organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Methyl N-{(1R)-2-[(meth­­oxy­carbon­yl)­­oxy]-1-phenyleth­yl}carbamate

crossmark logo

aFacultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, bInstituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and cInstituto de Física Luis Rivera Terrazas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 6 March 2024; accepted 7 March 2024; online 21 March 2024)

The title mol­ecule, C12H15NO5, is a methyl carbamate derivative obtained by reacting (R)-2-phenyl­glycinol and methyl chloro­formate, with calcium hydroxide as heterogeneous catalyst. Supra­molecular chains are formed in the [100] direction, based on N—H⋯O hydrogen bonds between the amide and carboxyl­ate groups. These chains weakly inter­act in the crystal, and the phenyl rings do not display significant ππ inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Methyl carbamate, Me(O)CONH2, the methyl ester of carbamic acid, is an important inter­mediate in the manufacture of carbamate-based resins used in the textile and polymer industries. On a smaller scale, it is also a pharmaceutical inter­mediate. The primary amine group can be functionalized, in the same way as for primary amides. From another point of view, the formation of a carbamate via a N-methyl­oxycarbonyl­ation reaction can also be considered as a useful protection of a primary amine (Sartori et al., 2004[Sartori, G., Ballini, R., Bigi, F., Bosica, G., Maggi, R. & Righi, P. (2004). Chem. Rev. 104, 199-250.]). Finally, alternative routes allow both the formation of the carbamate and the N-functionalization. The title compound, C12H15NO5, resulted from such a reaction, between methyl chloro­formate and a chiral amino alcohol, namely (R)-2-phenyl­glycinol, under basic conditions, and using Ca(OH)2 as a heterogeneous catalyst.

We assumed that the R absolute configuration of the starting material was retained during the reaction, affording an enanti­omerically pure compound, which crystallized in the Sohncke space group P212121. Mol­ecular dimensions are as expected, and the amide group displays a geometry quite different from that of the carboxyl­ate group, with bond lengths C2—N1 = 1.333 (3) and C10—O3 = 1.445 (3) Å (Fig. 1[link]). The geometry of the carbamate group is virtually identical to that observed in the closely related chiral compound meth­yl(1S-phenyl­eth­yl)carbamate, which crystallizes with four independent mol­ecules in the asymmetric unit (Thakar et al., 2018[Thakar, A. S., Pansuriya, P. B., Friedrich, H. B. & Maguire, G. E. M. (2018). Z. Kristallogr. New Cryst. Struct. 233, 561-563.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound (50% probability ellipsoids).

In the extended structure, the amide NH group serves as a donor, forming an inter­molecular hydrogen bond with the carboxyl­ate group C11=O4 of a neighbouring mol­ecule (Table 1[link]). Infinite chains are then formed in the crystal, running along the short a axis (Fig. 2[link]). Mol­ecules are further connected through weak C—H⋯O contacts involving the methyl group of the carbamate moiety as donor. Chains are arranged in the crystal with two neighbouring chains having the phenyl rings facing upwards (Fig. 3[link]). However, no significant ππ contacts are observed: the distance separating two rings is large [4.6763 (17) Å] and the dihedral angle between corresponding mean planes is 21.84 (13)°. Aside from the weak C—H⋯O bonds mentioned above and van der Waals contacts, no other significant inter­actions between the supra­molecular chains are present in the crystal structure. As a consequence, the Kitaigorodskii packing index of 67.8% is rather low for this small organic mol­ecule (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.82 (3) 2.10 (3) 2.917 (2) 175 (2)
C1—H1B⋯O4ii 0.96 2.59 3.494 (3) 158
C1—H1C⋯O5iii 0.96 2.62 3.332 (4) 131
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
Supra­molecular chains formed in the [100] direction, based on amide–carboxyl­ate N—H⋯O hydrogen bonds (dashed bonds).
[Figure 3]
Figure 3
Part of the crystal structure of the title compound, viewed down the crystallographic a axis. The asymmetric unit is shown as a ball and stick model, and the dashed line represents the weak ππ inter­action between phenyl rings.

Synthesis and crystallization

(R)-2-Phenyl­glycinol (100 mg, 0.73 mmol) was dissolved in dry THF. The catalyst, Ca(OH)2 (10%), and methyl chloro­formate (0.56 ml, 7.2 mmol) were added, and the mixture was refluxed (333 K) under a nitro­gen atmosphere. After completion (TLC), the catalyst was separated by filtration, and the crude product recovered by elimination of the solvent under reduced pressure. The crude product was recrystallized from a mixture of solvents (hexa­ne:CH2Cl2, 4:1 v:v), affording single crystals suitable for X-ray diffraction. 1H-NMR (500 MHz, CDCl3): δ 3.66 (s, 3H), 3.76 (s, 3H), 4.35 (s, 2H), 5.05 (broad, 1H), 5.64 (broad, 1H), 7.29–7.37 (m, 5H) p.p.m. 13C-NMR (126 MHz, CDCl3): δ 52.33, 54.2, 55.06, 69.66, 126.59, 128.06, 128.80, 138.20, 155.68, 156.41 p.p.m.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The amide H atom (H1) was refined with free coordinates and isotropic displacement parameter. Other H atoms are in calculated positions. The absolute configuration was inferred from the synthesis.

Table 2
Experimental details

Crystal data
Chemical formula C12H15NO5
Mr 253.25
Crystal system, space group Orthorhombic, P212121
Temperature (K) 295
a, b, c (Å) 6.2497 (2), 13.8633 (6), 14.6254 (5)
V3) 1267.17 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.67 × 0.29 × 0.16
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.967, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24119, 3859, 2841
Rint 0.035
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.03
No. of reflections 3859
No. of parameters 169
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.16
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Methyl N-{(1R)-2-[(methoxycarbonyl)oxy]-1-phenylethyl}carbamate top
Crystal data top
C12H15NO5Dx = 1.327 Mg m3
Mr = 253.25Melting point: 345 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 6.2497 (2) ÅCell parameters from 4907 reflections
b = 13.8633 (6) Åθ = 3.3–26.1°
c = 14.6254 (5) ŵ = 0.10 mm1
V = 1267.17 (8) Å3T = 295 K
Z = 4Block, colourless
F(000) = 5360.67 × 0.29 × 0.16 mm
Data collection top
Xcalibur, Atlas, Gemini
diffractometer
3859 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2841 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.5564 pixels mm-1θmax = 30.5°, θmin = 2.9°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1919
Tmin = 0.967, Tmax = 1.000l = 2020
24119 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.052P]
where P = (Fo2 + 2Fc2)/3
3859 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.16 e Å3
0 constraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2085 (3)0.43365 (12)0.59140 (10)0.0598 (4)
O20.1160 (3)0.49818 (13)0.62348 (10)0.0670 (5)
O30.2905 (2)0.37368 (12)0.36207 (12)0.0607 (4)
O40.6279 (2)0.42897 (11)0.36564 (11)0.0597 (4)
O50.5449 (3)0.27357 (12)0.38930 (13)0.0668 (5)
N10.0043 (3)0.48073 (14)0.47814 (11)0.0527 (4)
H10.105 (4)0.4625 (18)0.4474 (16)0.053 (6)*
C10.2419 (5)0.4127 (2)0.68630 (17)0.0769 (8)
H1A0.3873980.3927010.6955690.115*
H1B0.2137770.4694170.7219690.115*
H1C0.1470350.3619050.7049310.115*
C20.0183 (3)0.47379 (15)0.56885 (13)0.0475 (4)
C30.1699 (3)0.52669 (16)0.43010 (13)0.0473 (5)
H30.2977600.5241750.4688330.057*
C40.1259 (4)0.63165 (16)0.40547 (13)0.0492 (5)
C50.0757 (4)0.6723 (2)0.41155 (19)0.0678 (7)
H50.1901040.6345380.4308150.081*
C60.1102 (5)0.7682 (2)0.3895 (2)0.0834 (8)
H60.2469340.7941830.3941500.100*
C70.0544 (6)0.8242 (2)0.36108 (19)0.0790 (8)
H70.0306180.8886930.3466520.095*
C80.2556 (6)0.7862 (2)0.3536 (2)0.0868 (9)
H80.3684110.8247130.3338760.104*
C90.2916 (5)0.6898 (2)0.37548 (19)0.0725 (7)
H90.4285470.6642150.3698690.087*
C100.2142 (4)0.46992 (18)0.34271 (14)0.0541 (5)
H10A0.0839470.4659030.3068770.065*
H10B0.3203900.5038980.3065960.065*
C110.5013 (4)0.36477 (15)0.37178 (13)0.0492 (4)
C120.7676 (4)0.2503 (2)0.4027 (2)0.0787 (8)
H12A0.8500420.2753810.3527050.118*
H12B0.7843560.1815200.4054850.118*
H12C0.8165980.2784780.4588960.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0627 (9)0.0623 (9)0.0543 (8)0.0127 (8)0.0094 (7)0.0026 (7)
O20.0727 (10)0.0791 (12)0.0492 (8)0.0157 (9)0.0091 (8)0.0040 (8)
O30.0484 (8)0.0545 (9)0.0791 (10)0.0078 (7)0.0020 (8)0.0061 (8)
O40.0521 (8)0.0539 (9)0.0732 (10)0.0146 (7)0.0156 (8)0.0141 (8)
O50.0597 (9)0.0467 (9)0.0940 (12)0.0059 (7)0.0045 (8)0.0026 (8)
N10.0464 (9)0.0661 (11)0.0457 (9)0.0137 (9)0.0059 (8)0.0020 (8)
C10.098 (2)0.0742 (19)0.0583 (13)0.0119 (15)0.0262 (14)0.0041 (12)
C20.0533 (11)0.0412 (10)0.0479 (10)0.0005 (9)0.0004 (9)0.0013 (8)
C30.0395 (9)0.0585 (12)0.0439 (9)0.0055 (9)0.0062 (7)0.0019 (8)
C40.0512 (11)0.0560 (12)0.0403 (9)0.0038 (10)0.0048 (9)0.0002 (9)
C50.0576 (14)0.0716 (17)0.0742 (15)0.0022 (12)0.0028 (11)0.0071 (14)
C60.0823 (19)0.0727 (19)0.095 (2)0.0178 (16)0.0093 (17)0.0056 (15)
C70.107 (3)0.0602 (15)0.0697 (16)0.0062 (16)0.0161 (15)0.0083 (13)
C80.102 (2)0.069 (2)0.0893 (19)0.0242 (17)0.0026 (18)0.0189 (15)
C90.0614 (14)0.0686 (16)0.0873 (17)0.0081 (12)0.0014 (14)0.0136 (14)
C100.0488 (10)0.0626 (14)0.0508 (10)0.0009 (10)0.0021 (9)0.0004 (10)
C110.0524 (11)0.0489 (11)0.0464 (10)0.0090 (10)0.0008 (10)0.0009 (9)
C120.0703 (16)0.0606 (16)0.105 (2)0.0071 (12)0.0097 (17)0.0120 (15)
Geometric parameters (Å, º) top
O1—C21.353 (3)C4—C51.383 (3)
O1—C11.433 (3)C4—C91.384 (3)
O2—C21.207 (2)C5—C61.385 (4)
O3—C111.331 (3)C5—H50.9300
O3—C101.445 (3)C6—C71.355 (4)
O4—C111.194 (2)C6—H60.9300
O5—C111.318 (3)C7—C81.368 (5)
O5—C121.442 (3)C7—H70.9300
N1—C21.333 (3)C8—C91.392 (4)
N1—C31.444 (3)C8—H80.9300
N1—H10.82 (3)C9—H90.9300
C1—H1A0.9600C10—H10A0.9700
C1—H1B0.9600C10—H10B0.9700
C1—H1C0.9600C12—H12A0.9600
C3—C41.524 (3)C12—H12B0.9600
C3—C101.526 (3)C12—H12C0.9600
C3—H30.9800
C2—O1—C1116.6 (2)C7—C6—C5120.3 (3)
C11—O3—C10115.66 (17)C7—C6—H6119.9
C11—O5—C12116.11 (19)C5—C6—H6119.9
C2—N1—C3124.45 (18)C6—C7—C8120.1 (3)
C2—N1—H1118.4 (17)C6—C7—H7120.0
C3—N1—H1116.9 (17)C8—C7—H7120.0
O1—C1—H1A109.5C7—C8—C9120.0 (3)
O1—C1—H1B109.5C7—C8—H8120.0
H1A—C1—H1B109.5C9—C8—H8120.0
O1—C1—H1C109.5C4—C9—C8120.7 (3)
H1A—C1—H1C109.5C4—C9—H9119.6
H1B—C1—H1C109.5C8—C9—H9119.6
O2—C2—N1126.4 (2)O3—C10—C3111.83 (17)
O2—C2—O1124.37 (19)O3—C10—H10A109.2
N1—C2—O1109.27 (18)C3—C10—H10A109.2
N1—C3—C4113.60 (18)O3—C10—H10B109.2
N1—C3—C10108.46 (18)C3—C10—H10B109.2
C4—C3—C10109.09 (17)H10A—C10—H10B107.9
N1—C3—H3108.5O4—C11—O5126.4 (2)
C4—C3—H3108.5O4—C11—O3125.3 (2)
C10—C3—H3108.5O5—C11—O3108.30 (18)
C5—C4—C9117.7 (2)O5—C12—H12A109.5
C5—C4—C3122.6 (2)O5—C12—H12B109.5
C9—C4—C3119.8 (2)H12A—C12—H12B109.5
C4—C5—C6121.2 (3)O5—C12—H12C109.5
C4—C5—H5119.4H12A—C12—H12C109.5
C6—C5—H5119.4H12B—C12—H12C109.5
C3—N1—C2—O25.4 (4)C5—C6—C7—C80.4 (5)
C3—N1—C2—O1175.16 (19)C6—C7—C8—C90.2 (5)
C1—O1—C2—O25.0 (3)C5—C4—C9—C80.9 (4)
C1—O1—C2—N1174.4 (2)C3—C4—C9—C8179.3 (2)
C2—N1—C3—C495.0 (2)C7—C8—C9—C40.4 (5)
C2—N1—C3—C10143.5 (2)C11—O3—C10—C388.4 (2)
N1—C3—C4—C512.6 (3)N1—C3—C10—O365.0 (2)
C10—C3—C4—C5108.5 (2)C4—C3—C10—O3170.79 (16)
N1—C3—C4—C9167.6 (2)C12—O5—C11—O40.4 (4)
C10—C3—C4—C971.3 (3)C12—O5—C11—O3179.5 (2)
C9—C4—C5—C60.8 (4)C10—O3—C11—O40.1 (3)
C3—C4—C5—C6179.4 (2)C10—O3—C11—O5179.81 (17)
C4—C5—C6—C70.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.82 (3)2.10 (3)2.917 (2)175 (2)
C1—H1B···O4ii0.962.593.494 (3)158
C1—H1C···O5iii0.962.623.332 (4)131
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1, z+1/2; (iii) x1/2, y+1/2, z+1.
 

Acknowledgements

We thank Dr Angel Mendoza (ICUAP, Puebla) for diffractometer time.

References

First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSartori, G., Ballini, R., Bigi, F., Bosica, G., Maggi, R. & Righi, P. (2004). Chem. Rev. 104, 199–250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThakar, A. S., Pansuriya, P. B., Friedrich, H. B. & Maguire, G. E. M. (2018). Z. Kristallogr. New Cryst. Struct. 233, 561–563.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146