metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2,2′-Bi­pyridine-κ2N,N′)(4,4′-dimeth­­oxy-2,2′-bi­pyridine-κ2N,N′)palladium(II) bis­­(tri­fluoro­meth­ane­sulfonate)

crossmark logo

aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 January 2024; accepted 31 January 2024; online 8 February 2024)

In the title complex salt, [Pd(C10H8N2)(C12H12N2O2)](CF3SO3)2, the palladium(II) atom is fourfold coordinated by two chelating ligands, 2,2′-bi­pyridine and 4,4′-dimeth­oxy-2,2′-bi­pyridine, in a distorted square-planar environment. In the crystal, weak ππ stacking inter­actions between the 2,2′-bi­pyridine rings [centroid-to-centroid distances = 3.8984 (19) Å] and between the 4,4′-dimeth­oxy-2,2′-bi­pyridine rings [centroid-to-centroid distances = 3.747 (18) Å] contribute to the alignment of the complex cations in columns parallel to the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Bi­pyridine derivatives continue to be recognized as valuable ligands for the synthesis of new transition-metal complexes, including cobalt(II) (Kondori et al., 2021[Kondori, T., Shahraki, O., Akbarzadeh-T, N. & Aramesh-Boroujeni, Z. (2021). J. Biomol. Struct. Dyn. 39, 595-609.]), ruthenium(II) (Benson et al., 2021[Benson, K. R., Stash, J., Moffa, K. L., Schmehl, R. H., Dudley, T. J. & Paul, J. J. (2021). Polyhedron, 205, 115300.]; Maier et al., 2022[Maier, A. S., Thomas, C., Kränzlein, M., Pehl, T. M. & Rieger, B. (2022). Macromolecules, 55, 7039-7048.]), iron(II) (Karges & Gasser, 2020[Karges, J. & Gasser, G. (2020). Inorg. Chim. Acta, 499, 119196.]), copper(II) (Shchegolkov et al., 2021[Shchegolkov, E. V., Shchur, I. V., Burgart, Y. V., Slepukhin, P. A., Evstigneeva, N. P., Gerasimova, N. A., Zilberberg, N. V., Kungurov, N. V., Saloutin, V. I. & Chupakhin, O. N. (2021). Polyhedron, 194, 114900.]) and palladium(II) (Komlyagina et al., 2023[Komlyagina, V. I., Romashev, N. F., Besprozvannykh, V. K., Arakelyan, J., Wu, C., Chubarov, A. S., Bakaev, I. V., Soh, Y. K., Abramov, P. A., Cheung, K. L., Kompan'kov, N. B., Ryadun, A. A., Babak, M. V. & Gushchin, A. L. (2023). Inorg. Chem. 62, 11541-11553.]) to mention a few. Recently, palladium(II) complexes containing 2,2′-bi­pyridine as ligand have shown significant cytotoxicity against HT-29 (colorectal adenocarcinoma), MCF-7 (breast), and HeLa (human squamous cervical adenocarcinoma) cancer cell lines (Tabrizi et al., 2020[Tabrizi, L., Zouchoune, B. & Zaiter, A. (2020). Inorg. Chim. Acta, 499, 119211.]). As part of our research in this area, we describe herein the synthesis and structure of the title palladium(II) complex.

The asymmetric unit comprises one complex cation and two tri­fluoro­methane­sulfonate anions. The palladium(II) atom shows a distorted square-planar coordination environment defined by a bidentate 2,2′-bi­pyridine ligand and a bidentate 4,4′-dimeth­oxy-2,2′-bi­pyridine; tri­fluoro­methane­sulfonate ions sit in the outer coordination sphere, balancing the charge of the complex metal cation (Fig. 1[link]). The Pd—N bond lengths are in good agreement with those in comparable square-planar 4,4′-dimeth­oxy-2,2′-bi­pyridine palladium(II) complexes currently available in the Cambridge Structural Database (CSD, version 5.45, Nov 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]): refcodes BEPVIF (Yang et al., 2022[Yang, G., Wu, H., Gallarati, S., Corminboeuf, C., Wang, Q. & Zhu, J. (2022). J. Am. Chem. Soc. 144, 14047-14052.]), WISQUO (Komlyagina et al., 2023[Komlyagina, V. I., Romashev, N. F., Besprozvannykh, V. K., Arakelyan, J., Wu, C., Chubarov, A. S., Bakaev, I. V., Soh, Y. K., Abramov, P. A., Cheung, K. L., Kompan'kov, N. B., Ryadun, A. A., Babak, M. V. & Gushchin, A. L. (2023). Inorg. Chem. 62, 11541-11553.]); WISRAV (Komlyagina et al., 2023[Komlyagina, V. I., Romashev, N. F., Besprozvannykh, V. K., Arakelyan, J., Wu, C., Chubarov, A. S., Bakaev, I. V., Soh, Y. K., Abramov, P. A., Cheung, K. L., Kompan'kov, N. B., Ryadun, A. A., Babak, M. V. & Gushchin, A. L. (2023). Inorg. Chem. 62, 11541-11553.]). The τ4 descriptor value (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) of 0.22 reflects a significant distortion from a perfect square-planar coordin­ation (τ4 = 0). Numerical data for relevant bond lengths and angles are presented in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Pd1—N2 2.022 (3) Pd1—N3 2.033 (3)
Pd1—N1 2.029 (3) Pd1—N4 2.046 (3)
       
N2—Pd1—N1 79.63 (10) N2—Pd1—N4 101.76 (10)
N2—Pd1—N3 165.80 (10) N1—Pd1—N4 162.05 (10)
N1—Pd1—N3 102.93 (10) N3—Pd1—N4 80.18 (10)
[Figure 1]
Figure 1
The structures of the mol­ecular entities present in title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity.

In the extended structure, the complex packs into columns extending parallel to the b axis (Fig. 2[link]). Contiguous pyridine rings show weak ππ stacking inter­actions, with centroid-to-centroid distances (CgCg) alternating between 3.7472 (18) Å (between 4,4′-dimeth­oxy-2,2′-bi­pyridine ligands) and 3.8984 (19) Å (between 2,2′-bi­pyridine ligands), and offset distances of 1.641 and 1.769 Å, respectively (Fig. 3[link]). No other significant supra­molecular inter­actions are present in the crystal packing of the title compound.

[Figure 2]
Figure 2
Perspective view of the crystal packing of the title complex approximately along the b axis; H atoms are omitted for clarity.
[Figure 3]
Figure 3
Capped sticks representation of the complex cation showing ππ stacking inter­actions (red). H atoms and anions are omitted for clarity.

Synthesis and crystallization

The title complex was prepared by adding Ag(CF3SO3) (0.0771 g, 0.300 mmol) to an aceto­nitrile suspension (40 ml) of [Pd(2,2′-bi­pyridine)Cl2] (0.100 g, 0.300 mmol). The mixture was heated, with stirring, at 333 K for 2 h and then filtered using a PTFE syringe filter to remove the precipitated AgCl. 4,4′-Dimeth­oxy-2,2′-bi­pyridine (0.0649 g, 0.300 mmol) was added to the resulting solution and heated at 343 K to reduce the volume of the solution to 10 ml. X-ray diffraction quality crystals of the title complex were obtained by vapor diffusion of ether over the resulting concentrated aceto­nitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Pd(C10H8N2)(C12H12N2O2)](CF3SO3)2
Mr 776.96
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.4340 (3), 13.9644 (2), 14.2126 (2)
β (°) 102.5361 (16)
V3) 2796.41 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 7.64
Crystal size (mm) 0.23 × 0.11 × 0.08
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.])
Tmin, Tmax 0.512, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 26480, 5585, 5101
Rint 0.053
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.04
No. of reflections 5585
No. of parameters 408
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.80, −1.09
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

(2,2'-Bipyridine-κ2N,N')(4,4'-dimethoxy-2,2'-bipyridine-κ2N,N')palladium(II) bis(trifluoromethanesulfonate) top
Crystal data top
[Pd(C10H8N2)(C12H12N2O2)](CF3SO3)2F(000) = 1552
Mr = 776.96Dx = 1.845 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 14.4340 (3) ÅCell parameters from 13876 reflections
b = 13.9644 (2) Åθ = 4.4–75.4°
c = 14.2126 (2) ŵ = 7.64 mm1
β = 102.5361 (16)°T = 100 K
V = 2796.41 (8) Å3Block, yellow
Z = 40.23 × 0.11 × 0.08 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
5585 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5101 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.053
Detector resolution: 10.0000 pixels mm-1θmax = 76.2°, θmin = 3.1°
ω scansh = 1718
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
k = 1716
Tmin = 0.512, Tmax = 1.000l = 1517
26480 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.049P)2 + 5.4251P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5585 reflectionsΔρmax = 0.80 e Å3
408 parametersΔρmin = 1.09 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.25207 (2)0.48236 (2)0.49500 (2)0.02008 (9)
S20.22124 (6)0.40289 (6)0.19795 (6)0.02732 (18)
S10.27163 (6)0.63092 (6)0.75710 (6)0.02833 (18)
F50.15001 (17)0.55231 (18)0.09497 (18)0.0472 (6)
O20.58599 (17)0.76062 (17)0.54340 (17)0.0310 (5)
O30.22186 (18)0.59380 (19)0.66506 (17)0.0351 (6)
F60.06435 (18)0.4276 (2)0.06797 (18)0.0533 (6)
F40.06969 (19)0.5071 (2)0.19721 (18)0.0548 (7)
O60.2702 (2)0.4622 (2)0.27515 (19)0.0406 (6)
F10.1486 (2)0.5453 (2)0.84015 (18)0.0586 (7)
O10.55650 (19)0.32506 (19)0.82842 (18)0.0365 (6)
F30.2887 (2)0.5636 (2)0.93124 (17)0.0641 (8)
O70.1755 (2)0.3204 (2)0.2284 (2)0.0481 (7)
O50.37298 (19)0.6267 (2)0.7740 (2)0.0495 (8)
N10.35491 (19)0.41902 (19)0.59584 (18)0.0224 (5)
N30.15739 (19)0.37451 (19)0.45377 (18)0.0222 (5)
O80.2716 (2)0.3841 (2)0.1230 (2)0.0430 (7)
O40.2332 (2)0.71853 (19)0.78532 (19)0.0389 (6)
F20.2640 (3)0.4555 (2)0.8203 (2)0.0700 (9)
N40.13534 (19)0.56042 (19)0.43114 (18)0.0229 (5)
N20.35692 (19)0.58047 (18)0.50606 (17)0.0212 (5)
C50.4350 (2)0.4719 (2)0.6269 (2)0.0220 (6)
C170.0694 (2)0.4035 (2)0.4067 (2)0.0222 (6)
C10.3429 (3)0.3403 (2)0.6465 (2)0.0285 (7)
H10.2858160.3046630.6273450.034*
C130.1788 (2)0.2810 (2)0.4545 (2)0.0259 (7)
H130.2414280.2612070.4835920.031*
C80.5106 (2)0.7026 (2)0.5260 (2)0.0225 (6)
C190.0320 (2)0.5509 (2)0.3674 (2)0.0256 (7)
H190.0875250.5130680.3473930.031*
C40.5058 (2)0.4444 (2)0.7039 (2)0.0237 (6)
H40.5616700.4818930.7229180.028*
C60.4383 (2)0.5611 (2)0.5720 (2)0.0204 (6)
C90.4295 (2)0.7186 (2)0.4548 (2)0.0244 (6)
H90.4253020.7720820.4128350.029*
C100.3557 (2)0.6550 (2)0.4466 (2)0.0227 (6)
H100.3011730.6643520.3964100.027*
C220.1284 (3)0.6560 (2)0.4315 (2)0.0293 (7)
H220.1836250.6927360.4566070.035*
C140.1131 (3)0.2125 (2)0.4144 (2)0.0296 (7)
H140.1300780.1466520.4167030.036*
C150.0224 (3)0.2410 (3)0.3710 (2)0.0307 (7)
H150.0246660.1949610.3450580.037*
C180.0555 (2)0.5074 (2)0.4013 (2)0.0230 (6)
C30.4941 (3)0.3607 (2)0.7530 (2)0.0268 (7)
C160.0009 (2)0.3377 (3)0.3657 (2)0.0283 (7)
H160.0605240.3587680.3341110.034*
C200.0376 (3)0.6500 (3)0.3631 (2)0.0302 (7)
H200.0964000.6808030.3374570.036*
C70.5165 (2)0.6199 (2)0.5829 (2)0.0201 (6)
H70.5732990.6046930.6281310.024*
C20.4095 (3)0.3096 (2)0.7245 (2)0.0303 (7)
H20.3982740.2539500.7589030.036*
C240.1222 (3)0.4770 (3)0.1370 (3)0.0334 (8)
C210.0431 (3)0.7033 (3)0.3965 (3)0.0322 (7)
H210.0405460.7712420.3955800.039*
C120.5745 (3)0.8532 (3)0.4959 (3)0.0364 (8)
H12A0.5565810.8440230.4259810.055*
H12B0.6344440.8886650.5124010.055*
H12C0.5247440.8894790.5173900.055*
C110.6492 (3)0.3687 (3)0.8529 (3)0.0374 (8)
H11A0.6778780.3680950.7964510.056*
H11B0.6894630.3327930.9055110.056*
H11C0.6431010.4350200.8734380.056*
C230.2422 (3)0.5447 (3)0.8415 (3)0.0438 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02596 (14)0.01770 (14)0.01692 (13)0.00027 (8)0.00541 (9)0.00010 (8)
S20.0326 (4)0.0236 (4)0.0260 (4)0.0005 (3)0.0068 (3)0.0021 (3)
S10.0303 (4)0.0315 (4)0.0237 (4)0.0033 (3)0.0070 (3)0.0117 (3)
F50.0499 (13)0.0452 (14)0.0478 (13)0.0092 (11)0.0134 (11)0.0216 (11)
O20.0348 (13)0.0276 (12)0.0310 (12)0.0050 (10)0.0080 (10)0.0008 (10)
O30.0414 (14)0.0410 (14)0.0232 (11)0.0027 (11)0.0075 (10)0.0128 (10)
F60.0484 (14)0.0636 (17)0.0412 (13)0.0002 (12)0.0051 (10)0.0074 (12)
F40.0526 (15)0.0778 (18)0.0388 (13)0.0264 (13)0.0206 (11)0.0045 (12)
O60.0447 (15)0.0442 (15)0.0308 (13)0.0057 (12)0.0033 (11)0.0030 (12)
F10.0636 (17)0.0736 (18)0.0437 (14)0.0250 (14)0.0230 (12)0.0032 (13)
O10.0430 (14)0.0343 (14)0.0292 (12)0.0049 (11)0.0012 (11)0.0096 (11)
F30.093 (2)0.0685 (19)0.0246 (11)0.0018 (16)0.0006 (12)0.0001 (12)
O70.0592 (18)0.0342 (15)0.0493 (16)0.0108 (13)0.0081 (14)0.0058 (13)
O50.0331 (14)0.067 (2)0.0491 (16)0.0068 (13)0.0096 (12)0.0278 (15)
N10.0283 (13)0.0210 (13)0.0178 (12)0.0009 (10)0.0050 (10)0.0000 (10)
N30.0279 (13)0.0211 (13)0.0176 (12)0.0021 (10)0.0050 (10)0.0019 (10)
O80.0493 (16)0.0425 (16)0.0413 (15)0.0132 (13)0.0187 (12)0.0002 (12)
O40.0479 (15)0.0321 (13)0.0366 (14)0.0009 (12)0.0088 (12)0.0113 (11)
F20.111 (3)0.0356 (14)0.0587 (17)0.0080 (15)0.0078 (17)0.0039 (13)
N40.0291 (13)0.0217 (13)0.0193 (12)0.0016 (11)0.0082 (10)0.0010 (10)
N20.0288 (13)0.0197 (12)0.0157 (11)0.0025 (10)0.0062 (10)0.0002 (10)
C50.0340 (17)0.0185 (15)0.0151 (13)0.0003 (12)0.0085 (12)0.0030 (11)
C170.0281 (15)0.0228 (15)0.0160 (13)0.0010 (12)0.0058 (11)0.0000 (11)
C10.0384 (18)0.0258 (17)0.0212 (15)0.0060 (14)0.0059 (13)0.0032 (13)
C130.0351 (17)0.0197 (15)0.0229 (15)0.0018 (13)0.0064 (13)0.0001 (12)
C80.0302 (16)0.0176 (14)0.0223 (14)0.0023 (12)0.0116 (12)0.0036 (12)
C190.0298 (16)0.0282 (17)0.0185 (14)0.0019 (13)0.0044 (12)0.0004 (12)
C40.0317 (16)0.0221 (16)0.0176 (13)0.0005 (13)0.0062 (12)0.0020 (12)
C60.0310 (16)0.0178 (15)0.0138 (13)0.0037 (12)0.0084 (11)0.0024 (11)
C90.0338 (17)0.0200 (15)0.0211 (14)0.0035 (13)0.0099 (12)0.0001 (12)
C100.0287 (16)0.0204 (15)0.0197 (14)0.0022 (12)0.0069 (12)0.0027 (12)
C220.0372 (18)0.0207 (16)0.0321 (17)0.0019 (13)0.0120 (14)0.0003 (13)
C140.0432 (19)0.0212 (16)0.0246 (16)0.0003 (14)0.0078 (14)0.0006 (13)
C150.0383 (18)0.0289 (18)0.0245 (16)0.0066 (14)0.0058 (14)0.0040 (14)
C180.0296 (16)0.0261 (16)0.0139 (13)0.0006 (13)0.0055 (12)0.0008 (11)
C30.0370 (17)0.0268 (17)0.0153 (13)0.0049 (14)0.0028 (12)0.0029 (12)
C160.0319 (17)0.0310 (17)0.0204 (14)0.0015 (14)0.0018 (12)0.0003 (13)
C200.0378 (18)0.0318 (18)0.0224 (15)0.0098 (14)0.0095 (13)0.0049 (13)
C70.0271 (15)0.0184 (14)0.0152 (13)0.0030 (12)0.0056 (11)0.0028 (11)
C20.0430 (19)0.0228 (16)0.0240 (15)0.0051 (14)0.0047 (14)0.0049 (13)
C240.0339 (18)0.040 (2)0.0260 (17)0.0054 (15)0.0059 (14)0.0004 (15)
C210.041 (2)0.0244 (17)0.0346 (18)0.0065 (14)0.0156 (15)0.0030 (14)
C120.044 (2)0.0284 (19)0.0395 (19)0.0049 (15)0.0140 (16)0.0058 (15)
C110.043 (2)0.037 (2)0.0296 (18)0.0039 (16)0.0015 (15)0.0068 (15)
C230.061 (3)0.039 (2)0.0279 (18)0.0000 (19)0.0018 (17)0.0034 (16)
Geometric parameters (Å, º) top
Pd1—N22.022 (3)C1—C21.370 (5)
Pd1—N12.029 (3)C1—H10.9500
Pd1—N32.033 (3)C13—C141.380 (5)
Pd1—N42.046 (3)C13—H130.9500
S2—O61.433 (3)C8—C91.389 (5)
S2—O81.438 (3)C8—C71.402 (4)
S2—O71.440 (3)C19—C201.388 (5)
S2—C241.824 (4)C19—C181.391 (5)
S1—O51.431 (3)C19—H190.9500
S1—O41.436 (3)C4—C31.390 (5)
S1—O31.445 (2)C4—H40.9500
S1—C231.814 (4)C6—C71.377 (4)
F5—C241.314 (5)C9—C101.372 (5)
O2—C81.336 (4)C9—H90.9500
O2—C121.451 (4)C10—H100.9500
F6—C241.335 (4)C22—C211.391 (5)
F4—C241.328 (4)C22—H220.9500
F1—C231.347 (5)C14—C151.380 (5)
O1—C31.338 (4)C14—H140.9500
O1—C111.442 (5)C15—C161.383 (5)
F3—C231.333 (4)C15—H150.9500
N1—C11.345 (4)C3—C21.396 (5)
N1—C51.362 (4)C16—H160.9500
N3—C131.342 (4)C20—C211.376 (5)
N3—C171.362 (4)C20—H200.9500
F2—C231.335 (5)C7—H70.9500
N4—C221.338 (4)C2—H20.9500
N4—C181.358 (4)C21—H210.9500
N2—C101.338 (4)C12—H12A0.9800
N2—C61.361 (4)C12—H12B0.9800
C5—C41.380 (4)C12—H12C0.9800
C5—C61.476 (4)C11—H11A0.9800
C17—C161.382 (5)C11—H11B0.9800
C17—C181.465 (4)C11—H11C0.9800
N2—Pd1—N179.63 (10)C8—C9—H9120.9
N2—Pd1—N3165.80 (10)N2—C10—C9123.1 (3)
N1—Pd1—N3102.93 (10)N2—C10—H10118.4
N2—Pd1—N4101.76 (10)C9—C10—H10118.4
N1—Pd1—N4162.05 (10)N4—C22—C21122.2 (3)
N3—Pd1—N480.18 (10)N4—C22—H22118.9
O6—S2—O8115.34 (18)C21—C22—H22118.9
O6—S2—O7114.46 (17)C15—C14—C13119.0 (3)
O8—S2—O7114.52 (18)C15—C14—H14120.5
O6—S2—C24103.93 (17)C13—C14—H14120.5
O8—S2—C24102.87 (17)C14—C15—C16119.1 (3)
O7—S2—C24103.50 (18)C14—C15—H15120.5
O5—S1—O4115.52 (17)C16—C15—H15120.5
O5—S1—O3115.24 (16)N4—C18—C19121.0 (3)
O4—S1—O3114.33 (16)N4—C18—C17115.2 (3)
O5—S1—C23103.9 (2)C19—C18—C17123.7 (3)
O4—S1—C23102.74 (18)O1—C3—C4125.5 (3)
O3—S1—C23102.63 (17)O1—C3—C2115.9 (3)
C8—O2—C12116.6 (3)C4—C3—C2118.6 (3)
C3—O1—C11117.7 (3)C17—C16—C15119.6 (3)
C1—N1—C5118.0 (3)C17—C16—H16120.2
C1—N1—Pd1125.0 (2)C15—C16—H16120.2
C5—N1—Pd1115.6 (2)C21—C20—C19119.1 (3)
C13—N3—C17118.8 (3)C21—C20—H20120.4
C13—N3—Pd1125.4 (2)C19—C20—H20120.4
C17—N3—Pd1114.7 (2)C6—C7—C8118.8 (3)
C22—N4—C18119.1 (3)C6—C7—H7120.6
C22—N4—Pd1125.8 (2)C8—C7—H7120.6
C18—N4—Pd1114.2 (2)C1—C2—C3119.4 (3)
C10—N2—C6118.7 (3)C1—C2—H2120.3
C10—N2—Pd1124.8 (2)C3—C2—H2120.3
C6—N2—Pd1116.0 (2)F5—C24—F4108.3 (3)
N1—C5—C4122.4 (3)F5—C24—F6106.5 (3)
N1—C5—C6114.1 (3)F4—C24—F6106.5 (3)
C4—C5—C6123.4 (3)F5—C24—S2112.6 (3)
N3—C17—C16121.0 (3)F4—C24—S2111.8 (3)
N3—C17—C18115.0 (3)F6—C24—S2110.8 (3)
C16—C17—C18124.0 (3)C20—C21—C22119.0 (3)
N1—C1—C2122.7 (3)C20—C21—H21120.5
N1—C1—H1118.7C22—C21—H21120.5
C2—C1—H1118.7O2—C12—H12A109.5
N3—C13—C14122.4 (3)O2—C12—H12B109.5
N3—C13—H13118.8H12A—C12—H12B109.5
C14—C13—H13118.8O2—C12—H12C109.5
O2—C8—C9124.1 (3)H12A—C12—H12C109.5
O2—C8—C7116.7 (3)H12B—C12—H12C109.5
C9—C8—C7119.2 (3)O1—C11—H11A109.5
C20—C19—C18119.4 (3)O1—C11—H11B109.5
C20—C19—H19120.3H11A—C11—H11B109.5
C18—C19—H19120.3O1—C11—H11C109.5
C5—C4—C3118.8 (3)H11A—C11—H11C109.5
C5—C4—H4120.6H11B—C11—H11C109.5
C3—C4—H4120.6F3—C23—F2107.8 (3)
N2—C6—C7121.5 (3)F3—C23—F1107.9 (4)
N2—C6—C5114.2 (3)F2—C23—F1106.7 (4)
C7—C6—C5124.3 (3)F3—C23—S1111.1 (3)
C10—C9—C8118.3 (3)F2—C23—S1111.7 (3)
C10—C9—H9120.9F1—C23—S1111.4 (3)
 

Acknowledgements

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at the University of Texas at San Antonio.

Funding information

Funding for this research was provided by: National Science Foundation (award No. 1920059); Welch Foundation (award No. BN0032); University of the Incarnate Word Faculty Endowed Research Award; Constance and Miriam Jauchler Jones Endowed Chair.

References

First citationBenson, K. R., Stash, J., Moffa, K. L., Schmehl, R. H., Dudley, T. J. & Paul, J. J. (2021). Polyhedron, 205, 115300.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKarges, J. & Gasser, G. (2020). Inorg. Chim. Acta, 499, 119196.  Web of Science CrossRef Google Scholar
First citationKomlyagina, V. I., Romashev, N. F., Besprozvannykh, V. K., Arakelyan, J., Wu, C., Chubarov, A. S., Bakaev, I. V., Soh, Y. K., Abramov, P. A., Cheung, K. L., Kompan'kov, N. B., Ryadun, A. A., Babak, M. V. & Gushchin, A. L. (2023). Inorg. Chem. 62, 11541–11553.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKondori, T., Shahraki, O., Akbarzadeh-T, N. & Aramesh-Boroujeni, Z. (2021). J. Biomol. Struct. Dyn. 39, 595–609.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMaier, A. S., Thomas, C., Kränzlein, M., Pehl, T. M. & Rieger, B. (2022). Macromolecules, 55, 7039–7048.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction. Yarnton, England.  Google Scholar
First citationShchegolkov, E. V., Shchur, I. V., Burgart, Y. V., Slepukhin, P. A., Evstigneeva, N. P., Gerasimova, N. A., Zilberberg, N. V., Kungurov, N. V., Saloutin, V. I. & Chupakhin, O. N. (2021). Polyhedron, 194, 114900.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTabrizi, L., Zouchoune, B. & Zaiter, A. (2020). Inorg. Chim. Acta, 499, 119211.  Web of Science CrossRef Google Scholar
First citationYang, G., Wu, H., Gallarati, S., Corminboeuf, C., Wang, Q. & Zhu, J. (2022). J. Am. Chem. Soc. 144, 14047–14052.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146