metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2-Ferrocenyl-2-[(2-ferrocenylethen­yl)(morpholin-4-yl)meth­yl]-1,3-di­thiol­ane

crossmark logo

aFacultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, 04510, Mexico
*Correspondence e-mail: eiklimova@quimica.unam.mx

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 28 February 2024; accepted 11 March 2024; online 21 March 2024)

The mol­ecular structure of 2-ferrocenyl-2-[(2-ferrocenylethen­yl)(morpholin-4-yl)meth­yl]-1,3-di­thiol­ane, [Fe2(C5H5)2(C19H21NOS2)] or C29H31Fe2NOS2, has the ferrocenyl fragments in a trans disposition with respect to the vinyl group. One of the methyl­ene groups is disordered over two sites with occupancies of 0.782 (13):0.218 (13). In the crystal, cyclo­penta­dienyl-C—H⋯O(morpholin­yl) inter­actions feature within helical chains parallel to the c-axis direction. The chains are connected by methyl­ene- and cyclo­penta­dienyl-C—H⋯O(cyclo­penta­dien­yl) inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,3-Di­thiol­anes, also known as S,S-thio­acetals, are stable under acidic and basic conditions (Kocieneski et al., 1994[Kocieneski, P. J. (1994). Protecting Groups. 3rd ed. Thieme, Stuttgart, Germany.]). They are of importance in their applications in synthetic, organic and medicinal chemistry (Wuts Peter, 2014[Wuts Peter, G. M. (2014). Organic Synthesis, 5th ed. New York: Wiley.]) and are used in synthesis as a carbonyl protecting group and for the formation of carbon–carbon bonds through metalation (Gröbel & Seebach, 1977[Gröbel, B.-T. & Seebach, D. (1977). Synthesis, 6, 1977, 357-402.]).

The di­thiol­ane fragment is found in anti­biotics and anti­fungals such as luliconazole, which has activity against Candida albicans, Malassezia spp. and Aspergillus fumigatus (Khanna & Bharti, 2014[Khanna, D. & Bharti, S. (2014). Core Evid. 24, 113-124.]).

The lipophilic character of ferrocene makes it capable of penetrating cell membranes (Ludwig et al., 2019[Ludwig, B. S., Correia, J. D. G. & Kühn, F. (2019). Coord. Chem. Rev. 396, 22-48.]). Therefore, its incorporation into biological mol­ecules represents a matter of great inter­est in drug development. It has been pointed out that the addition of ferrocene residues in biologically active mol­ecules offers the possibility of improving the efficacy of therapeutic drugs (Patra et al., 2017[Patra, M. & Gasser, G. (2017). Nat. Rev. Chem. 1, 0066.]). In this connection, diferrocenyl-1,3-di­thiol­ane derivatives have pharmacological activity and may be considered as lead candidates for the development of new drugs or as building blocks for new mol­ecules (Mlostoń et al., 2018[Mlostoń, G., Hamera-Fałdyga, R., Urbaniak, K., Weigand, W. & Heimgartner, H. (2018). J. Sulfur Chem. 39, 516-524.]).

The asymmetric unit of the title compound, Fig. 1[link], is formed by ferrocenyl vinyl, morpholinyl, ferrocenyl and di­thiol­ate groups. About the C1=C2 vinyl group, the morpholine fragment is cis to the vinyl-bound ferrocenyl residue and trans to the vinyl-H atom. The five-membered di­thiol­ate ring has a twisted conformation at the S1—C3 bond with puckering parameters: q2 = 0.590 (18) Å and φ2 = 14.0 (15)°, and asymmetry parameters (Duax et al., 1976[Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 2, edited by E. L. Eliel & N. Allinger, pp. 271-283. New York: John Wiley.]): Δ = 343.7 (24), τ = 49.7 (8), ΔCs(S1) = 61.8 (5), ΔCs(C3) = 49.5 (5) and ΔC2 (S1—C3) = 76.6 (6)°, with bond lengths of 1.858 (5) Å for S1—C3 and C4—C5 of 1.521 (11) Å. On the other hand, the six-membered morpholinyl ring, formed by the O1–C7–C6–N1–C9–C8 atoms, has a chair conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]): Q = 0.559 (6) Å, θ = 1.6 (5)° and φ = 24 (30)° for the calculation starting from the O1 atom through to the C8 atom, and asymmetry parameters: ΔC2 (O1–C7) = 1.4 (6), ΔC2 (C6–C7) = 3.3 (6), ΔC2 (C6–N1) = 2.3 (6), ΔC2 (O1–C8) = 2.3 (6), ΔCs(O1) = 0.5 (5), ΔCs(C7) = 2.3 (5), ΔCs(C6) = 2.6 (5) and ΔCs(N1) = 0.5 (5)° with an average endocyclic torsion angle of 56.7 (2)°. The orientations of the five-membered rings about the Fe1 and Fe2 atoms are very close to staggered and eclipsed, respectively.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids for non-H atoms at the 50% probability level.

In the crystal, Fig. 2[link], cyclo­penta­dienyl-C—H⋯O(morph­olin­yl) inter­actions (Table 1[link])feature within helical chains parallel to the c-axis direction. The chains are connected within a three-dimensional architecture via methyl­ene- and cyclo­penta­dienyl-C—H⋯O(cyclo­penta­dien­yl) inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1–Cg3 are the centroids of the (C10–C14), (C25–C29) and (C15–C19) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯O1i 0.95 2.59 3.492 (7) 158
C4—H4BCg1ii 0.95 2.89 3.796 (9) 153
C7—H7ACg2iii 0.95 2.92 3.733 (6) 140
C17—H17⋯Cg3iv 0.95 2.74 3.623 (7) 155
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x-1, y, z]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
The crystal array of the title compound showing inter­molecular contacts of the type C—H⋯O and C—H⋯π inter­actions.

Synthesis and crystallization

1,2-Ethano­dithiol (15 mmol) was added to a solution of 1-morpholino-2,3-diferrocenyl­cyclo­propenonylium tetra­fluorido­borate (10 mmol) in aceto­nitrile (30 ml), and the mixture was stirred in a dry inert atmosphere under reflux for 8 h. The solvents were removed in vacuo, and the residues underwent chromatography on alumina (hexa­ne–di­chloro­methane, 4:1 v:v). Suitable orange crystals of 2-ferrocenyl-2-[(2-ferrocenylethen­yl)(morpholin-4-yl)meth­yl]-1,3-di­thio­l­ane were obtained by the slow evaporation of its saturated di­chloro­methane/hexane (ratio 1:2 v/v) solution. Yield (25%), m.p. 460–461 K. The reaction scheme is shown in Fig. 3[link].

[Figure 3]
Figure 3
Reaction scheme.

1H NMR (400 MHz, CDCl3) δ: 274–2.76 (4H, t, 2NCH2, 4 Hz), 3.29–3.35 (2H, m, SCH2), 3.48–3.52 (2H, m, SCH2), 3.55–3.26 (4H, t, 2OCH2, 4 Hz), 4.10 (5H, s, C5H5), 4.29 (5H, s, C5H5), 4.13 (2H, m, C5H4), 4.20 (2H, m, C5H4), 4.34 (2H, m, C5H4), 4.35 (2H, m, C5H4), 6.96 (1H, s, =CH) p.p.m.., 13C NMR (100 MHz, CDCl3) δ: 39.48 (SCH2), 51.16 (NCH2), 67.15 (OCH2), 69.24 (SCS), 69.13, 69.74 (C5H5), 67.61, 68.71, 69.93, 70.29 (2 C5H4), 81.24, 95.89 (Cipso Fc), 119.84 (2 C), 149.13 (–C=) p.p.m., MS: m/z 585 [M]+. Analysis calculated for C29H31Fe2NOS2: C, 59.51, H, 5.34, N, 2.39%. Found C, 60.05, H, 5.41, N, 2.45%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The atoms of the methyl­ene-C4 group are disordered over two sets of sites and were refined with equivalent anisotropic displacement parameters to yield occupancies of 0.782 (13):0.218 (13).

Table 2
Experimental details

Crystal data
Chemical formula [Fe2(C5H5)2(C19H21NOS2)]
Mr 585.37
Crystal system, space group Orthorhombic, P212121
Temperature (K) 130
a, b, c (Å) 7.5425 (3), 17.6838 (9), 18.8920 (11)
V3) 2519.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.34
Crystal size (mm) 0.54 × 0.44 × 0.12
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini
Absorption correction Analytical (CrysAlis RED; Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.022, 0.250
No. of measured, independent and observed [I > 2σ(I)] reflections 9130, 5847, 5231
Rint 0.045
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.139, 1.06
No. of reflections 5847
No. of parameters 320
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.23, −1.23
Absolute structure Flack x determined using 1778 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.027 (18)
Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2013[Agilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

2-Ferrocenyl-2-[(2-ferrocenylethenyl)(morpholin-4-yl)methyl]-1,3-dithiolane top
Crystal data top
[Fe2(C5H5)2(C19H21NOS2)]Dx = 1.543 Mg m3
Mr = 585.37Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3368 reflections
a = 7.5425 (3) Åθ = 5.2–29.4°
b = 17.6838 (9) ŵ = 1.34 mm1
c = 18.8920 (11) ÅT = 130 K
V = 2519.8 (2) Å3Prism, brown
Z = 40.54 × 0.44 × 0.12 mm
F(000) = 1216
Data collection top
Xcalibur, Atlas, Gemini
diffractometer
5847 independent reflections
Graphite monochromator5231 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.045
ω scansθmax = 30.1°, θmin = 3.5°
Absorption correction: analytical
(CrysAlis RED; Agilent, 2013)
h = 610
Tmin = 0.022, Tmax = 0.250k = 1524
9130 measured reflectionsl = 1726
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0712P)2 + 0.1471P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5847 reflectionsΔρmax = 1.23 e Å3
320 parametersΔρmin = 1.23 e Å3
0 restraintsAbsolute structure: Flack x determined using 1778 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.027 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6462 (7)0.3262 (3)0.2856 (3)0.0184 (11)
H10.6061800.2787100.3029280.022*
C20.5778 (7)0.3857 (3)0.3200 (3)0.0164 (11)
C30.4556 (7)0.3753 (3)0.3847 (3)0.0176 (10)
C40.1034 (10)0.3431 (5)0.3520 (5)0.034 (2)0.782 (13)
H4A0.0268430.3348210.3938000.041*0.782 (13)
H4B0.0261650.3517020.3103560.041*0.782 (13)
C4P0.177 (4)0.3480 (18)0.3075 (19)0.034 (2)0.218 (13)
H4PA0.0478030.3512240.2983930.041*0.218 (13)
H4PB0.2393220.3530200.2616840.041*0.218 (13)
C50.2191 (8)0.2740 (4)0.3395 (4)0.0338 (15)
H5A0.2687950.2747120.2910390.041*
H5B0.1489820.2270750.3455350.041*
C60.5293 (8)0.4979 (3)0.2434 (3)0.0244 (12)
H6A0.4041420.4816270.2391080.029*
H6B0.5939040.4811160.2005730.029*
C70.5391 (8)0.5828 (3)0.2501 (3)0.0268 (12)
H7A0.4902420.6062670.2067100.032*
H7B0.4652290.5992280.2906060.032*
C80.7914 (8)0.5758 (3)0.3227 (3)0.0264 (12)
H8A0.7225020.5925200.3644990.032*
H8B0.9148460.5938250.3286170.032*
C90.7905 (7)0.4905 (3)0.3192 (3)0.0208 (11)
H9A0.8688330.4730880.2804520.025*
H9B0.8355300.4692250.3642700.025*
C100.7709 (7)0.3204 (3)0.2263 (3)0.0193 (11)
C110.8416 (7)0.2473 (3)0.2068 (3)0.0223 (12)
H110.8178600.2009340.2302970.027*
C120.9524 (7)0.2565 (3)0.1467 (3)0.0235 (12)
H121.0150440.2175310.1228170.028*
C130.9528 (7)0.3343 (3)0.1286 (3)0.0220 (11)
H131.0174390.3565300.0907910.026*
C140.8403 (7)0.3734 (3)0.1765 (3)0.0188 (11)
H140.8153520.4260840.1756210.023*
C150.4455 (8)0.3252 (4)0.1031 (4)0.0330 (15)
H150.3822200.3647640.1259980.040*
C160.5535 (9)0.3328 (4)0.0423 (4)0.0393 (18)
H160.5755690.3782700.0170010.047*
C170.6235 (8)0.2596 (5)0.0257 (3)0.0396 (18)
H170.7011590.2476300.0123050.048*
C180.5559 (8)0.2092 (4)0.0760 (4)0.0352 (15)
H180.5792660.1564790.0774880.042*
C190.4484 (8)0.2488 (4)0.1238 (4)0.0312 (14)
H190.3879750.2277600.1632450.037*
C200.5469 (6)0.4080 (3)0.4483 (3)0.0186 (11)
C210.5531 (8)0.4860 (3)0.4679 (3)0.0233 (12)
H210.4887550.5258160.4459870.028*
C220.6713 (8)0.4938 (4)0.5256 (3)0.0330 (15)
H220.7005530.5399080.5486060.040*
C230.7387 (7)0.4214 (4)0.5433 (3)0.0291 (13)
H230.8192720.4102000.5804940.035*
C240.6634 (7)0.3687 (4)0.4949 (3)0.0228 (12)
H240.6869800.3159580.4939210.027*
C250.2141 (7)0.3841 (3)0.5604 (3)0.0240 (12)
H250.1452690.3620480.5237520.029*
C260.3266 (8)0.3445 (4)0.6076 (3)0.0275 (13)
H260.3458590.2914070.6082940.033*
C270.4053 (8)0.3984 (4)0.6536 (3)0.0285 (13)
H270.4875800.3876270.6903090.034*
C280.3397 (8)0.4713 (4)0.6352 (3)0.0276 (13)
H280.3694600.5175970.6577310.033*
C290.2213 (8)0.4622 (4)0.5770 (3)0.0291 (13)
H290.1585480.5014720.5535720.035*
Fe10.69918 (10)0.29194 (4)0.12507 (4)0.01799 (19)
Fe20.46821 (10)0.42310 (5)0.55104 (4)0.01902 (19)
N10.6094 (6)0.4643 (3)0.3067 (2)0.0194 (9)
O10.7173 (6)0.6085 (2)0.2605 (2)0.0296 (10)
S10.24352 (16)0.42501 (9)0.36629 (8)0.0240 (3)
S20.39473 (18)0.27808 (8)0.40423 (8)0.0226 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (2)0.020 (3)0.014 (2)0.002 (2)0.004 (2)0.0020 (19)
C20.016 (2)0.020 (3)0.013 (2)0.002 (2)0.004 (2)0.0024 (19)
C30.016 (2)0.011 (2)0.025 (3)0.001 (2)0.001 (2)0.0024 (19)
C40.017 (3)0.036 (4)0.050 (6)0.005 (3)0.006 (3)0.012 (4)
C4P0.017 (3)0.036 (4)0.050 (6)0.005 (3)0.006 (3)0.012 (4)
C50.028 (3)0.034 (4)0.039 (4)0.002 (3)0.008 (3)0.011 (3)
C60.024 (3)0.028 (3)0.021 (3)0.001 (3)0.003 (2)0.000 (2)
C70.031 (3)0.026 (3)0.024 (3)0.004 (3)0.002 (3)0.003 (2)
C80.027 (3)0.027 (3)0.025 (3)0.005 (3)0.000 (3)0.000 (2)
C90.021 (2)0.023 (3)0.019 (3)0.005 (2)0.001 (2)0.000 (2)
C100.019 (2)0.021 (3)0.018 (3)0.001 (2)0.003 (2)0.003 (2)
C110.021 (3)0.024 (3)0.022 (3)0.003 (2)0.001 (2)0.002 (2)
C120.020 (2)0.027 (3)0.023 (3)0.006 (2)0.001 (2)0.006 (2)
C130.019 (2)0.027 (3)0.019 (3)0.001 (2)0.001 (2)0.002 (2)
C140.020 (3)0.020 (3)0.016 (2)0.004 (2)0.003 (2)0.0015 (19)
C150.021 (3)0.040 (4)0.038 (4)0.004 (3)0.012 (3)0.011 (3)
C160.039 (4)0.041 (4)0.037 (4)0.020 (3)0.022 (3)0.020 (3)
C170.023 (3)0.080 (6)0.016 (3)0.009 (3)0.000 (3)0.014 (3)
C180.030 (3)0.031 (4)0.044 (4)0.003 (3)0.009 (3)0.011 (3)
C190.020 (2)0.046 (4)0.027 (3)0.011 (3)0.005 (3)0.002 (3)
C200.014 (2)0.023 (3)0.018 (2)0.004 (2)0.005 (2)0.001 (2)
C210.027 (3)0.026 (3)0.017 (3)0.008 (2)0.011 (2)0.000 (2)
C220.028 (3)0.046 (4)0.025 (3)0.015 (3)0.009 (3)0.008 (3)
C230.018 (2)0.051 (4)0.019 (3)0.005 (3)0.001 (2)0.006 (3)
C240.015 (2)0.033 (3)0.020 (3)0.001 (2)0.001 (2)0.004 (2)
C250.014 (2)0.036 (3)0.022 (3)0.006 (2)0.005 (2)0.004 (2)
C260.027 (3)0.029 (3)0.026 (3)0.006 (3)0.006 (3)0.003 (2)
C270.027 (3)0.040 (4)0.019 (3)0.001 (3)0.008 (2)0.000 (2)
C280.028 (3)0.029 (3)0.026 (3)0.007 (2)0.012 (3)0.007 (2)
C290.023 (3)0.032 (3)0.032 (3)0.004 (3)0.009 (3)0.004 (2)
Fe10.0182 (3)0.0201 (4)0.0156 (4)0.0006 (3)0.0010 (3)0.0012 (3)
Fe20.0164 (3)0.0252 (4)0.0155 (4)0.0026 (3)0.0021 (3)0.0013 (3)
N10.017 (2)0.022 (2)0.019 (2)0.0008 (19)0.0028 (19)0.0033 (18)
O10.036 (2)0.021 (2)0.032 (2)0.0023 (19)0.003 (2)0.0049 (17)
S10.0162 (5)0.0282 (8)0.0276 (7)0.0028 (5)0.0020 (5)0.0003 (6)
S20.0217 (6)0.0198 (7)0.0261 (7)0.0040 (6)0.0027 (6)0.0003 (5)
Geometric parameters (Å, º) top
C1—C21.340 (8)C14—H140.9500
C1—C101.467 (8)C15—C191.406 (10)
C1—H10.9500C15—C161.415 (10)
C2—N11.433 (7)C15—Fe12.045 (6)
C2—C31.541 (7)C15—H150.9500
C3—C201.502 (7)C16—C171.432 (11)
C3—S21.817 (5)C16—Fe12.043 (6)
C3—S11.858 (5)C16—H160.9500
C4—C51.521 (11)C17—C181.399 (10)
C4—S11.813 (8)C17—Fe12.044 (6)
C4—H4A0.9900C17—H170.9500
C4—H4B0.9900C18—C191.402 (9)
C4P—C51.48 (3)C18—Fe12.041 (6)
C4P—S11.83 (3)C18—H180.9500
C4P—H4PA0.9900C19—Fe12.040 (6)
C4P—H4PB0.9900C19—H190.9500
C5—S21.804 (6)C20—C241.424 (8)
C5—H5A0.9900C20—C211.430 (8)
C5—H5B0.9900C20—Fe22.046 (5)
C6—N11.466 (7)C21—C221.414 (9)
C6—C71.509 (9)C21—Fe22.028 (5)
C6—H6A0.9900C21—H210.9500
C6—H6B0.9900C22—C231.418 (10)
C7—O11.433 (8)C22—Fe22.035 (6)
C7—H7A0.9900C22—H220.9500
C7—H7B0.9900C23—C241.423 (8)
C8—O11.425 (7)C23—Fe22.046 (5)
C8—C91.511 (8)C23—H230.9500
C8—H8A0.9900C24—Fe22.053 (6)
C8—H8B0.9900C24—H240.9500
C9—N11.461 (7)C25—C261.416 (9)
C9—H9A0.9900C25—C291.417 (8)
C9—H9B0.9900C25—Fe22.044 (5)
C10—C141.427 (7)C25—H250.9500
C10—C111.445 (8)C26—C271.420 (9)
C10—Fe12.051 (5)C26—Fe22.053 (6)
C11—C121.420 (8)C26—H260.9500
C11—Fe12.040 (6)C27—C281.423 (9)
C11—H110.9500C27—Fe22.042 (6)
C12—C131.417 (8)C27—H270.9500
C12—Fe12.051 (6)C28—C291.426 (9)
C12—H120.9500C28—Fe22.048 (6)
C13—C141.421 (8)C28—H280.9500
C13—Fe12.055 (5)C29—Fe22.046 (6)
C13—H130.9500C29—H290.9500
C14—Fe12.038 (5)
C2—C1—C10132.2 (5)C22—C23—H23126.4
C2—C1—H1113.9C24—C23—H23126.4
C10—C1—H1113.9Fe2—C23—H23126.0
C1—C2—N1127.8 (5)C23—C24—C20108.9 (5)
C1—C2—C3121.3 (5)C23—C24—Fe269.4 (3)
N1—C2—C3110.8 (4)C20—C24—Fe269.4 (3)
C20—C3—C2108.3 (4)C23—C24—H24125.6
C20—C3—S2108.5 (4)C20—C24—H24125.6
C2—C3—S2115.2 (4)Fe2—C24—H24127.2
C20—C3—S1111.2 (4)C26—C25—C29108.7 (5)
C2—C3—S1108.1 (3)C26—C25—Fe270.1 (3)
S2—C3—S1105.6 (3)C29—C25—Fe269.8 (3)
C5—C4—S1109.3 (5)C26—C25—H25125.7
C5—C4—H4A109.8C29—C25—H25125.7
S1—C4—H4A109.8Fe2—C25—H25126.0
C5—C4—H4B109.8C25—C26—C27107.7 (6)
S1—C4—H4B109.8C25—C26—Fe269.5 (3)
H4A—C4—H4B108.3C27—C26—Fe269.3 (3)
C5—C4P—S1110.6 (19)C25—C26—H26126.2
C5—C4P—H4PA109.5C27—C26—H26126.2
S1—C4P—H4PA109.5Fe2—C26—H26126.6
C5—C4P—H4PB109.5C26—C27—C28108.2 (5)
S1—C4P—H4PB109.5C26—C27—Fe270.1 (3)
H4PA—C4P—H4PB108.1C28—C27—Fe269.9 (3)
C4P—C5—S2113.6 (12)C26—C27—H27125.9
C4—C5—S2106.5 (5)C28—C27—H27125.9
C4—C5—H5A110.4Fe2—C27—H27125.7
S2—C5—H5A110.4C27—C28—C29107.7 (5)
C4—C5—H5B110.4C27—C28—Fe269.4 (3)
S2—C5—H5B110.4C29—C28—Fe269.6 (3)
H5A—C5—H5B108.6C27—C28—H28126.2
N1—C6—C7108.3 (5)C29—C28—H28126.2
N1—C6—H6A110.0Fe2—C28—H28126.5
C7—C6—H6A110.0C25—C29—C28107.7 (5)
N1—C6—H6B110.0C25—C29—Fe269.7 (3)
C7—C6—H6B110.0C28—C29—Fe269.7 (3)
H6A—C6—H6B108.4C25—C29—H29126.2
O1—C7—C6111.9 (5)C28—C29—H29126.2
O1—C7—H7A109.2Fe2—C29—H29126.1
C6—C7—H7A109.2C14—Fe1—C19138.9 (3)
O1—C7—H7B109.2C14—Fe1—C1168.7 (2)
C6—C7—H7B109.2C19—Fe1—C11110.7 (2)
H7A—C7—H7B107.9C14—Fe1—C18178.5 (3)
O1—C8—C9111.6 (5)C19—Fe1—C1840.2 (3)
O1—C8—H8A109.3C11—Fe1—C18110.2 (3)
C9—C8—H8A109.3C14—Fe1—C16113.3 (3)
O1—C8—H8B109.3C19—Fe1—C1667.9 (3)
C9—C8—H8B109.3C11—Fe1—C16177.9 (3)
H8A—C8—H8B108.0C18—Fe1—C1667.7 (3)
N1—C9—C8109.1 (5)C14—Fe1—C17141.4 (3)
N1—C9—H9A109.9C19—Fe1—C1768.0 (3)
C8—C9—H9A109.9C11—Fe1—C17137.3 (3)
N1—C9—H9B109.9C18—Fe1—C1740.1 (3)
C8—C9—H9B109.9C16—Fe1—C1741.0 (3)
H9A—C9—H9B108.3C14—Fe1—C15112.4 (3)
C14—C10—C11106.5 (5)C19—Fe1—C1540.3 (3)
C14—C10—C1133.8 (5)C11—Fe1—C15139.2 (3)
C11—C10—C1119.6 (5)C18—Fe1—C1567.6 (3)
C14—C10—Fe169.1 (3)C16—Fe1—C1540.5 (3)
C11—C10—Fe168.9 (3)C17—Fe1—C1568.5 (3)
C1—C10—Fe1124.1 (4)C14—Fe1—C1040.9 (2)
C12—C11—C10108.6 (5)C19—Fe1—C10110.3 (2)
C12—C11—Fe170.1 (3)C11—Fe1—C1041.4 (2)
C10—C11—Fe169.7 (3)C18—Fe1—C10137.7 (3)
C12—C11—H11125.7C16—Fe1—C10140.3 (3)
C10—C11—H11125.7C17—Fe1—C10177.7 (3)
Fe1—C11—H11126.1C15—Fe1—C10111.4 (2)
C13—C12—C11107.8 (5)C14—Fe1—C1268.6 (2)
C13—C12—Fe170.0 (3)C19—Fe1—C12138.8 (3)
C11—C12—Fe169.3 (3)C11—Fe1—C1240.6 (2)
C13—C12—H12126.1C18—Fe1—C12111.4 (3)
C11—C12—H12126.1C16—Fe1—C12139.6 (3)
Fe1—C12—H12126.2C17—Fe1—C12110.9 (3)
C12—C13—C14108.5 (5)C15—Fe1—C12179.0 (3)
C12—C13—Fe169.6 (3)C10—Fe1—C1269.1 (2)
C14—C13—Fe169.0 (3)C14—Fe1—C1340.6 (2)
C12—C13—H13125.7C19—Fe1—C13178.7 (3)
C14—C13—H13125.7C11—Fe1—C1368.1 (2)
Fe1—C13—H13127.2C18—Fe1—C13140.2 (2)
C13—C14—C10108.6 (5)C16—Fe1—C13113.4 (2)
C13—C14—Fe170.3 (3)C17—Fe1—C13113.0 (2)
C10—C14—Fe170.0 (3)C15—Fe1—C13140.6 (3)
C13—C14—H14125.7C10—Fe1—C1368.6 (2)
C10—C14—H14125.7C12—Fe1—C1340.4 (2)
Fe1—C14—H14125.5C21—Fe2—C2240.7 (2)
C19—C15—C16107.9 (6)C21—Fe2—C27157.7 (2)
C19—C15—Fe169.7 (4)C22—Fe2—C27122.1 (3)
C16—C15—Fe169.7 (4)C21—Fe2—C25123.2 (2)
C19—C15—H15126.1C22—Fe2—C25158.9 (3)
C16—C15—H15126.1C27—Fe2—C2568.1 (2)
Fe1—C15—H15126.1C21—Fe2—C2368.8 (3)
C15—C16—C17107.8 (6)C22—Fe2—C2340.7 (3)
C15—C16—Fe169.8 (4)C27—Fe2—C23107.3 (3)
C17—C16—Fe169.5 (4)C25—Fe2—C23159.4 (3)
C15—C16—H16126.1C21—Fe2—C29106.7 (3)
C17—C16—H16126.1C22—Fe2—C29122.3 (3)
Fe1—C16—H16126.2C27—Fe2—C2968.5 (3)
C18—C17—C16107.0 (6)C25—Fe2—C2940.5 (2)
C18—C17—Fe169.9 (4)C23—Fe2—C29158.4 (3)
C16—C17—Fe169.5 (4)C21—Fe2—C2041.1 (2)
C18—C17—H17126.5C22—Fe2—C2068.8 (2)
C16—C17—H17126.5C27—Fe2—C20159.9 (2)
Fe1—C17—H17125.7C25—Fe2—C20108.1 (2)
C17—C18—C19109.3 (6)C23—Fe2—C2069.0 (2)
C17—C18—Fe170.1 (4)C29—Fe2—C20122.4 (2)
C19—C18—Fe169.9 (4)C21—Fe2—C28121.5 (3)
C17—C18—H18125.4C22—Fe2—C28106.5 (3)
C19—C18—H18125.4C27—Fe2—C2840.7 (2)
Fe1—C18—H18126.3C25—Fe2—C2868.2 (2)
C18—C19—C15108.1 (6)C23—Fe2—C28122.2 (2)
C18—C19—Fe170.0 (4)C29—Fe2—C2840.8 (3)
C15—C19—Fe170.1 (3)C20—Fe2—C28158.1 (2)
C18—C19—H19126.0C21—Fe2—C26159.8 (2)
C15—C19—H19126.0C22—Fe2—C26158.6 (3)
Fe1—C19—H19125.6C27—Fe2—C2640.6 (2)
C24—C20—C21106.9 (5)C25—Fe2—C2640.4 (2)
C24—C20—C3126.2 (5)C23—Fe2—C26123.1 (3)
C21—C20—C3126.4 (5)C29—Fe2—C2668.3 (3)
C24—C20—Fe269.9 (3)C20—Fe2—C26123.8 (2)
C21—C20—Fe268.8 (3)C28—Fe2—C2668.4 (3)
C3—C20—Fe2132.6 (3)C21—Fe2—C2468.3 (2)
C22—C21—C20108.3 (6)C22—Fe2—C2468.0 (3)
C22—C21—Fe269.9 (3)C27—Fe2—C24123.8 (3)
C20—C21—Fe270.2 (3)C25—Fe2—C24124.0 (2)
C22—C21—H21125.9C23—Fe2—C2440.6 (2)
C20—C21—H21125.9C29—Fe2—C24159.2 (2)
Fe2—C21—H21125.7C20—Fe2—C2440.7 (2)
C21—C22—C23108.7 (6)C28—Fe2—C24159.2 (2)
C21—C22—Fe269.4 (3)C26—Fe2—C24108.9 (3)
C23—C22—Fe270.1 (4)C2—N1—C9115.7 (4)
C21—C22—H22125.7C2—N1—C6117.8 (4)
C23—C22—H22125.7C9—N1—C6112.9 (4)
Fe2—C22—H22126.4C8—O1—C7110.6 (4)
C22—C23—C24107.3 (5)C4—S1—C398.7 (3)
C22—C23—Fe269.3 (3)C4P—S1—C389.9 (9)
C24—C23—Fe270.0 (3)C5—S2—C394.9 (3)
C10—C1—C2—N10.6 (9)C24—C20—C21—C220.1 (6)
C10—C1—C2—C3176.2 (5)C3—C20—C21—C22172.3 (5)
C1—C2—C3—C20115.7 (5)Fe2—C20—C21—C2259.7 (4)
N1—C2—C3—C2061.7 (5)C24—C20—C21—Fe259.8 (4)
C1—C2—C3—S26.0 (6)C3—C20—C21—Fe2128.0 (5)
N1—C2—C3—S2176.7 (3)C20—C21—C22—C230.6 (6)
C1—C2—C3—S1123.8 (5)Fe2—C21—C22—C2359.3 (4)
N1—C2—C3—S158.9 (5)C20—C21—C22—Fe259.9 (4)
S1—C4P—C5—S224 (2)C21—C22—C23—C241.1 (6)
S1—C4—C5—S243.6 (7)Fe2—C22—C23—C2459.9 (4)
N1—C6—C7—O156.4 (6)C21—C22—C23—Fe258.8 (4)
O1—C8—C9—N155.9 (6)C22—C23—C24—C201.2 (6)
C2—C1—C10—C1412.8 (10)Fe2—C23—C24—C2058.3 (4)
C2—C1—C10—C11170.8 (6)C22—C23—C24—Fe259.5 (4)
C2—C1—C10—Fe1105.8 (6)C21—C20—C24—C230.8 (6)
C14—C10—C11—C120.4 (6)C3—C20—C24—C23173.0 (5)
C1—C10—C11—C12177.7 (5)Fe2—C20—C24—C2358.3 (4)
Fe1—C10—C11—C1259.5 (4)C21—C20—C24—Fe259.1 (4)
C14—C10—C11—Fe159.1 (4)C3—C20—C24—Fe2128.7 (5)
C1—C10—C11—Fe1118.1 (5)C29—C25—C26—C270.4 (7)
C10—C11—C12—C130.3 (6)Fe2—C25—C26—C2759.0 (4)
Fe1—C11—C12—C1359.6 (4)C29—C25—C26—Fe259.3 (4)
C10—C11—C12—Fe159.3 (4)C25—C26—C27—C280.6 (7)
C11—C12—C13—C141.0 (6)Fe2—C26—C27—C2859.7 (4)
Fe1—C12—C13—C1458.2 (4)C25—C26—C27—Fe259.1 (4)
C11—C12—C13—Fe159.2 (4)C26—C27—C28—C290.6 (7)
C12—C13—C14—C101.2 (6)Fe2—C27—C28—C2959.2 (4)
Fe1—C13—C14—C1059.8 (4)C26—C27—C28—Fe259.9 (4)
C12—C13—C14—Fe158.6 (4)C26—C25—C29—C280.0 (7)
C11—C10—C14—C131.0 (6)Fe2—C25—C29—C2859.6 (4)
C1—C10—C14—C13177.7 (6)C26—C25—C29—Fe259.5 (4)
Fe1—C10—C14—C1360.0 (4)C27—C28—C29—C250.4 (7)
C11—C10—C14—Fe159.0 (4)Fe2—C28—C29—C2559.5 (4)
C1—C10—C14—Fe1117.7 (6)C27—C28—C29—Fe259.1 (4)
C19—C15—C16—C170.1 (7)C1—C2—N1—C965.2 (7)
Fe1—C15—C16—C1759.4 (4)C3—C2—N1—C9111.9 (5)
C19—C15—C16—Fe159.4 (4)C1—C2—N1—C672.9 (7)
C15—C16—C17—C180.5 (7)C3—C2—N1—C6110.0 (5)
Fe1—C16—C17—C1860.1 (4)C8—C9—N1—C2164.5 (5)
C15—C16—C17—Fe159.5 (4)C8—C9—N1—C655.4 (6)
C16—C17—C18—C190.8 (7)C7—C6—N1—C2165.4 (5)
Fe1—C17—C18—C1959.0 (4)C7—C6—N1—C955.4 (6)
C16—C17—C18—Fe159.8 (4)C9—C8—O1—C758.4 (6)
C17—C18—C19—C150.8 (7)C6—C7—O1—C859.0 (6)
Fe1—C18—C19—C1559.9 (4)C5—C4—S1—C316.1 (7)
C17—C18—C19—Fe159.1 (4)C5—C4P—S1—C343.3 (18)
C16—C15—C19—C180.4 (7)C20—C3—S1—C4134.0 (5)
Fe1—C15—C19—C1859.9 (4)C2—C3—S1—C4107.3 (5)
C16—C15—C19—Fe159.4 (4)S2—C3—S1—C416.5 (4)
C2—C3—C20—C2489.6 (6)C20—C3—S1—C4P165.0 (12)
S2—C3—C20—C2436.2 (6)C2—C3—S1—C4P76.2 (12)
S1—C3—C20—C24151.8 (4)S2—C3—S1—C4P47.6 (12)
C2—C3—C20—C2181.2 (6)C4P—C5—S2—C39.1 (16)
S2—C3—C20—C21153.1 (5)C4—C5—S2—C350.4 (6)
S1—C3—C20—C2137.4 (6)C20—C3—S2—C5156.7 (4)
C2—C3—C20—Fe2175.0 (4)C2—C3—S2—C581.7 (4)
S2—C3—C20—Fe259.2 (6)S1—C3—S2—C537.4 (3)
S1—C3—C20—Fe256.4 (6)
Hydrogen-bond geometry (Å, º) top
Cg1–Cg3 are the centroids of the (C10–C14), (C25–C29) and (C15–C19) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C27—H27···O1i0.952.593.492 (7)158
C4—H4B···Cg1ii0.952.893.796 (9)153
C7—H7A···Cg2iii0.952.923.733 (6)140
C17—H17···Cg3iv0.952.743.623 (7)155
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x1, y, z; (iii) x+1/2, y+1, z1/2; (iv) x+1/2, y+1/2, z.
 

Funding information

Funding for this research was provided by: Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (grant No. IN 217421). The authors acknowledge CONAHCYT scholarship No. 479321 (CO-C).

References

First citationAgilent (2013). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDuax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 2, edited by E. L. Eliel & N. Allinger, pp. 271–283. New York: John Wiley.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGröbel, B.-T. & Seebach, D. (1977). Synthesis, 6, 1977, 357–402.  Google Scholar
First citationKhanna, D. & Bharti, S. (2014). Core Evid. 24, 113–124.  CrossRef Google Scholar
First citationKocieneski, P. J. (1994). Protecting Groups. 3rd ed. Thieme, Stuttgart, Germany.  Google Scholar
First citationLudwig, B. S., Correia, J. D. G. & Kühn, F. (2019). Coord. Chem. Rev. 396, 22–48.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMlostoń, G., Hamera-Fałdyga, R., Urbaniak, K., Weigand, W. & Heimgartner, H. (2018). J. Sulfur Chem. 39, 516–524.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPatra, M. & Gasser, G. (2017). Nat. Rev. Chem. 1, 0066.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWuts Peter, G. M. (2014). Organic Synthesis, 5th ed. New York: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146