metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Aqua­bis­­(2,2′-bi­pyridine-κ2N,N′)(isonicotinamide-κN)ruthenium(II) bis­­(tri­fluoro­methane­sulfonate)

crossmark logo

aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 26 January 2024; accepted 2 February 2024; online 8 February 2024)

In the title complex, [Ru(C10H8N2)2(C6H6N2O)(H2O)](CF3SO3)2, the central RuII atom is sixfold coordinated by two bidentate 2,2′-bi­pyridine, an isonic­otinamide ligand, and a water mol­ecule in a distorted octa­hedral environment with tri­fluoro­methane­sulfonate ions completing the outer coordination sphere of the complex. Hydrogen bonding involving the water mol­ecule and weak ππ stacking inter­actions between the pyridyl rings in adjacent mol­ecules contribute to the alignment of the complexes in columns parallel to the c axis.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Over the last three years, a lot of effort has been directed into studying ruthenium(II) bis­(bi­pyridine) complexes due to their catalytic properties (Griffin et al., 2021[Griffin, J. D., Vogt, D. B., Du Bois, J. & Sigman, M. S. (2021). ACS Catal. 11, 10479-10486.]), luminescence (Cuéllar et al., 2021[Cuéllar, E., Diez-Varga, A., Torroba, T., Domingo-Legarda, P., Alemán, J., Cabrera, S., Martín-Alvarez, J. M., Miguel, D. & Villafañe, F. (2021). Inorg. Chem. 60, 7008-7022.]) and biological activity (Al–Wahaib et al., 2021[Al-Wahaib, D., El-Dissouky, A., Abrar, N. M. & Khalil, T. E. (2021). Appl. Organomet. Chem. 35, e6407.]; Allison et al., 2021[Allison, M., Caramés-Méndez, P., Pask, C. M., Phillips, R. M., Lord, R. M. & McGowan, P. C. (2021). Chem. A Eur. J. 27, 3737-3744.]). Last year, bi­pyridine ruthenium(II) complexes with halogen-substituted salicylates showed promising in vitro anti­proliferative activity against MCF-7 (breast cancer) and U-118 MG (human glioma) cell lines (Schoeller et al., 2023[Schoeller, M., Piroš, M., Litecká, M., Koňariková, K., Jozefíková, F., Šagátová, A., Zahradníková, E., Valentová, J. & Moncol, J. (2023). Molecules, 28, 4609.]). Our research group's inter­est currently lies in synthesizing metal complexes with application as anti­proliferative agents; as part of our research in this area, we describe the synthesis and structure of the title ruthenium(II) complex, Fig. 1[link].

[Figure 1]
Figure 1
Asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level; hydrogen bonds shown as dashed lines. The minor occupied sites of the disordered tri­fluoro­methane­sulfonate ion are omitted for clarity.

The asymmetric unit contains the title compound, with four symmetry-related entities inside the unit cell. The ruthenium(II) ion shows a distorted octa­hedral coordination environment defined by two 2,2′-bi­pyridine ligands, one isonicotinamide ligand and a water mol­ecule. Tri­fluoromethane­sulfonate ions sit in the outer coord­ination sphere, balancing the charge of the metal complex. All the Ru—N bond bond lengths are in good agreement with comparable ruthenium(II) bis­(2,2′-bi­pyridine) complexes currently available in the Cambridge Structural Database (CSD, version 5.45, Nov 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; Huang & Ogawa, 2006[Huang, W. & Ogawa, T. (2006). Polyhedron, 25, 1379-1385.], refcode LECFOP; Keniley Jr et al., 2013[Keniley, L. K. Jr, Dupont, N., Ray, L., Ding, J., Kovnir, K., Hoyt, J. M., Hauser, A. & Shatruk, M. (2013). Inorg. Chem. 52, 8040-8052.], refcode AROJIB01; Yoshikawa et al., 2016[Yoshikawa, N., Kimura, H., Yamabe, S., Kanehisa, N., Inoue, T. & Takashima, H. (2016). J. Mol. Struct. 1117, 49-56.], refcode DACBER; de Souza et al., 2017[Souza, C. M. de, Silva, R. C., Fernandes, P. O., de Souza Filho, J. D., Duarte, H. A., Araujo, M. H., de Simone, C. A., de Castro, S. L., Menna-Barreto, R. F., Demicheli, C. P. & da Silva Júnior, E. N. (2017). New J. Chem. 41, 3723-3731.], refcode TAWQOA), The N—Ru—N angles found in the bi­pyridine ligands also concur with the values reported in the previously referenced ruthenium(II) bi­pyridine complexes. The Ru—O bond length matches well with the distance in other ruthenium complexes with a coordinating water mol­ecule (Gupta et al., 1992[Gupta, N., Grover, N., Neyhart, G. A., Liang, W., Singh, P. & Thorp, H. H. (1992). Angew. Chem. Int. Ed. Engl. 31, 1048-1050.], refcode KUPBUS; Bonnet et al., 2003[Bonnet, S., Collin, J. P., Gruber, N., Sauvage, J. P. & Schofield, E. R. (2003). Dalton Trans. pp. 4654-4662.], refcode IPESIF; Ghaderian et al., 2020[Ghaderian, A., Franke, A., Gil-Sepulcre, M., Benet-Buchholz, J., Llobet, A., Ivanović-Burmazović, I. & Gimbert-Suriñach, C. (2020). Dalton Trans. 49, 17375-17387.], refcode LAGCIJ). All relevant bonds and angles are presented in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Ru1—N3 2.030 (6) Ru1—N2 2.069 (5)
Ru1—N1 2.047 (6) Ru1—N5 2.087 (5)
Ru1—N4 2.050 (6) Ru1—O2 2.145 (5)
       
N3—Ru1—N1 91.1 (2) N4—Ru1—N5 86.8 (2)
N3—Ru1—N4 79.4 (2) N2—Ru1—N5 95.4 (2)
N1—Ru1—N4 99.3 (2) N3—Ru1—O2 171.7 (2)
N3—Ru1—N2 96.3 (2) N1—Ru1—O2 86.9 (2)
N1—Ru1—N2 78.6 (2) N4—Ru1—O2 93.0 (2)
N4—Ru1—N2 175.2 (2) N2—Ru1—O2 91.2 (2)
N3—Ru1—N5 90.7 (2) N5—Ru1—O2 92.1 (2)
N1—Ru1—N5 173.9 (2)    

The packing diagram reveals the stacking of the asymmetric units in columns observable when looking at the crystal parallel to the caxis (Fig. 2[link]). Contiguous pyridine rings show weak ππ stacking inter­actions, with a centroid-to-centroid distance (CgCg) of 3.791 (4) Å and an offset distance of 1.559 Å, which are responsible for the stacking into columns. Tri­fluoro­methane­sulfonate ions sit in the gap between columns and are held in place by hydrogen bonds between one of the oxygen atoms of the tri­fluoro­methane­sulfonate ion and one of the hydrogen atoms in the water mol­ecule, as well as between the oxygen in the isonicotinamide ligand and the second hydrogen in the water mol­ecule (Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.89 1.73 2.617 (7) 174
O2—H2B⋯O5 0.89 1.90 2.775 (8) 169
N6—H6A⋯O6i 0.88 2.32 3.190 (9) 169
Symmetry code: (i) [-x+1, -y, -z+1].
[Figure 2]
Figure 2
Perspective view of the crystal packing of the title complex parallel to the c axis; H atoms and the minor occupied sites of the disordered tri­fluoro­methane­sulfonate ion are omitted for clarity.

Synthesis and crystallization

The title compound was synthesized by the reaction of cis-Ru(bpy)2Cl2 (0.100 g, 0.206 mmol) with Ag(CF3SO3) (0.106 g, 0.412 mmol) in 50 ml of EtOH. After heating and stirring for about 1 h at 323.15 K, the solution was filtrated using a PTFE syringe filter to remove AgCl. Isonicotinamide (0.050 g, 0.41 mmol) was then added to the mixture and the resulting solution was heated at 338.15 K until the volume was reduced to about 10 ml. Crystal suitable for X-ray diffraction were grown by vapor diffusion of diethyl ether over a saturated aceto­nitrile solution of the title complex.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. One of the tri­fluoro­methane­sulfonate ions has four atoms disordered over two sets of sites. The site occupation factors of the disordered atoms were set to 0.85 and 0.15, respectively. The displacement parameters of the minor occupied sites were restrained to an isotropic behavior. The C—S distance of the minor occupied sites was restrained to 1.70 (2) Å. H atoms were refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) or O—H = 0.89 Å and Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Ru(C10H8N2)2(C6H6N2O(H2O)](CF3SO3)2
Mr 851.72
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 9.7878 (1), 26.2103 (3), 12.6443 (1)
β (°) 97.202 (1)
V3) 3218.19 (6)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.02
Crystal size (mm) 0.11 × 0.06 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.])
Tmin, Tmax 0.099, 0.513
No. of measured, independent and observed [I > 2σ(I)] reflections 35289, 5777, 5536
Rint 0.072
(sin θ/λ)max−1) 0.599
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.159, 1.06
No. of reflections 5777
No. of parameters 496
No. of restraints 25
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.34, −1.09
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Aquabis(2,2'-bipyridine-κ2N,N')(isonicotinamide-κN)ruthenium(II) bis(trifluoromethanesulfonate) top
Crystal data top
[Ru(C10H8N2)2(C6H6N2O)(H2O)](CF3O3S)2F(000) = 1712
Mr = 851.72Dx = 1.758 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 9.7878 (1) ÅCell parameters from 24511 reflections
b = 26.2103 (3) Åθ = 3.4–75.8°
c = 12.6443 (1) ŵ = 6.02 mm1
β = 97.202 (1)°T = 100 K
V = 3218.19 (6) Å3Plate, clear dark red
Z = 40.11 × 0.06 × 0.04 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
5777 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5536 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.072
Detector resolution: 10.0000 pixels mm-1θmax = 67.5°, θmin = 3.9°
ω scansh = 1110
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
k = 2631
Tmin = 0.099, Tmax = 0.513l = 1515
35289 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.010P)2 + 35.P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5777 reflectionsΔρmax = 1.34 e Å3
496 parametersΔρmin = 1.09 e Å3
25 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.61055 (5)0.14183 (2)0.26873 (4)0.03384 (16)
O10.5987 (5)0.10366 (18)0.4895 (4)0.0429 (11)
O20.4138 (5)0.1473 (2)0.3258 (4)0.0426 (11)
H2A0.4154250.1324470.3890720.064*
H2B0.3943350.1796570.3384520.064*
N10.5897 (6)0.2176 (2)0.2310 (4)0.0372 (13)
N20.7066 (6)0.1756 (2)0.4063 (4)0.0351 (12)
N30.7814 (6)0.1366 (2)0.1933 (5)0.0367 (12)
N40.5283 (6)0.1109 (2)0.1259 (5)0.0395 (13)
N50.6388 (6)0.0670 (2)0.3238 (4)0.0342 (12)
N60.8211 (7)0.1061 (2)0.4606 (5)0.0465 (15)
H6A0.8348660.1368110.4878290.056*
H6B0.8890460.0895710.4364290.056*
C10.5144 (8)0.2376 (3)0.1440 (6)0.0437 (17)
H10.4689710.2150780.0920850.052*
C20.5013 (8)0.2896 (3)0.1277 (7)0.053 (2)
H20.4461500.3023070.0662090.063*
C30.5683 (8)0.3228 (3)0.2009 (7)0.053 (2)
H30.5615520.3586260.1898260.064*
C40.6444 (8)0.3036 (3)0.2896 (6)0.0463 (18)
H40.6912370.3259560.3411130.056*
C50.6532 (7)0.2510 (3)0.3044 (6)0.0391 (15)
C60.7253 (7)0.2268 (3)0.3995 (6)0.0378 (15)
C70.8054 (8)0.2532 (3)0.4799 (6)0.0474 (18)
H70.8183960.2889290.4730480.057*
C80.8655 (8)0.2284 (3)0.5686 (6)0.051 (2)
H80.9221380.2462290.6229990.061*
C90.8419 (8)0.1766 (3)0.5773 (6)0.0476 (18)
H90.8801680.1584750.6389950.057*
C100.7622 (7)0.1516 (3)0.4956 (5)0.0376 (15)
H100.7458960.1161440.5027370.045*
C110.9100 (7)0.1537 (3)0.2309 (7)0.0427 (17)
H110.9252960.1678700.3005610.051*
C121.0178 (8)0.1511 (3)0.1719 (7)0.0488 (19)
H121.1060610.1633830.2005270.059*
C130.9978 (8)0.1306 (3)0.0709 (7)0.0491 (19)
H131.0718960.1285220.0292880.059*
C140.8690 (8)0.1133 (3)0.0312 (6)0.0438 (17)
H140.8532940.0991320.0384110.053*
C150.7616 (7)0.1166 (2)0.0934 (6)0.0376 (15)
C160.6201 (8)0.1007 (3)0.0561 (6)0.0394 (16)
C170.5790 (9)0.0771 (3)0.0413 (6)0.0484 (18)
H170.6440150.0704930.0894330.058*
C180.4433 (9)0.0636 (3)0.0673 (6)0.055 (2)
H180.4137690.0469240.1329830.066*
C190.3503 (9)0.0744 (3)0.0034 (6)0.0521 (19)
H190.2558770.0657250.0136310.063*
C200.3956 (8)0.0979 (3)0.0983 (6)0.0450 (17)
H200.3309400.1052720.1463320.054*
C210.7662 (7)0.0492 (3)0.3579 (6)0.0402 (16)
H210.8425140.0710190.3522940.048*
C220.7920 (7)0.0012 (3)0.4005 (6)0.0392 (16)
H220.8835450.0092650.4248100.047*
C230.6833 (7)0.0314 (3)0.4073 (5)0.0378 (15)
C240.5510 (7)0.0144 (3)0.3708 (6)0.0401 (16)
H240.4740280.0361100.3741140.048*
C250.5324 (7)0.0347 (3)0.3295 (5)0.0372 (15)
H250.4417870.0459200.3044870.045*
C260.6994 (8)0.0841 (3)0.4557 (6)0.0398 (16)
S10.2217 (2)0.25487 (8)0.41915 (16)0.0494 (5)
F10.2188 (6)0.3402 (2)0.3117 (4)0.0755 (15)
F20.1589 (6)0.2750 (2)0.2159 (4)0.0760 (16)
F30.0165 (5)0.3069 (2)0.3194 (4)0.0780 (16)
O50.3606 (6)0.2454 (2)0.3927 (5)0.0561 (14)
O60.1339 (6)0.2106 (2)0.4103 (5)0.0621 (15)
O70.2149 (6)0.2865 (2)0.5113 (4)0.0576 (15)
C530.1482 (10)0.2957 (3)0.3155 (8)0.065 (3)
S2A0.1522 (2)0.03696 (10)0.29352 (18)0.0434 (5)0.85
F50.0471 (6)0.0206 (2)0.2038 (4)0.0841 (19)
F40.1073 (7)0.0024 (2)0.1044 (4)0.0848 (19)
O80.0628 (5)0.0594 (2)0.3648 (4)0.0503 (13)
O40.2389 (6)0.0727 (2)0.2487 (5)0.0636 (16)
C27A0.0347 (11)0.0160 (4)0.1798 (8)0.050 (2)0.85
F6A0.0419 (6)0.0556 (3)0.1393 (5)0.0708 (18)0.85
O3A0.2141 (8)0.0121 (3)0.3310 (6)0.068 (2)0.85
S2B0.0994 (15)0.0604 (5)0.2581 (11)0.043 (3)0.15
O3B0.015 (7)0.080 (3)0.185 (5)0.107 (19)0.15
C27B0.110 (5)0.0032 (10)0.230 (4)0.043 (11)0.15
F6B0.131 (9)0.033 (3)0.283 (6)0.17 (3)0.15
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0356 (3)0.0340 (3)0.0319 (3)0.0025 (2)0.0042 (2)0.0010 (2)
O10.050 (3)0.033 (3)0.047 (3)0.006 (2)0.012 (2)0.003 (2)
O20.044 (3)0.049 (3)0.037 (3)0.004 (2)0.010 (2)0.000 (2)
N10.037 (3)0.041 (3)0.035 (3)0.000 (2)0.008 (2)0.006 (2)
N20.038 (3)0.032 (3)0.035 (3)0.001 (2)0.004 (2)0.001 (2)
N30.041 (3)0.028 (3)0.042 (3)0.000 (2)0.008 (2)0.008 (2)
N40.044 (3)0.037 (3)0.038 (3)0.004 (3)0.006 (3)0.004 (3)
N50.038 (3)0.032 (3)0.033 (3)0.002 (2)0.005 (2)0.001 (2)
N60.052 (4)0.032 (3)0.057 (4)0.001 (3)0.014 (3)0.005 (3)
C10.048 (4)0.041 (4)0.041 (4)0.003 (3)0.002 (3)0.008 (3)
C20.050 (4)0.052 (5)0.054 (5)0.005 (4)0.001 (4)0.023 (4)
C30.056 (5)0.037 (4)0.067 (5)0.003 (4)0.004 (4)0.011 (4)
C40.051 (4)0.035 (4)0.052 (4)0.003 (3)0.004 (4)0.006 (3)
C50.037 (4)0.040 (4)0.042 (4)0.004 (3)0.007 (3)0.000 (3)
C60.040 (4)0.034 (4)0.041 (4)0.001 (3)0.008 (3)0.003 (3)
C70.050 (4)0.033 (4)0.058 (5)0.005 (3)0.001 (4)0.010 (3)
C80.051 (4)0.047 (5)0.051 (5)0.000 (4)0.008 (4)0.017 (4)
C90.050 (4)0.049 (5)0.040 (4)0.009 (4)0.005 (3)0.007 (3)
C100.044 (4)0.031 (3)0.038 (4)0.002 (3)0.003 (3)0.000 (3)
C110.042 (4)0.029 (3)0.058 (5)0.003 (3)0.009 (3)0.003 (3)
C120.041 (4)0.036 (4)0.072 (5)0.002 (3)0.015 (4)0.004 (4)
C130.052 (5)0.033 (4)0.067 (5)0.007 (3)0.027 (4)0.007 (4)
C140.053 (4)0.035 (4)0.045 (4)0.007 (3)0.016 (3)0.008 (3)
C150.047 (4)0.023 (3)0.044 (4)0.007 (3)0.011 (3)0.004 (3)
C160.052 (4)0.029 (3)0.038 (4)0.009 (3)0.006 (3)0.005 (3)
C170.062 (5)0.043 (4)0.040 (4)0.008 (4)0.007 (4)0.000 (3)
C180.070 (6)0.057 (5)0.036 (4)0.000 (4)0.006 (4)0.006 (4)
C190.048 (4)0.057 (5)0.049 (5)0.001 (4)0.001 (4)0.003 (4)
C200.042 (4)0.050 (4)0.042 (4)0.001 (3)0.002 (3)0.003 (3)
C210.041 (4)0.037 (4)0.044 (4)0.004 (3)0.010 (3)0.003 (3)
C220.037 (4)0.032 (4)0.049 (4)0.002 (3)0.007 (3)0.002 (3)
C230.047 (4)0.032 (4)0.035 (4)0.003 (3)0.011 (3)0.000 (3)
C240.042 (4)0.041 (4)0.039 (4)0.008 (3)0.010 (3)0.001 (3)
C250.038 (4)0.037 (4)0.036 (4)0.005 (3)0.001 (3)0.003 (3)
C260.048 (4)0.033 (4)0.038 (4)0.003 (3)0.009 (3)0.006 (3)
S10.0465 (10)0.0490 (11)0.0523 (11)0.0038 (8)0.0047 (8)0.0023 (9)
F10.090 (4)0.065 (3)0.068 (3)0.002 (3)0.002 (3)0.013 (3)
F20.076 (4)0.102 (4)0.047 (3)0.011 (3)0.001 (3)0.011 (3)
F30.059 (3)0.104 (5)0.068 (3)0.017 (3)0.002 (3)0.007 (3)
O50.048 (3)0.058 (4)0.064 (4)0.004 (3)0.012 (3)0.005 (3)
O60.057 (3)0.051 (3)0.079 (4)0.011 (3)0.011 (3)0.005 (3)
O70.061 (3)0.062 (4)0.049 (3)0.011 (3)0.006 (3)0.012 (3)
C530.067 (6)0.043 (5)0.076 (6)0.008 (4)0.026 (5)0.015 (4)
S2A0.0361 (11)0.0552 (14)0.0382 (11)0.0036 (11)0.0025 (9)0.0043 (11)
F50.097 (4)0.089 (4)0.073 (4)0.056 (3)0.034 (3)0.036 (3)
F40.106 (4)0.089 (4)0.068 (3)0.036 (4)0.045 (3)0.034 (3)
O80.047 (3)0.057 (3)0.049 (3)0.013 (3)0.011 (2)0.018 (3)
O40.057 (3)0.076 (4)0.060 (4)0.029 (3)0.018 (3)0.012 (3)
C27A0.058 (6)0.046 (5)0.048 (5)0.016 (5)0.011 (5)0.011 (4)
F6A0.054 (4)0.091 (5)0.062 (4)0.010 (3)0.012 (3)0.011 (4)
O3A0.058 (4)0.087 (6)0.060 (4)0.028 (4)0.007 (4)0.027 (4)
S2B0.047 (6)0.034 (5)0.049 (6)0.001 (5)0.009 (5)0.000 (5)
O3B0.11 (3)0.11 (3)0.10 (2)0.006 (18)0.014 (18)0.021 (18)
C27B0.044 (14)0.043 (14)0.041 (14)0.002 (10)0.007 (10)0.000 (9)
F6B0.18 (3)0.15 (3)0.17 (3)0.00 (2)0.02 (2)0.009 (19)
Geometric parameters (Å, º) top
Ru1—N32.030 (6)C13—C141.374 (11)
Ru1—N12.047 (6)C13—H130.9500
Ru1—N42.050 (6)C14—C151.392 (10)
Ru1—N22.069 (5)C14—H140.9500
Ru1—N52.087 (5)C15—C161.467 (10)
Ru1—O22.145 (5)C16—C171.392 (10)
O1—C261.234 (8)C17—C181.374 (12)
O2—H2A0.8881C17—H170.9500
O2—H2B0.8881C18—C191.383 (12)
N1—C11.351 (9)C18—H180.9500
N1—C51.367 (9)C19—C201.372 (11)
N2—C101.347 (8)C19—H190.9500
N2—C61.358 (9)C20—H200.9500
N3—C151.359 (9)C21—C221.381 (10)
N3—C111.364 (9)C21—H210.9500
N4—C201.346 (9)C22—C231.375 (9)
N4—C161.363 (9)C22—H220.9500
N5—C211.351 (9)C23—C241.392 (10)
N5—C251.351 (8)C23—C261.511 (10)
N6—C261.317 (9)C24—C251.393 (10)
N6—H6A0.8799C24—H240.9500
N6—H6B0.8799C25—H250.9500
C1—C21.382 (11)S1—O71.438 (6)
C1—H10.9500S1—O61.441 (6)
C2—C31.377 (12)S1—O51.462 (6)
C2—H20.9500S1—C531.773 (9)
C3—C41.363 (11)F1—C531.361 (10)
C3—H30.9500F2—C531.387 (11)
C4—C51.392 (10)F3—C531.329 (11)
C4—H40.9500S2A—O41.428 (6)
C5—C61.461 (10)S2A—O81.457 (6)
C6—C71.389 (10)S2A—O3A1.474 (8)
C7—C81.365 (11)S2A—C27A1.810 (10)
C7—H70.9500F5—C27A1.308 (10)
C8—C91.383 (11)F5—C27B1.60 (5)
C8—H80.9500F4—C27A1.349 (11)
C9—C101.379 (10)F4—C27B1.59 (5)
C9—H90.9500O8—S2B1.438 (14)
C10—H100.9500O4—S2B1.423 (14)
C11—C121.368 (10)C27A—F6A1.345 (12)
C11—H110.9500S2B—O3B1.27 (7)
C12—C131.376 (12)S2B—C27B1.71 (2)
C12—H120.9500C27B—F6B1.03 (8)
N3—Ru1—N191.1 (2)C13—C14—C15119.7 (7)
N3—Ru1—N479.4 (2)C13—C14—H14120.1
N1—Ru1—N499.3 (2)C15—C14—H14120.1
N3—Ru1—N296.3 (2)N3—C15—C14121.3 (7)
N1—Ru1—N278.6 (2)N3—C15—C16115.3 (6)
N4—Ru1—N2175.2 (2)C14—C15—C16123.4 (7)
N3—Ru1—N590.7 (2)N4—C16—C17121.3 (7)
N1—Ru1—N5173.9 (2)N4—C16—C15114.1 (6)
N4—Ru1—N586.8 (2)C17—C16—C15124.6 (7)
N2—Ru1—N595.4 (2)C18—C17—C16119.4 (8)
N3—Ru1—O2171.7 (2)C18—C17—H17120.3
N1—Ru1—O286.9 (2)C16—C17—H17120.3
N4—Ru1—O293.0 (2)C17—C18—C19119.1 (7)
N2—Ru1—O291.2 (2)C17—C18—H18120.4
N5—Ru1—O292.1 (2)C19—C18—H18120.4
Ru1—O2—H2A111.0C20—C19—C18119.4 (8)
Ru1—O2—H2B110.2C20—C19—H19120.3
H2A—O2—H2B103.7C18—C19—H19120.3
C1—N1—C5117.4 (6)N4—C20—C19122.4 (7)
C1—N1—Ru1126.4 (5)N4—C20—H20118.8
C5—N1—Ru1116.1 (4)C19—C20—H20118.8
C10—N2—C6118.0 (6)N5—C21—C22123.8 (7)
C10—N2—Ru1126.8 (5)N5—C21—H21118.1
C6—N2—Ru1114.8 (4)C22—C21—H21118.1
C15—N3—C11117.9 (6)C23—C22—C21119.0 (7)
C15—N3—Ru1115.6 (5)C23—C22—H22120.5
C11—N3—Ru1126.4 (5)C21—C22—H22120.5
C20—N4—C16118.4 (6)C22—C23—C24118.4 (6)
C20—N4—Ru1126.0 (5)C22—C23—C26123.3 (7)
C16—N4—Ru1115.5 (5)C24—C23—C26118.2 (6)
C21—N5—C25117.0 (6)C23—C24—C25119.5 (6)
C21—N5—Ru1120.6 (5)C23—C24—H24120.2
C25—N5—Ru1122.4 (5)C25—C24—H24120.2
C26—N6—H6A120.8N5—C25—C24122.2 (6)
C26—N6—H6B119.1N5—C25—H25118.9
H6A—N6—H6B120.0C24—C25—H25118.9
N1—C1—C2122.3 (7)O1—C26—N6123.9 (7)
N1—C1—H1118.8O1—C26—C23118.2 (6)
C2—C1—H1118.8N6—C26—C23117.9 (6)
C3—C2—C1119.8 (7)O7—S1—O6116.1 (4)
C3—C2—H2120.1O7—S1—O5115.0 (4)
C1—C2—H2120.1O6—S1—O5114.1 (4)
C4—C3—C2119.0 (7)O7—S1—C53101.3 (4)
C4—C3—H3120.5O6—S1—C53104.3 (4)
C2—C3—H3120.5O5—S1—C53103.7 (4)
C3—C4—C5119.6 (7)F3—C53—F1108.2 (7)
C3—C4—H4120.2F3—C53—F2107.7 (7)
C5—C4—H4120.2F1—C53—F2102.0 (8)
N1—C5—C4121.9 (7)F3—C53—S1114.3 (8)
N1—C5—C6114.3 (6)F1—C53—S1112.5 (6)
C4—C5—C6123.8 (7)F2—C53—S1111.4 (6)
N2—C6—C7121.0 (7)O4—S2A—O8114.5 (4)
N2—C6—C5115.2 (6)O4—S2A—O3A117.3 (4)
C7—C6—C5123.7 (7)O8—S2A—O3A114.1 (4)
C8—C7—C6120.6 (7)O4—S2A—C27A103.5 (4)
C8—C7—H7119.7O8—S2A—C27A104.0 (4)
C6—C7—H7119.7O3A—S2A—C27A100.7 (5)
C7—C8—C9118.3 (7)F5—C27A—F6A109.1 (9)
C7—C8—H8120.9F5—C27A—F4107.1 (7)
C9—C8—H8120.9F6A—C27A—F4108.9 (8)
C10—C9—C8119.4 (7)F5—C27A—S2A112.7 (7)
C10—C9—H9120.3F6A—C27A—S2A109.6 (6)
C8—C9—H9120.3F4—C27A—S2A109.4 (7)
N2—C10—C9122.5 (7)O3B—S2B—O4113 (3)
N2—C10—H10118.7O3B—S2B—O8118 (3)
C9—C10—H10118.7O4—S2B—O8116.0 (11)
N3—C11—C12122.3 (7)O3B—S2B—C27B108 (4)
N3—C11—H11118.8O4—S2B—C27B96.7 (19)
C12—C11—H11118.8O8—S2B—C27B101.7 (19)
C11—C12—C13119.7 (8)F6B—C27B—F591 (6)
C11—C12—H12120.1F6B—C27B—F4129 (5)
C13—C12—H12120.1F5—C27B—F484 (3)
C14—C13—C12119.0 (7)F6B—C27B—S2B129 (6)
C14—C13—H13120.5F5—C27B—S2B104 (2)
C12—C13—H13120.5F4—C27B—S2B101 (2)
C5—N1—C1—C20.3 (11)C16—C17—C18—C191.1 (12)
Ru1—N1—C1—C2176.9 (6)C17—C18—C19—C200.8 (13)
N1—C1—C2—C31.2 (12)C16—N4—C20—C190.6 (11)
C1—C2—C3—C41.4 (13)Ru1—N4—C20—C19175.8 (6)
C2—C3—C4—C50.1 (12)C18—C19—C20—N40.1 (13)
C1—N1—C5—C41.6 (10)C25—N5—C21—C222.1 (10)
Ru1—N1—C5—C4178.5 (6)Ru1—N5—C21—C22176.5 (5)
C1—N1—C5—C6176.3 (6)N5—C21—C22—C231.4 (11)
Ru1—N1—C5—C60.6 (8)C21—C22—C23—C240.1 (10)
C3—C4—C5—N11.4 (12)C21—C22—C23—C26178.0 (6)
C3—C4—C5—C6176.3 (7)C22—C23—C24—C250.4 (10)
C10—N2—C6—C73.3 (10)C26—C23—C24—C25177.6 (6)
Ru1—N2—C6—C7170.7 (6)C21—N5—C25—C241.5 (10)
C10—N2—C6—C5175.3 (6)Ru1—N5—C25—C24177.0 (5)
Ru1—N2—C6—C510.7 (8)C23—C24—C25—N50.3 (10)
N1—C5—C6—N26.7 (9)C22—C23—C26—O1157.0 (7)
C4—C5—C6—N2171.2 (7)C24—C23—C26—O120.9 (10)
N1—C5—C6—C7174.8 (7)C22—C23—C26—N622.0 (10)
C4—C5—C6—C77.4 (11)C24—C23—C26—N6160.1 (7)
N2—C6—C7—C81.1 (12)O7—S1—C53—F364.7 (7)
C5—C6—C7—C8177.4 (7)O6—S1—C53—F356.1 (7)
C6—C7—C8—C91.5 (12)O5—S1—C53—F3175.8 (6)
C7—C8—C9—C101.7 (12)O7—S1—C53—F159.1 (8)
C6—N2—C10—C93.1 (10)O6—S1—C53—F1179.9 (7)
Ru1—N2—C10—C9170.1 (5)O5—S1—C53—F160.4 (8)
C8—C9—C10—N20.6 (12)O7—S1—C53—F2172.9 (6)
C15—N3—C11—C120.1 (10)O6—S1—C53—F266.3 (8)
Ru1—N3—C11—C12176.3 (5)O5—S1—C53—F253.4 (7)
N3—C11—C12—C130.1 (11)O4—S2A—C27A—F5174.7 (7)
C11—C12—C13—C140.2 (11)O8—S2A—C27A—F565.3 (8)
C12—C13—C14—C150.1 (11)O3A—S2A—C27A—F553.0 (8)
C11—N3—C15—C140.2 (9)O4—S2A—C27A—F6A63.6 (7)
Ru1—N3—C15—C14176.8 (5)O8—S2A—C27A—F6A56.3 (7)
C11—N3—C15—C16177.9 (6)O3A—S2A—C27A—F6A174.7 (6)
Ru1—N3—C15—C161.3 (7)O4—S2A—C27A—F455.7 (8)
C13—C14—C15—N30.1 (10)O8—S2A—C27A—F4175.7 (6)
C13—C14—C15—C16177.8 (6)O3A—S2A—C27A—F466.0 (7)
C20—N4—C16—C170.3 (10)O3B—S2B—C27B—F6B150 (9)
Ru1—N4—C16—C17176.5 (5)O4—S2B—C27B—F6B93 (9)
C20—N4—C16—C15179.6 (6)O8—S2B—C27B—F6B25 (9)
Ru1—N4—C16—C153.5 (7)O3B—S2B—C27B—F547 (4)
N3—C15—C16—N43.2 (8)O4—S2B—C27B—F5164 (2)
C14—C15—C16—N4174.9 (6)O8—S2B—C27B—F578 (3)
N3—C15—C16—C17176.9 (6)O3B—S2B—C27B—F439 (4)
C14—C15—C16—C175.1 (11)O4—S2B—C27B—F477 (3)
N4—C16—C17—C180.5 (11)O8—S2B—C27B—F4164 (2)
C15—C16—C17—C18179.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.891.732.617 (7)174
O2—H2B···O50.891.902.775 (8)169
N6—H6A···O6i0.882.323.190 (9)169
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at the University of Texas at San Antonio.

Funding information

Funding for this research was provided by: National Science Foundation (award No. 1920059); Welch Foundation (award No. BN0032); University of the Incarnate Word Facuty Endowed Research Award; Constance and Miriam Jauchler Jones Endowed Chair.

References

First citationAllison, M., Caramés–Méndez, P., Pask, C. M., Phillips, R. M., Lord, R. M. & McGowan, P. C. (2021). Chem. A Eur. J. 27, 3737–3744.  Web of Science CSD CrossRef CAS Google Scholar
First citationAl–Wahaib, D., El–Dissouky, A., Abrar, N. M. & Khalil, T. E. (2021). Appl. Organomet. Chem. 35, e6407.  Google Scholar
First citationBonnet, S., Collin, J. P., Gruber, N., Sauvage, J. P. & Schofield, E. R. (2003). Dalton Trans. pp. 4654–4662.  Web of Science CSD CrossRef Google Scholar
First citationCuéllar, E., Diez-Varga, A., Torroba, T., Domingo-Legarda, P., Alemán, J., Cabrera, S., Martín-Alvarez, J. M., Miguel, D. & Villafañe, F. (2021). Inorg. Chem. 60, 7008–7022.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhaderian, A., Franke, A., Gil-Sepulcre, M., Benet-Buchholz, J., Llobet, A., Ivanović-Burmazović, I. & Gimbert-Suriñach, C. (2020). Dalton Trans. 49, 17375–17387.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGriffin, J. D., Vogt, D. B., Du Bois, J. & Sigman, M. S. (2021). ACS Catal. 11, 10479–10486.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, N., Grover, N., Neyhart, G. A., Liang, W., Singh, P. & Thorp, H. H. (1992). Angew. Chem. Int. Ed. Engl. 31, 1048–1050.  CSD CrossRef Web of Science Google Scholar
First citationHuang, W. & Ogawa, T. (2006). Polyhedron, 25, 1379–1385.  Web of Science CSD CrossRef CAS Google Scholar
First citationKeniley, L. K. Jr, Dupont, N., Ray, L., Ding, J., Kovnir, K., Hoyt, J. M., Hauser, A. & Shatruk, M. (2013). Inorg. Chem. 52, 8040–8052.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction.  Google Scholar
First citationSchoeller, M., Piroš, M., Litecká, M., Koňariková, K., Jozefíková, F., Šagátová, A., Zahradníková, E., Valentová, J. & Moncol, J. (2023). Molecules, 28, 4609.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSouza, C. M. de, Silva, R. C., Fernandes, P. O., de Souza Filho, J. D., Duarte, H. A., Araujo, M. H., de Simone, C. A., de Castro, S. L., Menna-Barreto, R. F., Demicheli, C. P. & da Silva Júnior, E. N. (2017). New J. Chem. 41, 3723–3731.  Google Scholar
First citationYoshikawa, N., Kimura, H., Yamabe, S., Kanehisa, N., Inoue, T. & Takashima, H. (2016). J. Mol. Struct. 1117, 49–56.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146