10.2467 (2)0.2525 (2)0.15507 (10)0.0238 (3)
C10.4944 (3)0.2453 (3)0.03353 (12)0.0284 (4)
C20.2731 (3)0.2819 (3)0.06087 (12)0.0263 (4)
H20.255 (3)0.412 (3)0.0344 (14)0.031 (6)*
C30.1425 (3)0.1443 (3)0.03230 (13)0.0325 (4)
H3A0.1679650.0155030.0607430.049*
H3B0.1763070.1582550.0301520.049*
H3C0.0002900.1710950.0480140.049*
C40.1068 (3)0.3338 (2)0.19815 (12)0.0249 (4)
C50.0402 (3)0.4663 (3)0.15733 (13)0.0334 (4)
H5A0.0328770.5560000.1077530.050*0.55 (3)
H5B0.1093870.5345390.1993640.050*0.55 (3)
H5C0.1397020.3946470.1383280.050*0.55 (3)
H5D0.0270280.4630400.0963680.050*0.45 (3)
H5E0.0111140.5941900.1627670.050*0.45 (3)
H5F0.1780710.4279560.1863110.050*0.45 (3)
C60.0976 (3)0.2987 (2)0.29215 (12)0.0252 (4)
C70.2700 (3)0.2417 (2)0.32842 (12)0.0254 (4)
C80.2650 (3)0.2224 (3)0.41654 (13)0.0321 (4)
H80.3833390.1887020.4405180.039*
C90.0885 (3)0.2519 (3)0.46913 (14)0.0375 (5)
H90.0863390.2377910.5290890.045*
C100.0865 (3)0.3024 (3)0.43487 (14)0.0368 (5)
H100.2080710.3200550.4714040.044*
C110.0815 (3)0.3263 (3)0.34729 (13)0.0310 (4)
H110.2001350.3619780.3238460.037*
C120.2849 (3)0.1331 (2)0.23573 (12)0.0270 (4)
H12A0.1452090.0896680.2345120.032*
H12B0.3160840.2149060.1939350.032*
C130.3009 (3)0.2467 (3)0.32707 (13)0.0293 (4)
H13A0.2649480.1648270.3685830.035*
H13B0.2013790.3527900.3427050.035*
C140.5115 (3)0.3243 (3)0.33537 (14)0.0349 (5)
H14A0.5055930.4060520.3932430.042*
H14B0.5488390.4031870.2926860.042*
C150.6765 (3)0.1726 (3)0.32199 (14)0.0333 (4)
H15A0.8057110.2337380.3308400.040*
H15B0.6417470.0956440.3656450.040*
C160.7044 (3)0.0436 (3)0.23210 (13)0.0284 (4)
H16A0.7547460.1184780.1889790.034*
H16B0.8085460.0541940.2284080.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0225 (2)0.0213 (2)0.0264 (3)0.00193 (18)0.00397 (19)0.00730 (18)
O10.0249 (6)0.0293 (7)0.0323 (7)0.0046 (5)0.0078 (5)0.0133 (5)
O20.0266 (7)0.0327 (7)0.0284 (7)0.0029 (5)0.0019 (5)0.0051 (5)
O30.0418 (8)0.0396 (8)0.0284 (7)0.0018 (6)0.0026 (6)0.0062 (6)
N10.0259 (8)0.0206 (7)0.0258 (8)0.0009 (6)0.0055 (6)0.0061 (6)
C10.0330 (10)0.0235 (8)0.0294 (10)0.0014 (7)0.0039 (8)0.0085 (7)
C20.0316 (10)0.0244 (9)0.0235 (9)0.0017 (7)0.0060 (7)0.0054 (7)
C30.0346 (10)0.0344 (10)0.0314 (10)0.0003 (8)0.0086 (8)0.0110 (8)
C40.0259 (9)0.0203 (8)0.0293 (9)0.0013 (7)0.0063 (7)0.0062 (7)
C50.0352 (11)0.0316 (10)0.0339 (10)0.0115 (8)0.0088 (9)0.0064 (8)
C60.0288 (9)0.0216 (8)0.0272 (9)0.0027 (7)0.0056 (7)0.0091 (7)
C70.0294 (9)0.0189 (8)0.0294 (9)0.0029 (7)0.0056 (7)0.0082 (7)
C80.0372 (11)0.0312 (10)0.0316 (10)0.0052 (8)0.0122 (8)0.0101 (8)
C90.0478 (13)0.0388 (11)0.0280 (10)0.0071 (9)0.0080 (9)0.0108 (8)
C100.0385 (11)0.0400 (11)0.0309 (10)0.0073 (9)0.0002 (9)0.0105 (9)
C110.0309 (10)0.0305 (9)0.0329 (10)0.0066 (8)0.0060 (8)0.0099 (8)
C120.0263 (9)0.0238 (8)0.0326 (10)0.0022 (7)0.0069 (7)0.0082 (7)
C130.0294 (9)0.0224 (8)0.0341 (10)0.0021 (7)0.0021 (8)0.0045 (7)
C140.0350 (11)0.0286 (10)0.0391 (11)0.0064 (8)0.0074 (9)0.0027 (8)
C150.0304 (10)0.0344 (10)0.0365 (11)0.0072 (8)0.0101 (8)0.0072 (8)
C160.0224 (9)0.0275 (9)0.0360 (10)0.0037 (7)0.0052 (8)0.0086 (8)
Geometric parameters (Å, º) top
Si1—O11.7029 (13)C6—C71.404 (3)
Si1—O21.7474 (14)C6—C111.413 (3)
Si1—C121.8804 (19)C7—C81.396 (3)
Si1—C161.8961 (19)C8—C91.383 (3)
Si1—N12.0883 (16)C8—H80.9500
O1—C71.369 (2)C9—C101.396 (3)
O2—C11.334 (2)C9—H90.9500
O3—C11.214 (2)C10—C111.383 (3)
N1—C41.291 (2)C10—H100.9500
N1—C21.472 (2)C11—H110.9500
C1—C21.518 (3)C12—C131.550 (3)
C2—C31.532 (3)C12—H12A0.9900
C2—H20.97 (2)C12—H12B0.9900
C3—H3A0.9800C13—C141.536 (3)
C3—H3B0.9800C13—H13A0.9900
C3—H3C0.9800C13—H13B0.9900
C4—C61.476 (3)C14—C151.531 (3)
C4—C51.507 (3)C14—H14A0.9900
C5—H5A0.9800C14—H14B0.9900
C5—H5B0.9800C15—C161.535 (3)
C5—H5C0.9800C15—H15A0.9900
C5—H5D0.9800C15—H15B0.9900
C5—H5E0.9800C16—H16A0.9900
C5—H5F0.9800C16—H16B0.9900
O1—Si1—O2123.53 (7)C11—C6—C4121.21 (17)
O1—Si1—C12112.99 (8)O1—C7—C8117.48 (17)
O2—Si1—C12121.46 (8)O1—C7—C6122.46 (17)
O1—Si1—C1694.47 (8)C8—C7—C6120.05 (17)
O2—Si1—C1690.31 (8)C9—C8—C7120.32 (19)
C12—Si1—C1699.85 (8)C9—C8—H8119.8
O1—Si1—N185.08 (6)C7—C8—H8119.8
O2—Si1—N179.30 (6)C8—C9—C10120.56 (19)
C12—Si1—N192.16 (7)C8—C9—H9119.7
C16—Si1—N1167.09 (8)C10—C9—H9119.7
C7—O1—Si1123.83 (12)C11—C10—C9119.46 (19)
C1—O2—Si1125.22 (12)C11—C10—H10120.3
C4—N1—C2121.84 (16)C9—C10—H10120.3
C4—N1—Si1126.93 (13)C10—C11—C6120.99 (19)
C2—N1—Si1111.20 (11)C10—C11—H11119.5
O3—C1—O2122.73 (18)C6—C11—H11119.5
O3—C1—C2123.35 (18)C13—C12—Si1110.69 (13)
O2—C1—C2113.92 (16)C13—C12—H12A109.5
N1—C2—C1104.45 (15)Si1—C12—H12A109.5
N1—C2—C3112.04 (15)C13—C12—H12B109.5
C1—C2—C3109.48 (15)Si1—C12—H12B109.5
N1—C2—H2111.4 (13)H12A—C12—H12B108.1
C1—C2—H2105.5 (13)C14—C13—C12113.67 (16)
C3—C2—H2113.3 (13)C14—C13—H13A108.8
C2—C3—H3A109.5C12—C13—H13A108.8
C2—C3—H3B109.5C14—C13—H13B108.8
H3A—C3—H3B109.5C12—C13—H13B108.8
C2—C3—H3C109.5H13A—C13—H13B107.7
H3A—C3—H3C109.5C15—C14—C13114.03 (16)
H3B—C3—H3C109.5C15—C14—H14A108.7
N1—C4—C6117.34 (16)C13—C14—H14A108.7
N1—C4—C5123.61 (17)C15—C14—H14B108.7
C6—C4—C5119.02 (16)C13—C14—H14B108.7
C4—C5—H5A109.5H14A—C14—H14B107.6
C4—C5—H5B109.5C14—C15—C16112.77 (17)
H5A—C5—H5B109.5C14—C15—H15A109.0
C4—C5—H5C109.5C16—C15—H15A109.0
H5A—C5—H5C109.5C14—C15—H15B109.0
H5B—C5—H5C109.5C16—C15—H15B109.0
C4—C5—H5D109.5H15A—C15—H15B107.8
C4—C5—H5E109.5C15—C16—Si1113.81 (13)
H5D—C5—H5E109.5C15—C16—H16A108.8
C4—C5—H5F109.5Si1—C16—H16A108.8
H5D—C5—H5F109.5C15—C16—H16B108.8
H5E—C5—H5F109.5Si1—C16—H16B108.8
C7—C6—C11118.54 (17)H16A—C16—H16B107.7
C7—C6—C4120.22 (17)
O2—Si1—O1—C7125.72 (14)Si1—O1—C7—C8134.77 (15)
C12—Si1—O1—C738.25 (16)Si1—O1—C7—C646.4 (2)
C16—Si1—O1—C7140.93 (14)C11—C6—C7—O1178.09 (16)
N1—Si1—O1—C752.01 (14)C4—C6—C7—O13.7 (3)
O1—Si1—O2—C190.30 (16)C11—C6—C7—C83.1 (3)
C12—Si1—O2—C172.36 (16)C4—C6—C7—C8175.16 (16)
C16—Si1—O2—C1174.13 (15)O1—C7—C8—C9178.58 (17)
N1—Si1—O2—C113.60 (14)C6—C7—C8—C92.5 (3)
Si1—O2—C1—O3177.12 (14)C7—C8—C9—C100.3 (3)
Si1—O2—C1—C22.3 (2)C8—C9—C10—C111.3 (3)
C4—N1—C2—C1154.00 (16)C9—C10—C11—C60.7 (3)
Si1—N1—C2—C124.26 (16)C7—C6—C11—C101.5 (3)
C4—N1—C2—C387.6 (2)C4—C6—C11—C10176.72 (18)
Si1—N1—C2—C394.15 (16)O1—Si1—C12—C1350.11 (14)
O3—C1—C2—N1164.67 (17)O2—Si1—C12—C13145.55 (12)
O2—C1—C2—N115.9 (2)C16—Si1—C12—C1349.07 (14)
O3—C1—C2—C375.2 (2)N1—Si1—C12—C13135.68 (13)
O2—C1—C2—C3104.25 (18)Si1—C12—C13—C1460.40 (18)
C2—N1—C4—C6178.26 (15)C12—C13—C14—C1564.6 (2)
Si1—N1—C4—C60.3 (2)C13—C14—C15—C1661.2 (2)
C2—N1—C4—C50.6 (3)C14—C15—C16—Si156.1 (2)
Si1—N1—C4—C5177.39 (14)O1—Si1—C16—C1565.85 (15)
N1—C4—C6—C723.1 (2)O2—Si1—C16—C15170.47 (14)
C5—C4—C6—C7154.68 (17)C12—Si1—C16—C1548.42 (16)
N1—C4—C6—C11158.72 (17)N1—Si1—C16—C15153.3 (3)
C5—C4—C6—C1123.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O3i0.97 (2)2.45 (2)3.197 (2)133.1 (17)
C12—H12B···O3ii0.992.643.571 (2)155
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Funding information

The authors thank TU Bergakademie Freiberg (Freiberg, Germany) for financial support. Open Access Funding by the Publication Fund of the TU Bergakademie Freiberg.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBöhme, U. & Fels, S. (2023a). IUCrData, 8, x230306.  Google Scholar
First citationBöhme, U. & Fels, S. (2023b). Z. Kristallogr. New Cryst. Struct. 238, 603–605.  Google Scholar
First citationBöhme, U. & Foehn, I. C. (2007). Acta Cryst. C63, o613–o616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBöhme, U. & Günther, B. (2007). Inorg. Chem. Commun. 10, 482–484.  Google Scholar
First citationBöhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806–809.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFels, S. (2015). Höherkoordinierte Komplexverbindungen des Siliciums, Germaniums und Zinns mit chiralen O, N, O'-Liganden. Dissertation (Ph. D. thesis), Freiberg, 2015.  Google Scholar
First citationSchwarzer, S., Böhme, U., Fels, S., Günther, B. & Brendler, E. (2018). Inorg. Chim. Acta, 483, 136–147.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2009). X-RED & X-AREA, Darmstadt, Germany.  Google Scholar
First citationWagler, J., Böhme, U. & Kroke, E. (2014). Struct. Bond. 155, 29–106.  Web of Science CrossRef CAS Google Scholar
First citationWarncke, G., Böhme, U., Günther, B. & Kronstein, M. (2012). Polyhedron, 47, 46–52.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, G.-Q., Xue, L.-W., Hao, C.-J., Chen, L.-H. & Wu, H.-T. (2008). Acta Cryst. E64, m1553.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146