organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Prop-2-ynyl 3-meth­­oxy-4-(prop-2-yn­yl­oxy)benzoate

crossmark logo

aSynthesis and Catalysis Research Centre, Department of Chemical Sciences, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: crestenm464@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 16 February 2024; accepted 19 February 2024; online 27 February 2024)

This article is part of a collection of articles to commemorate the founding of the African Crystallographic Association and the 75th anniversary of the IUCr.

The title compound, C14H12O4, comprises of two crystallographically independent mol­ecules in the asymmetric unit, linked via C—H⋯O inter­actions to form dimeric entities. The allylic groups are twisted out of the phenyl planes with dihedral angles varying between 7.92 (13) and 25.42 (8)°. In the crystal, the packing follows a zigzag pattern along the c-axis direction. The absolute configuration of the sample could not be determined reliably.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Vanillic acid (4-hy­droxy-3-meth­oxy­benzoic acid) is an aromatic phenolic acid widely used as a flavouring agent in the food industry. 4-Hy­droxy-3-meth­oxy­benzoic acid is naturally observed in some forms of vanilla and many other plant extracts, but may also be chemically synthesized (Calixto-Campos et al., 2015[Calixto-Campos, C., Carvalho, T. T., Hohmann, M. S., Pinho-Ribeiro, F. A., Fattori, V., Manchope, M. F., Zarpelon, A. C., Baracat, M. M., Georgetti, S. R., Casagrande, R. & Verri, W. A. Jr (2015). J. Nat. Prod. 78, 1799-1808.]). In addition to being a flavourant, this compound offers remarkable therapeutic (anti­cancer, anti­obesity, anti­diabetic, anti­bacterial, anti-inflammatory, and anti­oxidant) effects (Kaur et al., 2022[Kaur, J., Gulati, M., Singh, S. K., Kuppusamy, G., Kapoor, B., Mishra, V., Gupta, S., Arshad, M. F., Porwal, O., Jha, N. K., Chaitanya, M. V. N. L., Chellappan, D. K., Gupta, G., Gupta, P. K., Dua, K., Khursheed, R., Awasthi, A. & Corrie, L. (2022). Trends Food Sci. Technol. 122, 187-200.]) and versatility for use in polymeric coatings (Silva et al., 2016[Silva, L. D., Silva, F. A. S., Kubota, L. T., Lopes, C. B., Lima, P. R., Costa, E. O., Pinho Júnior, W. & Goulart, M. O. F. (2016). J. Solid State Electrochem. 20, 2389-2393.]; El-Toni et al., 2005[El-Toni, A. M., Yin, S. & Sato, T. (2005). Mater. Chem. Phys. 89, 154-158.]), as an inclusion agent for encapsulants (Rajendiran & Jude Jenita, 2015[Rajendiran, N. & Jude Jenita, M. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 1349-1357.]; Hong et al., 2008[Hong, M. M., Oh, J. M. & Choy, J. H. (2008). J. Nanosci. Nanotechnol. 8, 5018-5021.]) and as a construct in metallomacrocyles (Xiong et al., 2000[Xiong, R. G., Zuo, J. L., You, X. Z., Fun, H. K. & Raj (2000). Organometallics, 19, 4183-4186.]). More recently, this compound has been reported as a promising linker precursor towards novel coordination polymers (Belay et al., 2019[Belay, Y., Coetzee, L. C., Williams, D. B. G. & Muller, A. (2019). Tetrahedron Lett. 60, 501-503.]). In this study, the title compound, C14H12O4, was investigated as an inter­mediate toward hydroxamic acid-type linker systems and was prepared via the alkyl­ation of 4-hy­droxy-3-meth­oxy­benzoic acid with propargyl bromide in the presence of K2CO3 (Buckley et al., 2014[Buckley, H. L., Rubin, L. K., Chromiński, M., McNicholas, B. J., Tsen, K. H., Gryko, D. T. & Arnold, J. (2014). Inorg. Chem. 53, 7941-7950.]; Hoogendoorn et al., 2011[Hoogendoorn, S., Blom, A. E., Willems, L. I., van der Marel, G. A. & Overkleeft, H. S. (2011). Org. Lett. 13, 5656-5659.]).

The title compound crystallizes in the ortho­rhom­bic Pca21 (Z = 8) space group resulting in two independent mol­ecules (A and B) in the asymmetric unit (Fig. 1[link]) with all of the bond lengths and angles falling within the normal ranges. The differences between these two mol­ecules are observed in the allyl groups attached to the carboxyl­ate and para-hy­droxy positions of 4-hy­droxy-3-meth­oxy­benzoic acid, respectively, which display dihedral angles varying between 7.91 (13) and 25.42 (8)° out of plane with each of the benzoate rings for A and B. This observation is best illustrated by superimposing the two mol­ecules (Fig. 2[link]).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound as two independent mol­ecules (A and B) in the asymmetric unit, with the atom labelling. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Superimposed view of the two independent mol­ecules in the asymmetric unit (r.m.s. deviation = 0.113 Å, max displacement = 0.258 Å).

In mol­ecule A, the dihedral angles between the benzene ring (C4–C9) and the meth­oxy group (C9/O2/C10), the ester group (O4/C12–C14) and the ether group (O1/C1–C3) are 7.17 (15), 15.80 (12) and 11.48 (15)°, respectively. In mol­ecule B, the corresponding angles between the benzene ring (C18–C22), the meth­oxy group (C23/O6/C24), the ester group (O8/C26–C28) and the ether group (O5/C15–C17) are 3.22 (16), 25.42 (8) and 7.92 (13)°, respectively.

Non-classical inter­molecular hydrogen bonding is observed in the extended structure of the title compound. These inter­actions (Fig. 3[link]) are summarized in Table 1[link] and a packing diagram of the title compound shows the mol­ecules linked by infinite C—H⋯O chains along the c-axis direction (Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O6 0.95 2.30 3.231 (5) 165
C14—H14⋯O3i 0.95 2.28 3.231 (5) 177
C15—H15⋯O2 0.95 2.28 3.213 (5) 169
C28—H28⋯O7ii 0.95 2.41 3.291 (5) 155
Symmetry codes: (i) [x, y, z+1]; (ii) [x, y, z-1].
[Figure 3]
Figure 3
The non-classical C—H⋯O hydrogen-bonding inter­actions observed for the title compound, shown as dashed lines.
[Figure 4]
Figure 4
Packing diagram showing the title compound mol­ecules linked by infinite one-dimensional C—H⋯O chains along the c-axis direction.

Synthesis and crystallization

A solution of 4-hy­droxy-3-meth­oxy­benzoic acid (2.0 g, 11.90 mmol) was treated with K2CO3 (2.50 g, 17.85 mmol) in acetone. The reaction mixture was stirred under reflux for approximately 30 minutes followed by the addition of propargyl bromide (3.0 ml, 23.8 mmol of 80 wt. % in toluene). After stirring for 4 h, the reaction mixture was concentrated under vacuum. The residue was extracted using ethyl acetate, washed successively (water and brine) and dried over anhydrous sodium sulfate. The crude product was then recrystallized from the mixed solvents of di­chloro­methane and hexane to provide the title compound as colourless needles.

Analytical data: Melting point range: 65–68°C; 1H NMR (CDCl3, 400 MHZ): δ 7.69 (d, J = 8.4 Hz, 1H), 7.55 (s, 1H), 7.03 (d, J = 8.4 Hz, 1H), 4.88 (d, J = 2.4 Hz, 2H), 4.81 (d, J = 2.4 Hz, 2H), 3.91 (s, 3H), 2.52 (t, J = 2.4 Hz, 1H), 2.50 (t, J = 2.4 Hz, 1H); 13C NMR (CDCl3, 400 MHZ): δ 165.2, 150.9, 149.0, 123.4, 122.8, 112.5, 77.8, 74.8, 56.4, 55.9, 52.2.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Reflection (200) was removed as discrepant. The highest electron density of 0.22 e Å−3 is 0.75 Å away from C5, while the deepest electron density of −0.25 e Å−3 is 1.27 Å away from C25.

Table 2
Experimental details

Crystal data
Chemical formula C14H12O4
Mr 244.24
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 100
a, b, c (Å) 13.7387 (12), 20.547 (2), 8.4283 (9)
V3) 2379.2 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.40 × 0.07 × 0.03
 
Data collection
Diffractometer Bruker APEX DUO 4K CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.487, 0.749
No. of measured, independent and observed [I > 2σ(I)] reflections 12893, 5028, 3236
Rint 0.072
(sin θ/λ)max−1) 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.111, 1.00
No. of reflections 5028
No. of parameters 326
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.25
Absolute structure Flack x determined using 833 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −1.6 (10)
Computer programs: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT and XPREP (Bruker, 2008[Bruker (2008). SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Prop-2-ynyl 3-methoxy-4-(prop-2-ynyloxy)benzoate top
Crystal data top
C14H12O4Dx = 1.364 Mg m3
Mr = 244.24Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 13397 reflections
a = 13.7387 (12) Åθ = 0.1–28.4°
b = 20.547 (2) ŵ = 0.10 mm1
c = 8.4283 (9) ÅT = 100 K
V = 2379.2 (4) Å3Needle, colourless
Z = 80.40 × 0.07 × 0.03 mm
F(000) = 1024
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
5028 independent reflections
Radiation source: Sealed tube3236 reflections with I > 2σ(I)
Detector resolution: 8.4 pixels mm-1Rint = 0.072
φ and ω scansθmax = 28.4°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1816
Tmin = 0.487, Tmax = 0.749k = 2327
12893 measured reflectionsl = 711
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0426P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max = 0.003
S = 1.00Δρmax = 0.22 e Å3
5028 reflectionsΔρmin = 0.25 e Å3
326 parametersAbsolute structure: Flack x determined using 833 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 1.6 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms were refined isotropically in their idealized geometrical positions while riding on their anisotropic parent atoms with Uiso = 1.2Ueq for the aromatic and methine protons, and Uiso(H) = 1.5Ueq(C) for the methyl protons, the latter groups were refined as a fixed rotor and adjusted to match the hydrogen atoms electron density from the Fourier difference map.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8623 (3)0.4803 (2)0.5854 (5)0.0277 (10)
H10.8652720.4415940.5238340.033*
C20.8586 (3)0.5283 (2)0.6621 (5)0.0216 (9)
C30.8542 (3)0.58880 (19)0.7541 (5)0.0218 (9)
H3A0.7928080.5908090.8155370.026*
H3B0.9095340.5911930.8290570.026*
C40.8578 (3)0.70289 (19)0.7050 (4)0.0172 (8)
C50.8355 (3)0.7179 (2)0.8601 (5)0.0218 (9)
H50.8183010.6842490.9321240.026*
C60.8381 (3)0.78228 (18)0.9115 (4)0.0201 (9)
H60.8229730.7922741.0187510.024*
C70.8625 (3)0.8317 (2)0.8079 (4)0.0184 (9)
C80.8831 (3)0.8172 (2)0.6488 (4)0.0178 (9)
H80.8987780.8511120.5764450.021*
C90.8806 (3)0.7534 (2)0.5981 (4)0.0189 (9)
C100.9142 (3)0.78343 (19)0.3294 (5)0.0242 (9)
H10A0.9694980.8108910.3596040.036*
H10B0.8552790.8101590.3223860.036*
H10C0.9271490.7632680.2261530.036*
C110.8692 (3)0.9007 (2)0.8589 (5)0.0212 (9)
C120.8697 (3)0.9719 (2)1.0807 (5)0.0299 (11)
H12A0.9316130.9906411.0416450.036*
H12B0.8155841.0005301.0470770.036*
C130.8716 (3)0.9661 (2)1.2525 (5)0.0278 (10)
C140.8750 (3)0.9624 (2)1.3921 (5)0.0325 (11)
H140.8777000.9594841.5045190.039*
C150.9067 (3)0.5981 (2)0.2571 (5)0.0260 (9)
H150.9107240.6354940.3229180.031*
C160.9016 (3)0.5515 (2)0.1751 (5)0.0239 (9)
C170.8920 (3)0.49179 (19)0.0811 (5)0.0226 (9)
H17A0.8295610.4916840.0223710.027*
H17B0.9459880.4881560.0038730.027*
C180.8798 (3)0.3775 (2)0.1339 (4)0.0177 (9)
C190.8565 (3)0.3629 (2)0.0221 (4)0.0203 (9)
H190.8486050.3968330.0976370.024*
C200.8446 (3)0.29830 (19)0.0673 (5)0.0197 (9)
H200.8285920.2882330.1741730.024*
C210.8561 (3)0.24841 (19)0.0419 (5)0.0175 (8)
C220.8783 (3)0.2632 (2)0.2010 (5)0.0183 (9)
H220.8853510.2292520.2766320.022*
C230.8897 (3)0.3272 (2)0.2463 (4)0.0186 (8)
C240.9196 (3)0.2979 (2)0.5156 (4)0.0224 (9)
H24A0.9363000.3176770.6177860.034*
H24B0.8570320.2753070.5245750.034*
H24C0.9702820.2666250.4855170.034*
C250.8537 (3)0.1789 (2)0.0043 (4)0.0199 (9)
C260.8474 (3)0.1063 (2)0.2232 (5)0.0248 (9)
H26A0.7861290.0817480.2078700.030*
H26B0.9004660.0831500.1673310.030*
C270.8699 (3)0.1123 (2)0.3932 (5)0.0233 (10)
C280.8893 (3)0.1151 (2)0.5294 (5)0.0271 (10)
H280.9048720.1174100.6390940.032*
O10.8587 (2)0.64180 (14)0.6418 (3)0.0215 (7)
O20.90058 (19)0.73376 (13)0.4462 (3)0.0223 (6)
O30.8860 (2)0.94679 (15)0.7732 (3)0.0289 (7)
O40.8561 (2)0.90620 (14)1.0171 (3)0.0245 (7)
O50.89505 (19)0.43864 (13)0.1930 (3)0.0218 (6)
O60.91275 (19)0.34757 (13)0.3969 (3)0.0224 (6)
O70.8687 (2)0.13363 (14)0.0841 (3)0.0246 (7)
O80.83739 (18)0.17221 (13)0.1617 (3)0.0222 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.031 (2)0.021 (2)0.031 (2)0.0013 (19)0.003 (2)0.0048 (19)
C20.024 (2)0.019 (2)0.022 (2)0.0013 (18)0.0033 (17)0.0021 (18)
C30.031 (2)0.016 (2)0.018 (2)0.0008 (17)0.0018 (17)0.0027 (16)
C40.020 (2)0.016 (2)0.0157 (19)0.0005 (16)0.0027 (15)0.0032 (16)
C50.025 (2)0.020 (2)0.020 (2)0.0004 (17)0.0000 (16)0.0021 (17)
C60.027 (2)0.023 (2)0.0110 (19)0.0011 (17)0.0023 (15)0.0049 (16)
C70.021 (2)0.019 (2)0.015 (2)0.0025 (17)0.0001 (15)0.0030 (16)
C80.025 (2)0.017 (2)0.0116 (17)0.0020 (17)0.0006 (15)0.0012 (16)
C90.024 (2)0.020 (2)0.0129 (19)0.0031 (17)0.0022 (16)0.0005 (17)
C100.034 (2)0.024 (2)0.0141 (19)0.0052 (19)0.0022 (17)0.0027 (17)
C110.029 (2)0.022 (2)0.0126 (19)0.0030 (18)0.0000 (16)0.0034 (17)
C120.051 (3)0.018 (3)0.021 (2)0.001 (2)0.000 (2)0.004 (2)
C130.045 (3)0.017 (3)0.021 (2)0.0024 (19)0.0012 (19)0.0043 (18)
C140.059 (3)0.019 (2)0.019 (2)0.001 (2)0.000 (2)0.002 (2)
C150.033 (2)0.019 (2)0.026 (2)0.0012 (19)0.0044 (19)0.0004 (19)
C160.026 (2)0.023 (2)0.023 (2)0.0020 (18)0.0028 (17)0.0034 (18)
C170.034 (2)0.017 (2)0.0170 (19)0.0020 (17)0.0018 (18)0.0003 (16)
C180.023 (2)0.014 (2)0.0160 (19)0.0024 (16)0.0014 (15)0.0015 (17)
C190.026 (2)0.021 (2)0.0134 (18)0.0003 (18)0.0002 (16)0.0026 (16)
C200.024 (2)0.022 (2)0.0128 (19)0.0022 (17)0.0021 (15)0.0004 (17)
C210.0187 (19)0.014 (2)0.0202 (19)0.0011 (17)0.0005 (15)0.0016 (17)
C220.022 (2)0.016 (2)0.0163 (19)0.0011 (16)0.0016 (15)0.0007 (17)
C230.020 (2)0.021 (2)0.0144 (18)0.0009 (16)0.0013 (15)0.0039 (17)
C240.034 (2)0.022 (2)0.0118 (18)0.0010 (19)0.0026 (16)0.0028 (16)
C250.023 (2)0.021 (2)0.015 (2)0.0011 (18)0.0005 (16)0.0016 (17)
C260.041 (2)0.017 (2)0.0164 (18)0.0010 (19)0.0006 (17)0.0035 (17)
C270.034 (2)0.009 (2)0.027 (2)0.0001 (18)0.0019 (18)0.0042 (17)
C280.043 (3)0.018 (2)0.021 (2)0.0003 (19)0.0010 (18)0.0010 (19)
O10.0349 (16)0.0147 (16)0.0150 (14)0.0010 (12)0.0007 (12)0.0013 (12)
O20.0337 (16)0.0194 (16)0.0138 (13)0.0032 (12)0.0009 (11)0.0000 (11)
O30.053 (2)0.0189 (18)0.0153 (14)0.0030 (14)0.0028 (13)0.0003 (13)
O40.0438 (17)0.0150 (16)0.0146 (14)0.0022 (13)0.0017 (12)0.0031 (11)
O50.0365 (16)0.0124 (15)0.0165 (13)0.0005 (13)0.0019 (12)0.0009 (11)
O60.0366 (16)0.0172 (15)0.0135 (12)0.0014 (12)0.0023 (11)0.0003 (11)
O70.0398 (18)0.0174 (17)0.0165 (14)0.0004 (13)0.0008 (12)0.0006 (12)
O80.0365 (17)0.0136 (15)0.0165 (13)0.0000 (12)0.0022 (12)0.0006 (12)
Geometric parameters (Å, º) top
C1—C21.181 (6)C15—C161.182 (6)
C1—H10.9500C15—H150.9500
C2—C31.466 (5)C16—C171.467 (6)
C3—O11.444 (5)C17—O51.444 (5)
C3—H3A0.9900C17—H17A0.9900
C3—H3B0.9900C17—H17B0.9900
C4—O11.364 (4)C18—O51.367 (5)
C4—C51.378 (5)C18—C191.386 (5)
C4—C91.410 (5)C18—C231.409 (5)
C5—C61.392 (5)C19—C201.391 (6)
C5—H50.9500C19—H190.9500
C6—C71.381 (5)C20—C211.387 (5)
C6—H60.9500C20—H200.9500
C7—C81.403 (5)C21—C221.408 (6)
C7—C111.484 (6)C21—C251.481 (6)
C8—C91.379 (6)C22—C231.379 (6)
C8—H80.9500C22—H220.9500
C9—O21.370 (4)C23—O61.373 (4)
C10—O21.430 (4)C24—O61.433 (4)
C10—H10A0.9800C24—H24A0.9800
C10—H10B0.9800C24—H24B0.9800
C10—H10C0.9800C24—H24C0.9800
C11—O31.213 (5)C25—O71.209 (5)
C11—O41.350 (4)C25—O81.353 (4)
C12—C131.453 (6)C26—O81.456 (5)
C12—O41.464 (5)C26—C271.471 (6)
C12—H12A0.9900C26—H26A0.9900
C12—H12B0.9900C26—H26B0.9900
C13—C141.180 (6)C27—C281.180 (6)
C14—H140.9500C28—H280.9500
C2—C1—H1180.0O5—C17—H17A110.5
C1—C2—C3178.8 (5)C16—C17—H17A110.5
O1—C3—C2106.9 (3)O5—C17—H17B110.5
O1—C3—H3A110.3C16—C17—H17B110.5
C2—C3—H3A110.3H17A—C17—H17B108.7
O1—C3—H3B110.3O5—C18—C19125.4 (4)
C2—C3—H3B110.3O5—C18—C23114.5 (3)
H3A—C3—H3B108.6C19—C18—C23120.1 (4)
O1—C4—C5125.3 (4)C18—C19—C20119.6 (4)
O1—C4—C9115.2 (3)C18—C19—H19120.2
C5—C4—C9119.4 (4)C20—C19—H19120.2
C4—C5—C6120.1 (4)C21—C20—C19120.7 (4)
C4—C5—H5119.9C21—C20—H20119.6
C6—C5—H5119.9C19—C20—H20119.7
C7—C6—C5120.5 (3)C20—C21—C22119.8 (4)
C7—C6—H6119.7C20—C21—C25122.4 (4)
C5—C6—H6119.7C22—C21—C25117.6 (3)
C6—C7—C8119.8 (4)C23—C22—C21119.6 (4)
C6—C7—C11122.3 (3)C23—C22—H22120.2
C8—C7—C11117.9 (4)C21—C22—H22120.2
C9—C8—C7119.5 (4)O6—C23—C22125.0 (4)
C9—C8—H8120.2O6—C23—C18114.8 (3)
C7—C8—H8120.2C22—C23—C18120.2 (4)
O2—C9—C8124.4 (3)O6—C24—H24A109.5
O2—C9—C4115.1 (4)O6—C24—H24B109.5
C8—C9—C4120.5 (4)H24A—C24—H24B109.5
O2—C10—H10A109.5O6—C24—H24C109.5
O2—C10—H10B109.5H24A—C24—H24C109.5
H10A—C10—H10B109.5H24B—C24—H24C109.5
O2—C10—H10C109.5O7—C25—O8123.7 (4)
H10A—C10—H10C109.5O7—C25—C21125.1 (4)
H10B—C10—H10C109.5O8—C25—C21111.1 (4)
O3—C11—O4123.3 (4)O8—C26—C27106.8 (3)
O3—C11—C7125.8 (4)O8—C26—H26A110.4
O4—C11—C7111.0 (3)C27—C26—H26A110.4
C13—C12—O4106.9 (4)O8—C26—H26B110.4
C13—C12—H12A110.3C27—C26—H26B110.4
O4—C12—H12A110.3H26A—C26—H26B108.6
C13—C12—H12B110.3C28—C27—C26177.9 (5)
O4—C12—H12B110.3C27—C28—H28180.0
H12A—C12—H12B108.6C4—O1—C3116.0 (3)
C14—C13—C12178.4 (5)C9—O2—C10117.3 (3)
C13—C14—H14180.0C11—O4—C12114.9 (3)
C16—C15—H15180.0C18—O5—C17116.9 (3)
C15—C16—C17176.5 (5)C23—O6—C24116.3 (3)
O5—C17—C16106.1 (3)C25—O8—C26115.3 (3)
O1—C4—C5—C6179.3 (4)C21—C22—C23—C180.4 (5)
C9—C4—C5—C61.8 (6)O5—C18—C23—O60.2 (5)
C4—C5—C6—C70.3 (6)C19—C18—C23—O6179.9 (3)
C5—C6—C7—C81.2 (6)O5—C18—C23—C22178.6 (3)
C5—C6—C7—C11178.0 (4)C19—C18—C23—C221.4 (5)
C6—C7—C8—C91.2 (6)C20—C21—C25—O7175.5 (4)
C11—C7—C8—C9178.1 (3)C22—C21—C25—O70.5 (6)
C7—C8—C9—O2179.2 (3)C20—C21—C25—O81.2 (5)
C7—C8—C9—C40.3 (6)C22—C21—C25—O8176.2 (3)
O1—C4—C9—O20.2 (5)C5—C4—O1—C312.5 (6)
C5—C4—C9—O2179.3 (3)C9—C4—O1—C3168.5 (3)
O1—C4—C9—C8179.2 (3)C2—C3—O1—C4178.5 (3)
C5—C4—C9—C81.8 (6)C8—C9—O2—C107.4 (5)
C6—C7—C11—O3176.6 (4)C4—C9—O2—C10173.7 (3)
C8—C7—C11—O34.2 (6)O3—C11—O4—C123.7 (6)
C6—C7—C11—O44.8 (5)C7—C11—O4—C12175.0 (3)
C8—C7—C11—O4174.4 (3)C13—C12—O4—C11169.1 (3)
O5—C18—C19—C20178.8 (3)C19—C18—O5—C173.7 (5)
C23—C18—C19—C201.1 (6)C23—C18—O5—C17176.2 (3)
C18—C19—C20—C210.1 (6)C16—C17—O5—C18175.1 (3)
C19—C20—C21—C221.0 (5)C22—C23—O6—C243.7 (5)
C19—C20—C21—C25173.9 (4)C18—C23—O6—C24177.6 (3)
C20—C21—C22—C230.8 (5)O7—C25—O8—C265.1 (6)
C25—C21—C22—C23174.3 (3)C21—C25—O8—C26171.7 (3)
C21—C22—C23—O6179.0 (3)C27—C26—O8—C25155.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O60.952.303.231 (5)165
C14—H14···O3i0.952.283.231 (5)177
C15—H15···O20.952.283.213 (5)169
C28—H28···O7ii0.952.413.291 (5)155
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1.
 

Acknowledgements

The University of Johannesburg, Department of Chemical Sciences, is thanked for affording the opportunity to conduct the experimental research as well as providing the instrumentation necessary to characterize the title compound.

Funding information

Funding for this research was provided by: National Research Foundation (bursary No. SFH170530234995 to Cresten Moodley).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBelay, Y., Coetzee, L. C., Williams, D. B. G. & Muller, A. (2019). Tetrahedron Lett. 60, 501–503.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuckley, H. L., Rubin, L. K., Chromiński, M., McNicholas, B. J., Tsen, K. H., Gryko, D. T. & Arnold, J. (2014). Inorg. Chem. 53, 7941–7950.  CrossRef CAS PubMed Google Scholar
First citationCalixto-Campos, C., Carvalho, T. T., Hohmann, M. S., Pinho-Ribeiro, F. A., Fattori, V., Manchope, M. F., Zarpelon, A. C., Baracat, M. M., Georgetti, S. R., Casagrande, R. & Verri, W. A. Jr (2015). J. Nat. Prod. 78, 1799–1808.  CAS PubMed Google Scholar
First citationEl-Toni, A. M., Yin, S. & Sato, T. (2005). Mater. Chem. Phys. 89, 154–158.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHong, M. M., Oh, J. M. & Choy, J. H. (2008). J. Nanosci. Nanotechnol. 8, 5018–5021.  CrossRef PubMed CAS Google Scholar
First citationHoogendoorn, S., Blom, A. E., Willems, L. I., van der Marel, G. A. & Overkleeft, H. S. (2011). Org. Lett. 13, 5656–5659.  CrossRef CAS PubMed Google Scholar
First citationKaur, J., Gulati, M., Singh, S. K., Kuppusamy, G., Kapoor, B., Mishra, V., Gupta, S., Arshad, M. F., Porwal, O., Jha, N. K., Chaitanya, M. V. N. L., Chellappan, D. K., Gupta, G., Gupta, P. K., Dua, K., Khursheed, R., Awasthi, A. & Corrie, L. (2022). Trends Food Sci. Technol. 122, 187–200.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRajendiran, N. & Jude Jenita, M. (2015). Spectrochim. Acta A Mol. Biomol. Spectrosc. 136, 1349–1357.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, L. D., Silva, F. A. S., Kubota, L. T., Lopes, C. B., Lima, P. R., Costa, E. O., Pinho Júnior, W. & Goulart, M. O. F. (2016). J. Solid State Electrochem. 20, 2389–2393.  CrossRef Google Scholar
First citationXiong, R. G., Zuo, J. L., You, X. Z., Fun, H. K. & Raj (2000). Organometallics, 19, 4183–4186.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146