organic compounds
{N-[1-(2-Oxidophenyl)ethylidene]-DL-alaninato}(pentane-1,5-diyl)silicon(IV)
aInstitut für Anorganische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany
*Correspondence e-mail: uwe.boehme@chemie.tu-freiberg.de
The title SiIV complex, C16H21NO3Si, is built up by a tridentate dinegative Schiff base ligand bound to a silacyclohexane unit. The coordination geometry of the pentacoordinated SiIV atom is a distorted trigonal bipyramid. The presence of the silacyclohexane ring in the complex leads to an unusual coordination geometry of the SiIV atom with the N atom from the Schiff base ligand and an alkyl-C atom in apical positions of the trigonal bipyramid. There is a disorder of the methyl group at the imine bond with two orientations resolved for the H atoms [major orientation = 0.55 (3)]. In the crystal, C—H⋯O interactions are found within corrugated layers of molecules parallel to the ab plane.
Keywords: crystal structure; silicon complex; Schiff base ligand; pentacoordination.
CCDC reference: 2338755
Structure description
Schiff base ligands with additional O donor ligands are suitable ligands to generate pentacoordinated SiIV complexes (Wagler et al., 2014). The Schiff base N-[1-(2-hydroxyphenyl)ethylidene]-DL-alanine has been utilized previously for the preparation of a CuII complex (Zhao et al., 2008). The CuII atom of this complex is coordinated to the tridentate Schiff base ligand and the bidentate bis(3,5-dimethylpyrazol-1-yl)methane ligand. This Schiff base ligand has not yet been used for the generation of silicon complexes. Schiff base ligands derived from salicyl aldehyde (Warncke et al., 2012), o-hydroxyacetophenone (Böhme et al., 2006) and naphthyl aldehyde (Schwarzer et al., 2018) have been used for the preparation of related SiIV complexes.
The title compound, C16H21NO3Si, crystallizes with one molecule in the (Fig. 1). The Schiff base ligand is formally dinegatively charged and coordinates the SiIV atom via the phenoxy-O1, imine-N1 and carboxyl-O2 atoms. The SiIV atom is part of a silacyclohexane ring and is bound therein via the C12 and C16 atoms. The coordination geometry of this pentacoordinate SiIV complex was analyzed with the parameter τ (Addison et al., 1984). The largest bond angle β and the second largest angle α at the SiIV atom are used to calculate this parameter with τ = (β − α)/60°. A value of τ = 0 indicates a perfect square pyramid, whereas a value of τ = 1 indicates a perfect trigonal bipyramid. In the complex under investigation the largest angle at the SiIV atom is C16—Si1—N1 with 167.09 (8)°. The second largest angle is O1—Si1—O2 with 123.53 (7)° (see Table 1). This leads to a parameter τ = 0.73, which corresponds to a distorted trigonal bipyramid. The apical positions are represented by N1 and C16, while the atoms O1, O2 and C12 are the atoms in the trigonal plane. Silicon complexes with tridentate O,N,O′-Schiff base ligands and two form mainly distorted trigonal bipyramidal geometries in the solid state (Schwarzer et al., 2018; Böhme & Fels, 2023a,b). The apical positions of the are usually occupied by the two O atoms of the Schiff base, when there are two single bound to the SiIV atom. Having N and C atoms in apical positions has so far only been observed in the case of a silacyclobutane derivative (Schwarzer et al., 2018). The silacyclohexane ring in the complex under investigation leads to a similar coordination geometry as in the silacyclobutane derivative.
|
The Cremer–Pople puckering parameters (Cremer & Pople, 1975) for the six-membered silacyclohexane ring are Q = 0.619 (2) Å, Θ = 177.96 (19)° and φ = 244 (3)°, which is indicative of a chair conformation (Boeyens, 1978).
The Si1–O1 bond [1.7029 (13) Å] is shorter than Si1–O2 [1.7474 (14) Å], which is easily explained by the electronegative character of the phenyl bound O1 atom and the carboxyl type O2 atom. The Si1—C and Si1—N1 bonds, Table 1, have similar lengths to those in comparable pentacoordinate silicon complexes (Böhme et al., 2006; Böhme & Günther, 2007; Böhme & Föhn, 2007; Schwarzer et al., 2018).
Intermolecular interactions are observed between C2—H2⋯O3 and C12—H12B⋯O3, Table 2. The hydrogen bonds lead to corrugated layers of molecules lying parallel to the crystallographic ab plane.
Synthesis and crystallization
The sodium salt of the Schiff base ligand was prepared from 2-hydroxyacetophenone and alanine according to a literature procedure (Fels, 2015). To a solution of 1.12 g (4.89 mmol) sodium{N-[1-(2-hydroxyphenyl)ethylidene]-DL-alaninate} in 30 ml of dry THF was added 0.64 g (6.36 mmol) triethylamine, which led to a yellow suspension. The ClSiMe3 (1.27 g, 11.74 mmol) precursor was added with a syringe via a septum. A white precipitate of triethylammonium chloride formed during stirring at 50°C for 1 h. The triethylammonium chloride was filtered off and the residue was washed with 10 ml THF. The filtrate was reduced in a vacuum and was carefully freed from volatile components at 90°C in a vacuum. The remaining pale-yellow liquid was dissolved in 20 ml of THF. 1,1-Dichlorosilacyclohexane (0.71 g, 4.18 mmol) was diluted with 5 ml of THF and added with a syringe to the solution. A pale-yellow suspension formed. This suspension was stirred for 20 days at room temperature. Filtration of the suspension gave a pale-yellow solution, which was reduced in a vacuum to a gray–brown solid. Recrystallization from the mixed solvents of chloroform (8 ml) and n-hexane (5 ml) yielded pale-yellow crystals suitable for analysis, yield: 0.57 g (45%), m.p. = 435 K.
1H NMR (400 MHz, CDCl3) δ (p.p.m.): 1.49 (m, 3H, CH-CH3), 0.49–1.87 (mm, 10H, CH2), 2.47 (s, 3H, CH3—C=N), 4.30 (m, 1H, CH—COO), 6.94 (m, 1H, Har); 7.00 (m, 1H, Har); 7.41 (m, 1H, Har); 7.51 (m, 1H, Har); 13C NMR (101 MHz, CDCl3) δ (p.p.m.): 17.2 (CH3—C=N), 17.9 (CH2—Si—CH2), 19.5 (CH—CH3), 24.8, 25.1, 28.8 (3 CH2), 56.6 (CH—COO), 119.5, 120.0, 121.1, 127.6, 134.5 (5 Car), 157.9 (CH=N), 170.5 (Car—O), 171.3 (COO); 29Si NMR (CDCl3, 79.5 MHz) δ (p.p.m.): −67.0.
Refinement
Crystal data, data collection and structure . There is disorder at the C5-methyl group, which was resolved with two positions of the methyl-H atoms; the major orientation had a site occupancy of 0.55 (3).
details for the title compound are summarized in Table 3Structural data
CCDC reference: 2338755
https://doi.org/10.1107/S2414314624002281/tk4102sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624002281/tk4102Isup2.hkl
C16H21NO3Si | Z = 2 |
Mr = 303.43 | F(000) = 324 |
Triclinic, P1 | Dx = 1.321 Mg m−3 |
a = 6.7236 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.2935 (5) Å | Cell parameters from 21687 reflections |
c = 16.1649 (11) Å | θ = 2.6–27.3° |
α = 77.570 (6)° | µ = 0.16 mm−1 |
β = 80.354 (5)° | T = 173 K |
γ = 89.412 (6)° | Prism, colourless |
V = 762.90 (10) Å3 | 0.30 × 0.15 × 0.05 mm |
STOE IPDS 2 diffractometer | 3289 independent reflections |
Radiation source: fine-focus sealed tube | 2700 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.090 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.9°, θmin = 2.6° |
rotation method, ω scans | h = −8→8 |
Absorption correction: integration (X-RED; Stoe & Cie, 2009) | k = −9→9 |
Tmin = 0.832, Tmax = 0.984 | l = −20→20 |
21687 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.042 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0375P)2 + 0.4037P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
3289 reflections | Δρmax = 0.37 e Å−3 |
197 parameters | Δρmin = −0.28 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Si1 | 0.46505 (7) | 0.07538 (7) | 0.20401 (3) | 0.02309 (14) | |
O1 | 0.44797 (19) | 0.20645 (18) | 0.28018 (9) | 0.0275 (3) | |
O2 | 0.5843 (2) | 0.15539 (19) | 0.09769 (8) | 0.0298 (3) | |
O3 | 0.5822 (2) | 0.2919 (2) | −0.04004 (9) | 0.0378 (3) | |
N1 | 0.2467 (2) | 0.2525 (2) | 0.15507 (10) | 0.0238 (3) | |
C1 | 0.4944 (3) | 0.2453 (3) | 0.03353 (12) | 0.0284 (4) | |
C2 | 0.2731 (3) | 0.2819 (3) | 0.06087 (12) | 0.0263 (4) | |
H2 | 0.255 (3) | 0.412 (3) | 0.0344 (14) | 0.031 (6)* | |
C3 | 0.1425 (3) | 0.1443 (3) | 0.03230 (13) | 0.0325 (4) | |
H3A | 0.167965 | 0.015503 | 0.060743 | 0.049* | |
H3B | 0.176307 | 0.158255 | −0.030152 | 0.049* | |
H3C | −0.000290 | 0.171095 | 0.048014 | 0.049* | |
C4 | 0.1068 (3) | 0.3338 (2) | 0.19815 (12) | 0.0249 (4) | |
C5 | −0.0402 (3) | 0.4663 (3) | 0.15733 (13) | 0.0334 (4) | |
H5A | 0.032877 | 0.556000 | 0.107753 | 0.050* | 0.55 (3) |
H5B | −0.109387 | 0.534539 | 0.199364 | 0.050* | 0.55 (3) |
H5C | −0.139702 | 0.394647 | 0.138328 | 0.050* | 0.55 (3) |
H5D | −0.027028 | 0.463040 | 0.096368 | 0.050* | 0.45 (3) |
H5E | −0.011114 | 0.594190 | 0.162767 | 0.050* | 0.45 (3) |
H5F | −0.178071 | 0.427956 | 0.186311 | 0.050* | 0.45 (3) |
C6 | 0.0976 (3) | 0.2987 (2) | 0.29215 (12) | 0.0252 (4) | |
C7 | 0.2700 (3) | 0.2417 (2) | 0.32842 (12) | 0.0254 (4) | |
C8 | 0.2650 (3) | 0.2224 (3) | 0.41654 (13) | 0.0321 (4) | |
H8 | 0.383339 | 0.188702 | 0.440518 | 0.039* | |
C9 | 0.0885 (3) | 0.2519 (3) | 0.46913 (14) | 0.0375 (5) | |
H9 | 0.086339 | 0.237791 | 0.529089 | 0.045* | |
C10 | −0.0865 (3) | 0.3024 (3) | 0.43487 (14) | 0.0368 (5) | |
H10 | −0.208071 | 0.320055 | 0.471404 | 0.044* | |
C11 | −0.0815 (3) | 0.3263 (3) | 0.34729 (13) | 0.0310 (4) | |
H11 | −0.200135 | 0.361978 | 0.323846 | 0.037* | |
C12 | 0.2849 (3) | −0.1331 (2) | 0.23573 (12) | 0.0270 (4) | |
H12A | 0.145209 | −0.089668 | 0.234512 | 0.032* | |
H12B | 0.316084 | −0.214906 | 0.193935 | 0.032* | |
C13 | 0.3009 (3) | −0.2467 (3) | 0.32707 (13) | 0.0293 (4) | |
H13A | 0.264948 | −0.164827 | 0.368583 | 0.035* | |
H13B | 0.201379 | −0.352790 | 0.342705 | 0.035* | |
C14 | 0.5115 (3) | −0.3243 (3) | 0.33537 (14) | 0.0349 (5) | |
H14A | 0.505593 | −0.406052 | 0.393243 | 0.042* | |
H14B | 0.548839 | −0.403187 | 0.292686 | 0.042* | |
C15 | 0.6765 (3) | −0.1726 (3) | 0.32199 (14) | 0.0333 (4) | |
H15A | 0.805711 | −0.233738 | 0.330840 | 0.040* | |
H15B | 0.641747 | −0.095644 | 0.365645 | 0.040* | |
C16 | 0.7044 (3) | −0.0436 (3) | 0.23210 (13) | 0.0284 (4) | |
H16A | 0.754746 | −0.118478 | 0.188979 | 0.034* | |
H16B | 0.808546 | 0.054194 | 0.228408 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0225 (2) | 0.0213 (2) | 0.0264 (3) | 0.00193 (18) | −0.00397 (19) | −0.00730 (18) |
O1 | 0.0249 (6) | 0.0293 (7) | 0.0323 (7) | 0.0046 (5) | −0.0078 (5) | −0.0133 (5) |
O2 | 0.0266 (7) | 0.0327 (7) | 0.0284 (7) | 0.0029 (5) | −0.0019 (5) | −0.0051 (5) |
O3 | 0.0418 (8) | 0.0396 (8) | 0.0284 (7) | −0.0018 (6) | 0.0026 (6) | −0.0062 (6) |
N1 | 0.0259 (8) | 0.0206 (7) | 0.0258 (8) | 0.0009 (6) | −0.0055 (6) | −0.0061 (6) |
C1 | 0.0330 (10) | 0.0235 (8) | 0.0294 (10) | −0.0014 (7) | −0.0039 (8) | −0.0085 (7) |
C2 | 0.0316 (10) | 0.0244 (9) | 0.0235 (9) | 0.0017 (7) | −0.0060 (7) | −0.0054 (7) |
C3 | 0.0346 (10) | 0.0344 (10) | 0.0314 (10) | 0.0003 (8) | −0.0086 (8) | −0.0110 (8) |
C4 | 0.0259 (9) | 0.0203 (8) | 0.0293 (9) | 0.0013 (7) | −0.0063 (7) | −0.0062 (7) |
C5 | 0.0352 (11) | 0.0316 (10) | 0.0339 (10) | 0.0115 (8) | −0.0088 (9) | −0.0064 (8) |
C6 | 0.0288 (9) | 0.0216 (8) | 0.0272 (9) | 0.0027 (7) | −0.0056 (7) | −0.0091 (7) |
C7 | 0.0294 (9) | 0.0189 (8) | 0.0294 (9) | 0.0029 (7) | −0.0056 (7) | −0.0082 (7) |
C8 | 0.0372 (11) | 0.0312 (10) | 0.0316 (10) | 0.0052 (8) | −0.0122 (8) | −0.0101 (8) |
C9 | 0.0478 (13) | 0.0388 (11) | 0.0280 (10) | 0.0071 (9) | −0.0080 (9) | −0.0108 (8) |
C10 | 0.0385 (11) | 0.0400 (11) | 0.0309 (10) | 0.0073 (9) | 0.0002 (9) | −0.0105 (9) |
C11 | 0.0309 (10) | 0.0305 (9) | 0.0329 (10) | 0.0066 (8) | −0.0060 (8) | −0.0099 (8) |
C12 | 0.0263 (9) | 0.0238 (8) | 0.0326 (10) | 0.0022 (7) | −0.0069 (7) | −0.0082 (7) |
C13 | 0.0294 (9) | 0.0224 (8) | 0.0341 (10) | 0.0021 (7) | −0.0021 (8) | −0.0045 (7) |
C14 | 0.0350 (11) | 0.0286 (10) | 0.0391 (11) | 0.0064 (8) | −0.0074 (9) | −0.0027 (8) |
C15 | 0.0304 (10) | 0.0344 (10) | 0.0365 (11) | 0.0072 (8) | −0.0101 (8) | −0.0072 (8) |
C16 | 0.0224 (9) | 0.0275 (9) | 0.0360 (10) | 0.0037 (7) | −0.0052 (8) | −0.0086 (8) |
Si1—O1 | 1.7029 (13) | C6—C7 | 1.404 (3) |
Si1—O2 | 1.7474 (14) | C6—C11 | 1.413 (3) |
Si1—C12 | 1.8804 (19) | C7—C8 | 1.396 (3) |
Si1—C16 | 1.8961 (19) | C8—C9 | 1.383 (3) |
Si1—N1 | 2.0883 (16) | C8—H8 | 0.9500 |
O1—C7 | 1.369 (2) | C9—C10 | 1.396 (3) |
O2—C1 | 1.334 (2) | C9—H9 | 0.9500 |
O3—C1 | 1.214 (2) | C10—C11 | 1.383 (3) |
N1—C4 | 1.291 (2) | C10—H10 | 0.9500 |
N1—C2 | 1.472 (2) | C11—H11 | 0.9500 |
C1—C2 | 1.518 (3) | C12—C13 | 1.550 (3) |
C2—C3 | 1.532 (3) | C12—H12A | 0.9900 |
C2—H2 | 0.97 (2) | C12—H12B | 0.9900 |
C3—H3A | 0.9800 | C13—C14 | 1.536 (3) |
C3—H3B | 0.9800 | C13—H13A | 0.9900 |
C3—H3C | 0.9800 | C13—H13B | 0.9900 |
C4—C6 | 1.476 (3) | C14—C15 | 1.531 (3) |
C4—C5 | 1.507 (3) | C14—H14A | 0.9900 |
C5—H5A | 0.9800 | C14—H14B | 0.9900 |
C5—H5B | 0.9800 | C15—C16 | 1.535 (3) |
C5—H5C | 0.9800 | C15—H15A | 0.9900 |
C5—H5D | 0.9800 | C15—H15B | 0.9900 |
C5—H5E | 0.9800 | C16—H16A | 0.9900 |
C5—H5F | 0.9800 | C16—H16B | 0.9900 |
O1—Si1—O2 | 123.53 (7) | C11—C6—C4 | 121.21 (17) |
O1—Si1—C12 | 112.99 (8) | O1—C7—C8 | 117.48 (17) |
O2—Si1—C12 | 121.46 (8) | O1—C7—C6 | 122.46 (17) |
O1—Si1—C16 | 94.47 (8) | C8—C7—C6 | 120.05 (17) |
O2—Si1—C16 | 90.31 (8) | C9—C8—C7 | 120.32 (19) |
C12—Si1—C16 | 99.85 (8) | C9—C8—H8 | 119.8 |
O1—Si1—N1 | 85.08 (6) | C7—C8—H8 | 119.8 |
O2—Si1—N1 | 79.30 (6) | C8—C9—C10 | 120.56 (19) |
C12—Si1—N1 | 92.16 (7) | C8—C9—H9 | 119.7 |
C16—Si1—N1 | 167.09 (8) | C10—C9—H9 | 119.7 |
C7—O1—Si1 | 123.83 (12) | C11—C10—C9 | 119.46 (19) |
C1—O2—Si1 | 125.22 (12) | C11—C10—H10 | 120.3 |
C4—N1—C2 | 121.84 (16) | C9—C10—H10 | 120.3 |
C4—N1—Si1 | 126.93 (13) | C10—C11—C6 | 120.99 (19) |
C2—N1—Si1 | 111.20 (11) | C10—C11—H11 | 119.5 |
O3—C1—O2 | 122.73 (18) | C6—C11—H11 | 119.5 |
O3—C1—C2 | 123.35 (18) | C13—C12—Si1 | 110.69 (13) |
O2—C1—C2 | 113.92 (16) | C13—C12—H12A | 109.5 |
N1—C2—C1 | 104.45 (15) | Si1—C12—H12A | 109.5 |
N1—C2—C3 | 112.04 (15) | C13—C12—H12B | 109.5 |
C1—C2—C3 | 109.48 (15) | Si1—C12—H12B | 109.5 |
N1—C2—H2 | 111.4 (13) | H12A—C12—H12B | 108.1 |
C1—C2—H2 | 105.5 (13) | C14—C13—C12 | 113.67 (16) |
C3—C2—H2 | 113.3 (13) | C14—C13—H13A | 108.8 |
C2—C3—H3A | 109.5 | C12—C13—H13A | 108.8 |
C2—C3—H3B | 109.5 | C14—C13—H13B | 108.8 |
H3A—C3—H3B | 109.5 | C12—C13—H13B | 108.8 |
C2—C3—H3C | 109.5 | H13A—C13—H13B | 107.7 |
H3A—C3—H3C | 109.5 | C15—C14—C13 | 114.03 (16) |
H3B—C3—H3C | 109.5 | C15—C14—H14A | 108.7 |
N1—C4—C6 | 117.34 (16) | C13—C14—H14A | 108.7 |
N1—C4—C5 | 123.61 (17) | C15—C14—H14B | 108.7 |
C6—C4—C5 | 119.02 (16) | C13—C14—H14B | 108.7 |
C4—C5—H5A | 109.5 | H14A—C14—H14B | 107.6 |
C4—C5—H5B | 109.5 | C14—C15—C16 | 112.77 (17) |
H5A—C5—H5B | 109.5 | C14—C15—H15A | 109.0 |
C4—C5—H5C | 109.5 | C16—C15—H15A | 109.0 |
H5A—C5—H5C | 109.5 | C14—C15—H15B | 109.0 |
H5B—C5—H5C | 109.5 | C16—C15—H15B | 109.0 |
C4—C5—H5D | 109.5 | H15A—C15—H15B | 107.8 |
C4—C5—H5E | 109.5 | C15—C16—Si1 | 113.81 (13) |
H5D—C5—H5E | 109.5 | C15—C16—H16A | 108.8 |
C4—C5—H5F | 109.5 | Si1—C16—H16A | 108.8 |
H5D—C5—H5F | 109.5 | C15—C16—H16B | 108.8 |
H5E—C5—H5F | 109.5 | Si1—C16—H16B | 108.8 |
C7—C6—C11 | 118.54 (17) | H16A—C16—H16B | 107.7 |
C7—C6—C4 | 120.22 (17) | ||
O2—Si1—O1—C7 | 125.72 (14) | Si1—O1—C7—C8 | 134.77 (15) |
C12—Si1—O1—C7 | −38.25 (16) | Si1—O1—C7—C6 | −46.4 (2) |
C16—Si1—O1—C7 | −140.93 (14) | C11—C6—C7—O1 | 178.09 (16) |
N1—Si1—O1—C7 | 52.01 (14) | C4—C6—C7—O1 | −3.7 (3) |
O1—Si1—O2—C1 | −90.30 (16) | C11—C6—C7—C8 | −3.1 (3) |
C12—Si1—O2—C1 | 72.36 (16) | C4—C6—C7—C8 | 175.16 (16) |
C16—Si1—O2—C1 | 174.13 (15) | O1—C7—C8—C9 | −178.58 (17) |
N1—Si1—O2—C1 | −13.60 (14) | C6—C7—C8—C9 | 2.5 (3) |
Si1—O2—C1—O3 | −177.12 (14) | C7—C8—C9—C10 | −0.3 (3) |
Si1—O2—C1—C2 | 2.3 (2) | C8—C9—C10—C11 | −1.3 (3) |
C4—N1—C2—C1 | 154.00 (16) | C9—C10—C11—C6 | 0.7 (3) |
Si1—N1—C2—C1 | −24.26 (16) | C7—C6—C11—C10 | 1.5 (3) |
C4—N1—C2—C3 | −87.6 (2) | C4—C6—C11—C10 | −176.72 (18) |
Si1—N1—C2—C3 | 94.15 (16) | O1—Si1—C12—C13 | −50.11 (14) |
O3—C1—C2—N1 | −164.67 (17) | O2—Si1—C12—C13 | 145.55 (12) |
O2—C1—C2—N1 | 15.9 (2) | C16—Si1—C12—C13 | 49.07 (14) |
O3—C1—C2—C3 | 75.2 (2) | N1—Si1—C12—C13 | −135.68 (13) |
O2—C1—C2—C3 | −104.25 (18) | Si1—C12—C13—C14 | −60.40 (18) |
C2—N1—C4—C6 | −178.26 (15) | C12—C13—C14—C15 | 64.6 (2) |
Si1—N1—C4—C6 | −0.3 (2) | C13—C14—C15—C16 | −61.2 (2) |
C2—N1—C4—C5 | −0.6 (3) | C14—C15—C16—Si1 | 56.1 (2) |
Si1—N1—C4—C5 | 177.39 (14) | O1—Si1—C16—C15 | 65.85 (15) |
N1—C4—C6—C7 | 23.1 (2) | O2—Si1—C16—C15 | −170.47 (14) |
C5—C4—C6—C7 | −154.68 (17) | C12—Si1—C16—C15 | −48.42 (16) |
N1—C4—C6—C11 | −158.72 (17) | N1—Si1—C16—C15 | 153.3 (3) |
C5—C4—C6—C11 | 23.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O3i | 0.97 (2) | 2.45 (2) | 3.197 (2) | 133.1 (17) |
C12—H12B···O3ii | 0.99 | 2.64 | 3.571 (2) | 155 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y, −z. |
Funding information
The authors thank TU Bergakademie Freiberg (Freiberg, Germany) for financial support. Open Access Funding by the Publication Fund of the TU Bergakademie Freiberg.
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Böhme, U. & Fels, S. (2023a). IUCrData, 8, x230306. Google Scholar
Böhme, U. & Fels, S. (2023b). Z. Kristallogr. New Cryst. Struct. 238, 603–605. Google Scholar
Böhme, U. & Foehn, I. C. (2007). Acta Cryst. C63, o613–o616. Web of Science CSD CrossRef IUCr Journals Google Scholar
Böhme, U. & Günther, B. (2007). Inorg. Chem. Commun. 10, 482–484. Google Scholar
Böhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun. 9, 806–809. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fels, S. (2015). Höherkoordinierte Komplexverbindungen des Siliciums, Germaniums und Zinns mit chiralen O, N, O'-Liganden. Dissertation (Ph. D. thesis), Freiberg, 2015. Google Scholar
Schwarzer, S., Böhme, U., Fels, S., Günther, B. & Brendler, E. (2018). Inorg. Chim. Acta, 483, 136–147. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie. (2009). X-RED & X-AREA, Darmstadt, Germany. Google Scholar
Wagler, J., Böhme, U. & Kroke, E. (2014). Struct. Bond. 155, 29–106. Web of Science CrossRef CAS Google Scholar
Warncke, G., Böhme, U., Günther, B. & Kronstein, M. (2012). Polyhedron, 47, 46–52. Web of Science CSD CrossRef CAS Google Scholar
Zhao, G.-Q., Xue, L.-W., Hao, C.-J., Chen, L.-H. & Wu, H.-T. (2008). Acta Cryst. E64, m1553. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.