metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[μ-bis­­(pyridin-2-yl)methanone oxime-κ3N:,N′,N′′]bis­­[di­acetato-κ2O,O′;κO-zinc(II)]

crossmark logo

aCentral Connecticut State University, Department of Chemistry & Biochemistry, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu

Edited by M. Zeller, Purdue University, USA (Received 23 January 2024; accepted 5 February 2024; online 16 February 2024)

The structure of the title complex, [Zn2(C2H3O2)4(C11H9N3O)2], is triclinic containing half of the mol­ecule in the asymmetric unit. Each zinc atom is coordinated to a pyridyl and oxime nitro­gen from one di-2-pyridyl ketone oxime (dpko) ligand and a third nitro­gen from the other dpko pyridyl ring. Additionally, each zinc is coordinated to two acetato anions, one of which is bidentate and the other monodentate. The uncoordinated oxygen of the monodentate acetato group is involved in a hydrogen bond with the oxime hydrogen. The packing in the crystal is assisted by weak C—H⋯O inter­actions between acetato groups and neighboring pyridyl rings.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The three N atoms in dpko can act as ligands in a variety of ways. Previous reactions of ZnII with dpko led to mol­ecules of the form Zn(dpko)Cl2 (Alexiou et al., 2003[Alexiou, M., Dendrinou-Samara, D., Raptopolou, C. P., Terzis, A. & Kessissoglou, D. P. (2003). Inorg. Chem. 41, 4732-4738.]; Gökce et al., 2019[Gökce, H., Alpaslan, G. & Alaşalvar, C. (2019). J. Coord. Chem. 72, 1075-1096.]) and Zn(dpko)Br2 (Westcott et al., 2016[Westcott, B. L., Crundwell, G., Remesic, M., Knopf, K., Chandler, K., McMaster, J. & Davies, E. S. (2016). Inorg. Chem. Commun. 74, 79-81.]) where both pyridyl N atoms are bonding to the metal and the oxime group is directed away from the metal center. Dpko ligands with zinc have also been shown to retain their bidentate nature, yet they opt to bond via one pyridyl nitro­gen and the oxime nitro­gen (Tarushi et al., 2013[Tarushi, A., Karaflou, Z., Kljun, J., Turel, I., Psomas, G., Papadopoulos, A. N. & Kessissoglou, D. P. (2013). J. Inorg. Biochem. 128, 86-96.]). Finally, in this complex a third motif is seen; one where a pyridyl nitro­gen and oxime nitro­gen bond to one zinc and the other pyridyl nitro­gen binds to another. In this case a dimer is made and is analogous to Cu2+ complexes with dpko (Goher & Mautner, 1999[Goher, M. A. S. & Mautner, F. A. (1999). Polyhedron, 18, 3425-3431.]) and to Mg2+ complexes with dpko (Milios et al., 2005[Milios, C. J., Kyritsis, P., Raptopoulou, C. P., Terzis, A., Vicente, R., Escuer, A. & Perlepes, S. P. (2005). Dalton Trans. pp. 501-511.]).

The asymmetric-unit of the the title complex, Fig. 1[link], comprises one-half molecule with the full molecule generated by inversion symmetry. Two acetate anions are also coordin­ated to the zinc. The first acetato group bonds with both O atoms at bond lengths of 2.1369 (17) and 2.289 (2) Å and the second acetato group coordinates through one oxygen at 2.0513 (14) Å. The second oxygen on the monodentate acetate is hydrogen bonded to the hydrogen on the oxime, Table 1[link]. The packing in the crystal is assisted by weak C—H⋯O inter­actions between acetato groups and neighboring pyridyl rings(Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O5 1.11 (4) 1.32 (4) 2.428 (2) 176 (3)
C2—H2⋯O1ii 0.93 2.34 3.245 (2) 164
C3—H3⋯O3iii 0.93 2.58 3.293 (3) 134
C9—H9⋯03iv 0.93 2.59 3.361 (3) 141
C11—H11⋯O2i 0.93 2.38 2.941 (3) 119
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [x, y-1, z]; (iii) [-x, -y+1, -z]; (iv) [-x, -y+2, -z].
[Figure 1]
Figure 1
An ORTEP style (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) view of the title compound. Displace­ment ellipsoids are drawn at the 50% probability level. All hydrogen atoms not involved in hydrogen bonding have been omitted and non-H atoms generated by the inversion center have not been labeled.

Synthesis and crystallization

Zinc acetate dihydrate and di-2-pyridyl ketone oxime (dpko) were used as received from Mallinckrodt and Sigma-Aldrich, respectively. A 15 ml solution of 0.3474 g (1.58 mmol) of zinc acetate dihydrate in aceto­nitrile was combined with a 15 ml aceto­nitrile solution of 0.3227 g (1.62 mmol) of dpko and stirred for 10 minutes, producing a colorless solution. Diffraction-quality, colorless crystals formed via slow evaporation of solvent within 24 h. Crystals were harvested from the evaporating solutions and decompose upon heating. IR (cm−1) 1960(wb), 1710(mb), 1590(s), 1560(s), 1480(m), 1420(s), 1300(w), 1210(w), 1110(w), 1080(sb), 1010(s), 789(s), 754(m), 698(m), 675(m), 659(s).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Zn2(C2H3O2)4(C11H9N3O)2]
Mr 765.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.3549 (7), 9.3366 (8), 12.3971 (7)
α, β, γ (°) 69.409 (7), 75.524 (6), 65.217 (8)
V3) 815.88 (13)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.54
Crystal size (mm) 0.35 × 0.32 × 0.31
 
Data collection
Diffractometer Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.907, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10420, 5737, 4546
Rint 0.022
(sin θ/λ)max−1) 0.778
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.03
No. of reflections 5737
No. of parameters 223
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.66, −0.22
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Bis[µ-bis(pyridin-2-yl)methanone oxime-κ3N:N',N'']bis[diacetato-κ2O,O';κO-zinc(II)] top
Crystal data top
[Zn2(C2H3O2)4(C11H9N3O)2]Z = 1
Mr = 765.34F(000) = 392
Triclinic, P1Dx = 1.558 Mg m3
a = 8.3549 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3366 (8) ÅCell parameters from 4170 reflections
c = 12.3971 (7) Åθ = 4.5–33.0°
α = 69.409 (7)°µ = 1.54 mm1
β = 75.524 (6)°T = 293 K
γ = 65.217 (8)°Block, colorless
V = 815.88 (13) Å30.35 × 0.32 × 0.31 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
5737 independent reflections
Radiation source: Enhance (Mo) X-ray Source4546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.1790 pixels mm-1θmax = 33.6°, θmin = 4.2°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
k = 1313
Tmin = 0.907, Tmax = 1.000l = 1818
10420 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.1935P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5737 reflectionsΔρmax = 0.66 e Å3
223 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms on sp2 and sp3 carbons were placed at calculated positions with a C—H distance of 0.93?Å and 0.96?Å and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq or 1.5Ueq of the carrier atom, respectively. The position and thermal parameters for the oxime hydrogen were allowed to refine freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.34622 (3)0.46689 (2)0.21836 (2)0.03562 (8)
O10.3171 (2)0.81600 (16)0.04557 (12)0.0489 (4)
O20.2284 (2)0.3158 (2)0.35870 (14)0.0625 (4)
O30.0490 (3)0.5591 (2)0.28225 (15)0.0738 (5)
O40.4272 (2)0.56182 (17)0.31195 (12)0.0517 (4)
O50.3442 (3)0.83015 (19)0.23171 (15)0.0721 (6)
N10.3011 (2)0.38026 (17)0.08947 (13)0.0362 (3)
N20.3064 (2)0.66897 (16)0.06028 (12)0.0338 (3)
N30.3964 (2)0.73732 (16)0.23140 (12)0.0327 (3)
C10.2935 (3)0.2329 (2)0.10808 (19)0.0475 (5)
H1A0.3182120.1551610.1793850.057*
C20.2505 (3)0.1924 (2)0.0253 (2)0.0549 (6)
H20.2477280.0884490.0407710.066*
C30.2119 (3)0.3053 (3)0.0797 (2)0.0523 (5)
H30.1807630.2801470.1359240.063*
C40.2202 (3)0.4589 (2)0.10074 (17)0.0410 (4)
H40.1942670.5385170.1711630.049*
C50.2675 (2)0.49042 (19)0.01513 (14)0.0314 (3)
C60.2823 (2)0.64842 (18)0.03036 (13)0.0300 (3)
C70.2681 (2)0.77575 (19)0.14482 (14)0.0310 (3)
C80.1286 (3)0.9258 (2)0.15985 (17)0.0434 (4)
H80.0428570.9499510.0979110.052*
C90.1179 (3)1.0396 (2)0.26807 (19)0.0523 (5)
H90.0252741.1413210.2799360.063*
C100.2468 (3)0.9997 (2)0.35777 (18)0.0489 (5)
H100.2418311.0731600.4316990.059*
C110.3830 (3)0.8493 (2)0.33611 (15)0.0419 (4)
H110.4705180.8235900.3969150.050*
C120.0764 (3)0.4213 (3)0.35166 (18)0.0533 (5)
C130.0764 (4)0.3756 (5)0.4298 (3)0.0938 (12)
H13A0.1818040.4354920.3916110.141*
H13B0.0961380.4025810.5011170.141*
H13C0.0479960.2597900.4460850.141*
C140.4072 (3)0.7035 (2)0.30937 (16)0.0426 (4)
C150.4641 (4)0.7266 (3)0.4055 (2)0.0684 (7)
H15A0.4614530.6383020.4745430.103*
H15B0.3848170.8293130.4201850.103*
H15C0.5826360.7269250.3835120.103*
H10.325 (5)0.821 (4)0.132 (3)0.116 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.04561 (13)0.02653 (10)0.02801 (10)0.00898 (8)0.00571 (8)0.00425 (7)
O10.0854 (11)0.0274 (6)0.0412 (7)0.0243 (7)0.0195 (7)0.0054 (5)
O20.0476 (9)0.0701 (11)0.0524 (9)0.0126 (8)0.0018 (7)0.0110 (8)
O30.0920 (14)0.0576 (11)0.0510 (10)0.0185 (10)0.0065 (9)0.0037 (8)
O40.0768 (11)0.0382 (7)0.0431 (7)0.0183 (7)0.0202 (7)0.0095 (6)
O50.1310 (17)0.0374 (8)0.0516 (9)0.0177 (9)0.0432 (10)0.0107 (7)
N10.0459 (8)0.0255 (6)0.0353 (7)0.0141 (6)0.0083 (6)0.0028 (5)
N20.0482 (8)0.0231 (6)0.0302 (6)0.0126 (6)0.0065 (6)0.0068 (5)
N30.0411 (8)0.0261 (6)0.0263 (6)0.0082 (6)0.0082 (5)0.0043 (5)
C10.0612 (12)0.0276 (8)0.0519 (11)0.0198 (8)0.0135 (10)0.0001 (7)
C20.0700 (15)0.0314 (9)0.0726 (15)0.0253 (10)0.0184 (12)0.0104 (9)
C30.0655 (14)0.0443 (11)0.0614 (13)0.0246 (10)0.0176 (11)0.0188 (9)
C40.0533 (11)0.0351 (9)0.0398 (9)0.0190 (8)0.0126 (8)0.0083 (7)
C50.0364 (8)0.0251 (7)0.0319 (7)0.0107 (6)0.0055 (6)0.0070 (6)
C60.0360 (8)0.0231 (7)0.0281 (7)0.0092 (6)0.0046 (6)0.0052 (5)
C70.0396 (8)0.0241 (7)0.0292 (7)0.0109 (6)0.0097 (6)0.0046 (5)
C80.0458 (10)0.0310 (8)0.0399 (9)0.0036 (7)0.0058 (8)0.0069 (7)
C90.0523 (12)0.0321 (9)0.0515 (12)0.0005 (8)0.0151 (9)0.0004 (8)
C100.0546 (12)0.0396 (10)0.0379 (9)0.0120 (9)0.0167 (9)0.0073 (7)
C110.0472 (10)0.0395 (9)0.0291 (8)0.0110 (8)0.0084 (7)0.0014 (7)
C120.0519 (12)0.0612 (13)0.0353 (9)0.0152 (10)0.0035 (8)0.0081 (9)
C130.0545 (16)0.121 (3)0.0676 (18)0.0295 (18)0.0021 (13)0.0081 (17)
C140.0539 (11)0.0412 (9)0.0349 (9)0.0148 (8)0.0078 (8)0.0149 (7)
C150.107 (2)0.0603 (14)0.0537 (13)0.0356 (15)0.0343 (14)0.0118 (11)
Geometric parameters (Å, º) top
Zn1—O22.1369 (17)C3—H30.9300
Zn1—O32.289 (2)C3—C41.393 (3)
Zn1—O42.0513 (14)C4—H40.9300
Zn1—N12.1944 (16)C4—C51.377 (3)
Zn1—N22.1702 (14)C5—C61.474 (2)
Zn1—N3i2.1921 (14)C6—C71.490 (2)
Zn1—C122.538 (2)C7—C81.383 (2)
O1—N21.3581 (18)C8—H80.9300
O1—H11.11 (4)C8—C91.384 (3)
O2—C121.240 (3)C9—H90.9300
O3—C121.233 (3)C9—C101.375 (3)
O4—C141.251 (2)C10—H100.9300
O5—C141.238 (2)C10—C111.374 (3)
O5—H11.32 (4)C11—H110.9300
N1—C11.339 (2)C12—C131.516 (4)
N1—C51.349 (2)C13—H13A0.9600
N2—C61.279 (2)C13—H13B0.9600
N3—C71.343 (2)C13—H13C0.9600
N3—C111.346 (2)C14—C151.498 (3)
C1—H1A0.9300C15—H15A0.9600
C1—C21.377 (3)C15—H15B0.9600
C2—H20.9300C15—H15C0.9600
C2—C31.368 (3)
O2—Zn1—O358.16 (6)C5—C4—C3118.68 (18)
O2—Zn1—N192.26 (6)C5—C4—H4120.7
O2—Zn1—N2146.35 (6)N1—C5—C4122.62 (15)
O2—Zn1—N3i89.78 (6)N1—C5—C6114.95 (14)
O2—Zn1—C1229.18 (7)C4—C5—C6122.42 (15)
O3—Zn1—C1229.01 (7)N2—C6—C5115.96 (14)
O4—Zn1—O299.02 (7)N2—C6—C7122.71 (14)
O4—Zn1—O398.14 (7)C5—C6—C7121.32 (14)
O4—Zn1—N1168.00 (6)N3—C7—C6116.84 (14)
O4—Zn1—N298.84 (6)N3—C7—C8122.22 (15)
O4—Zn1—N3i88.29 (6)C8—C7—C6120.94 (16)
O4—Zn1—C12100.79 (7)C7—C8—H8120.4
N1—Zn1—O391.27 (7)C7—C8—C9119.26 (18)
N1—Zn1—C1291.05 (7)C9—C8—H8120.4
N2—Zn1—O391.18 (6)C8—C9—H9120.6
N2—Zn1—N173.40 (5)C10—C9—C8118.83 (18)
N2—Zn1—N3i119.03 (6)C10—C9—H9120.6
N2—Zn1—C12118.85 (7)C9—C10—H10120.6
N3i—Zn1—O3147.87 (6)C11—C10—C9118.74 (17)
N3i—Zn1—N187.66 (6)C11—C10—H10120.6
N3i—Zn1—C12118.87 (6)N3—C11—C10123.36 (18)
N2—O1—H1107.4 (19)N3—C11—H11118.3
C12—O2—Zn193.65 (15)C10—C11—H11118.3
C12—O3—Zn186.75 (16)O2—C12—Zn157.18 (12)
C14—O4—Zn1134.88 (14)O2—C12—C13118.1 (2)
C14—O5—H1120.5 (16)O3—C12—Zn164.23 (14)
C1—N1—Zn1125.79 (13)O3—C12—O2121.3 (2)
C1—N1—C5117.95 (16)O3—C12—C13120.6 (2)
C5—N1—Zn1116.13 (11)C13—C12—Zn1173.8 (2)
O1—N2—Zn1125.25 (11)C12—C13—H13A109.5
C6—N2—Zn1119.18 (11)C12—C13—H13B109.5
C6—N2—O1115.40 (13)C12—C13—H13C109.5
C7—N3—Zn1i127.73 (11)H13A—C13—H13B109.5
C7—N3—C11117.57 (15)H13A—C13—H13C109.5
C11—N3—Zn1i113.67 (12)H13B—C13—H13C109.5
N1—C1—H1A118.9O4—C14—C15119.21 (19)
N1—C1—C2122.28 (18)O5—C14—O4125.11 (18)
C2—C1—H1A118.9O5—C14—C15115.68 (19)
C1—C2—H2120.1C14—C15—H15A109.5
C3—C2—C1119.88 (18)C14—C15—H15B109.5
C3—C2—H2120.1C14—C15—H15C109.5
C2—C3—H3120.7H15A—C15—H15B109.5
C2—C3—C4118.55 (19)H15A—C15—H15C109.5
C4—C3—H3120.7H15B—C15—H15C109.5
C3—C4—H4120.7
Zn1—O2—C12—O33.7 (3)N2—C6—C7—C864.7 (3)
Zn1—O2—C12—C13175.4 (2)N3—C7—C8—C91.3 (3)
Zn1—O3—C12—O23.4 (3)C1—N1—C5—C42.3 (3)
Zn1—O3—C12—C13175.6 (3)C1—N1—C5—C6178.61 (17)
Zn1—O4—C14—O510.1 (4)C1—C2—C3—C41.0 (4)
Zn1—O4—C14—C15170.56 (18)C2—C3—C4—C50.2 (3)
Zn1—N1—C1—C2174.66 (17)C3—C4—C5—N12.0 (3)
Zn1—N1—C5—C4173.72 (14)C3—C4—C5—C6179.04 (19)
Zn1—N1—C5—C65.3 (2)C4—C5—C6—N2171.92 (17)
Zn1—N2—C6—C55.5 (2)C4—C5—C6—C77.5 (3)
Zn1—N2—C6—C7175.07 (12)C5—N1—C1—C21.0 (3)
Zn1i—N3—C7—C614.1 (2)C5—C6—C7—N365.3 (2)
Zn1i—N3—C7—C8165.91 (14)C5—C6—C7—C8114.7 (2)
Zn1i—N3—C11—C10168.65 (17)C6—C7—C8—C9178.66 (19)
O1—N2—C6—C5179.02 (15)C7—N3—C11—C100.6 (3)
O1—N2—C6—C70.4 (3)C7—C8—C9—C100.1 (3)
N1—C1—C2—C30.7 (4)C8—C9—C10—C111.1 (4)
N1—C5—C6—N27.1 (2)C9—C10—C11—N30.7 (3)
N1—C5—C6—C7173.44 (16)C11—N3—C7—C6178.31 (16)
N2—C6—C7—N3115.34 (19)C11—N3—C7—C81.6 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O51.11 (4)1.32 (4)2.428 (2)176 (3)
C2—H2···O1ii0.932.343.245 (2)164
C3—H3···O3iii0.932.583.293 (3)134
C9—H9···03iv0.932.593.361 (3)141
C11—H11···O2i0.932.382.941 (3)119
Symmetry codes: (i) x+1, y+1, z; (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y+2, z.
 

Acknowledgements

The authors would like to thank CSU-AAUP for research funding.

References

First citationAlexiou, M., Dendrinou-Samara, D., Raptopolou, C. P., Terzis, A. & Kessissoglou, D. P. (2003). Inorg. Chem. 41, 4732–4738.  CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoher, M. A. S. & Mautner, F. A. (1999). Polyhedron, 18, 3425–3431.  Web of Science CSD CrossRef CAS Google Scholar
First citationGökce, H., Alpaslan, G. & Alaşalvar, C. (2019). J. Coord. Chem. 72, 1075–1096.  Google Scholar
First citationMilios, C. J., Kyritsis, P., Raptopoulou, C. P., Terzis, A., Vicente, R., Escuer, A. & Perlepes, S. P. (2005). Dalton Trans. pp. 501–511.  CSD CrossRef Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTarushi, A., Karaflou, Z., Kljun, J., Turel, I., Psomas, G., Papadopoulos, A. N. & Kessissoglou, D. P. (2013). J. Inorg. Biochem. 128, 86–96.  CSD CrossRef Google Scholar
First citationWestcott, B. L., Crundwell, G., Remesic, M., Knopf, K., Chandler, K., McMaster, J. & Davies, E. S. (2016). Inorg. Chem. Commun. 74, 79–81.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146