organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

5-Bromo-2-(phenyl­amino)­benzoic acid

crossmark logo

aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
*Correspondence e-mail: sihuilong@wit.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 23 October 2023; accepted 29 February 2024; online 6 March 2024)

The title compound, C13H10BrNO2, was obtained by the reaction of 2,5-di­bromo­benzoic acid and aniline. The mol­ecule is twisted with a dihedral angle between the aromatic rings of 45.74 (11)° and an intr­amolecular N—H⋯O hydrogen bond is seen. In the crystal, pairwise O—H⋯O hydrogen bonds generate carb­oxy­lic acid inversion dimers.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Non-steroidal anti-inflammatory drugs are among the most widely used drugs in the world (Enthoven et al., 2017[Enthoven, W. T., Roelofs, P. D. & Koes, B. W. (2017). JAMA, 317, 2327-2328.]). These have anti-inflammatory, anti­pyretic and analgesic effects and can be sold as prescription drugs and over-the-counter drugs for the treatment of fever, acute or chronic pain and a variety of inflammatory diseases such as osteo­arthritis, rheumatoid arthritis, etc (Machado et al., 2021[Machado, G. C., Abdel-Shaheed, C., Underwood, M. & Day, R. O. (2021). British Med. J. 372, 156-163.]).

As part of our studies in this area, we now describe the synthesis by the Ullman reaction (Wolf et al., 2006[Wolf, C., Liu, S., Mei, X., August, A. T. & Casimir, M. D. (2006). J. Org. Chem. 71, 3270-3273.]) and the crystal structure of the title compound, C13H10BrNO2. As a result of steric repulsion, the C1–C6 and C8–C13 aromatic rings are twisted, subtending a dihedral angle of 45.39 (11)°. An intra­molecular N7—H7⋯O15 hydrogen bond is seen (Fig. 1[link], Table 1[link]). In the extended structure, the mol­ecules pair up to form carb­oxy­lic acid inversion dimers linked by pairs of O16—H16⋯O15 hydrogen bonds (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O15 0.88 2.00 2.682 (4) 134
O16—H16⋯O15i 0.84 1.79 2.629 (4) 174
Symmetry code: (i) [-x+1, -y, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing of the mol­ecules in the title compound (for clarity, H atoms not involved in inter­molecular hydrogen bonding are omitted).

Synthesis and crystallization

The title compound was prepared by reacting 2,5-di­bromo­benzoic acid and aniline in the presence of a catalyst at 403 K (Fig. 3[link]). The product was purified by column chromatography. Single crystals were obtained by slowly evaporating an acetone solution of the title compound.

[Figure 3]
Figure 3
Synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C13H10BrNO2
Mr 292.13
Crystal system, space group Monoclinic, P21/n
Temperature (K) 90
a, b, c (Å) 15.2054 (3), 3.8818 (1), 19.8109 (4)
β (°) 107.0391 (10)
V3) 1118.00 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.66
Crystal size (mm) 0.20 × 0.10 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD diffractometer
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.528, 0.838
No. of measured, independent and observed [I > 2σ(I)] reflections 4587, 2550, 2206
Rint 0.026
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.130, 1.21
No. of reflections 2550
No. of parameters 155
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.81
Computer programs: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 and SHELXL97 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

5-Bromo-2-(phenylamino)benzoic acid top
Crystal data top
C13H10BrNO2F(000) = 584
Mr = 292.13Dx = 1.736 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2931 reflections
a = 15.2054 (3) Åθ = 1.0–27.5°
b = 3.8818 (1) ŵ = 3.66 mm1
c = 19.8109 (4) ÅT = 90 K
β = 107.0391 (10)°Rod, yellow
V = 1118.00 (4) Å30.20 × 0.10 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2550 independent reflections
Radiation source: fine-focus sealed tube2206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 1.5°
ω scans at fixed χ=55°h = 1919
Absorption correction: multi-scan
(Scalepack; Otwinowski & Minor, 1997)
k = 45
Tmin = 0.528, Tmax = 0.838l = 2525
4587 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0621P)2 + 2.3209P]
where P = (Fo2 + 2Fc2)/3
2550 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.81 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The positions of the H atoms attached to N1 and O1 were obtained from a difference Fourier map. The other H atoms were positioned geometrically with C—H = 0.95 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.10141 (2)0.46781 (11)0.57989 (2)0.02709 (16)
C10.4236 (2)0.5204 (8)0.66869 (17)0.0142 (7)
C20.3806 (2)0.3697 (9)0.60154 (16)0.0129 (6)
C30.2839 (2)0.3583 (9)0.57554 (16)0.0142 (6)
H30.25540.25400.53110.017*
C40.2307 (2)0.4972 (9)0.61400 (17)0.0149 (7)
C50.2722 (2)0.6592 (9)0.67881 (17)0.0154 (7)
H50.23510.76200.70440.018*
C60.3662 (2)0.6696 (9)0.70531 (16)0.0155 (7)
H60.39330.77960.74930.019*
N70.5173 (2)0.5306 (8)0.69514 (15)0.0172 (6)
H70.54820.48400.66500.021*
C80.5710 (2)0.6066 (9)0.76502 (17)0.0149 (7)
C90.5449 (2)0.4996 (9)0.82367 (18)0.0162 (7)
H90.48830.38260.81760.019*
C100.6029 (3)0.5664 (9)0.89132 (18)0.0192 (7)
H100.58510.49700.93140.023*
C110.6858 (3)0.7323 (10)0.90048 (18)0.0221 (8)
H110.72460.77820.94670.026*
C120.7125 (2)0.8319 (10)0.84229 (19)0.0214 (7)
H120.77040.94030.84870.026*
C130.6547 (2)0.7736 (10)0.77441 (18)0.0195 (7)
H130.67230.84780.73460.023*
C140.4345 (2)0.2211 (9)0.55789 (16)0.0156 (7)
O150.51870 (16)0.2210 (7)0.57446 (12)0.0211 (6)
O160.38326 (17)0.0837 (7)0.49767 (12)0.0199 (5)
H160.41760.00370.47590.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0193 (2)0.0366 (3)0.0254 (2)0.00184 (16)0.00662 (16)0.00424 (16)
C10.0205 (16)0.0130 (16)0.0102 (14)0.0001 (13)0.0061 (12)0.0015 (12)
C20.0175 (15)0.0140 (15)0.0089 (13)0.0007 (13)0.0063 (12)0.0002 (12)
C30.0191 (16)0.0128 (15)0.0104 (14)0.0001 (13)0.0036 (12)0.0012 (12)
C40.0149 (15)0.0170 (17)0.0130 (15)0.0015 (13)0.0043 (12)0.0030 (12)
C50.0232 (17)0.0128 (16)0.0132 (14)0.0021 (14)0.0100 (13)0.0008 (13)
C60.0222 (17)0.0144 (16)0.0097 (13)0.0028 (14)0.0041 (12)0.0003 (12)
N70.0181 (14)0.0250 (17)0.0095 (12)0.0002 (12)0.0054 (11)0.0044 (11)
C80.0179 (16)0.0148 (16)0.0114 (14)0.0014 (13)0.0034 (12)0.0037 (13)
C90.0180 (16)0.0171 (17)0.0130 (15)0.0004 (13)0.0039 (12)0.0013 (13)
C100.0238 (18)0.0208 (18)0.0122 (15)0.0067 (14)0.0040 (13)0.0006 (13)
C110.0246 (18)0.0205 (19)0.0153 (15)0.0074 (15)0.0033 (13)0.0035 (14)
C120.0169 (16)0.0216 (19)0.0235 (17)0.0012 (15)0.0023 (14)0.0037 (15)
C130.0209 (17)0.0201 (18)0.0180 (16)0.0027 (14)0.0066 (13)0.0011 (14)
C140.0219 (17)0.0159 (16)0.0094 (13)0.0006 (14)0.0053 (12)0.0002 (12)
O150.0161 (12)0.0342 (15)0.0135 (11)0.0013 (11)0.0052 (9)0.0074 (11)
O160.0169 (12)0.0315 (15)0.0123 (11)0.0035 (11)0.0058 (9)0.0096 (10)
Geometric parameters (Å, º) top
Br1—C41.885 (3)C8—C131.390 (5)
C1—N71.368 (5)C8—C91.397 (5)
C1—C61.412 (5)C9—C101.396 (5)
C1—C21.424 (4)C9—H90.9500
C2—C31.409 (5)C10—C111.379 (6)
C2—C141.471 (4)C10—H100.9500
C3—C41.374 (5)C11—C121.385 (5)
C3—H30.9500C11—H110.9500
C4—C51.403 (5)C12—C131.393 (5)
C5—C61.371 (5)C12—H120.9500
C5—H50.9500C13—H130.9500
C6—H60.9500C14—O151.226 (4)
N7—C81.417 (4)C14—O161.330 (4)
N7—H70.8800O16—H160.8400
N7—C1—C6121.5 (3)C13—C8—N7118.1 (3)
N7—C1—C2120.7 (3)C9—C8—N7121.9 (3)
C6—C1—C2117.7 (3)C10—C9—C8119.3 (3)
C3—C2—C1119.8 (3)C10—C9—H9120.3
C3—C2—C14118.3 (3)C8—C9—H9120.3
C1—C2—C14121.9 (3)C11—C10—C9120.6 (3)
C4—C3—C2120.4 (3)C11—C10—H10119.7
C4—C3—H3119.8C9—C10—H10119.7
C2—C3—H3119.8C10—C11—C12120.0 (3)
C3—C4—C5120.2 (3)C10—C11—H11120.0
C3—C4—Br1120.0 (3)C12—C11—H11120.0
C5—C4—Br1119.9 (3)C11—C12—C13120.1 (4)
C6—C5—C4120.2 (3)C11—C12—H12119.9
C6—C5—H5119.9C13—C12—H12119.9
C4—C5—H5119.9C8—C13—C12119.9 (3)
C5—C6—C1121.5 (3)C8—C13—H13120.0
C5—C6—H6119.2C12—C13—H13120.0
C1—C6—H6119.2O15—C14—O16122.1 (3)
C1—N7—C8128.2 (3)O15—C14—C2124.1 (3)
C1—N7—H7115.9O16—C14—C2113.8 (3)
C8—N7—H7115.9C14—O16—H16109.5
C13—C8—C9119.9 (3)
N7—C1—C2—C3179.3 (3)C1—N7—C8—C13147.3 (4)
C6—C1—C2—C33.1 (5)C1—N7—C8—C936.8 (5)
N7—C1—C2—C140.3 (5)C13—C8—C9—C100.9 (5)
C6—C1—C2—C14177.3 (3)N7—C8—C9—C10176.7 (3)
C1—C2—C3—C41.1 (5)C8—C9—C10—C110.9 (5)
C14—C2—C3—C4179.3 (3)C9—C10—C11—C120.5 (6)
C2—C3—C4—C51.6 (5)C10—C11—C12—C131.8 (6)
C2—C3—C4—Br1178.1 (3)C9—C8—C13—C120.4 (5)
C3—C4—C5—C62.2 (5)N7—C8—C13—C12175.6 (3)
Br1—C4—C5—C6177.4 (3)C11—C12—C13—C81.7 (6)
C4—C5—C6—C10.2 (5)C3—C2—C14—O15178.8 (3)
N7—C1—C6—C5180.0 (3)C1—C2—C14—O151.6 (6)
C2—C1—C6—C52.4 (5)C3—C2—C14—O161.2 (5)
C6—C1—N7—C815.9 (5)C1—C2—C14—O16178.4 (3)
C2—C1—N7—C8166.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O150.882.002.682 (4)134
O16—H16···O15i0.841.792.629 (4)174
Symmetry code: (i) x+1, y, z+1.
 

Funding information

LK and SL thank the Graduate Innovation Fund of WIT for financial support (CX2022055).

References

First citationEnthoven, W. T., Roelofs, P. D. & Koes, B. W. (2017). JAMA, 317, 2327–2328.  Web of Science CrossRef PubMed Google Scholar
First citationMachado, G. C., Abdel-Shaheed, C., Underwood, M. & Day, R. O. (2021). British Med. J. 372, 156–163.  Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWolf, C., Liu, S., Mei, X., August, A. T. & Casimir, M. D. (2006). J. Org. Chem. 71, 3270–3273.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146