inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Crystal structure of Ti4Ni2C

crossmark logo

aState Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, People's Republic of China, bHebei Key Lab for Optimizing Metal Product Technology and Performance, Yanshan University, Qinhuangdao 066004, People's Republic of China, and cSchool of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, People's Republic of China
*Correspondence e-mail: chzfan@ysu.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 January 2024; accepted 11 January 2024; online 19 January 2024)

Single crystals of the inter­metallic phase with composition Ti4Ni2C were serendipitously obtained by high-pressure sinter­ing of a mixture with initial chemical composition Ti2Ni. The Ti4Ni2C phase crystallizes in the Fd[\overline{3}]m space group and can be considered as a partially filled Ti2Ni structure with the C atom occupying an octa­hedral void. Ti4Ni2C is isotypic with Ti4Ni2O, Nb4Ni2C and Ta4Ni2C, all of which were studied previously by means of powder diffraction.

3D view (loading...)
[Scheme 3D1]

Structure description

A large number of inter­metallic phases can be grouped into classes of compounds based on structural or chemical similarities. For example, Mueller & Knott (1963[Mueller, M. H. & Knott, H. W. (1963). Trans. Metall. Soc. AIME, 227, 674-677.]) investigated the related crystal structures of Ti2Cu, Ti2Ni, Ti4Ni2O and Ti4Cu2O by X-ray and neutron powder diffraction. They determined that the Ti2Ni phase crystallizes in the Fd[\overline{3}]m space group, with cell parameter a = 11.3193 (2) Å and with 96 atoms per unit cell; the Ti4Ni2O (Ti4Cu2O) phase also crystallizes in the Fd[\overline{3}]m space group, with cell parameter a = 11.3279 (1) Å [a = 11.4353 (2) Å] and with 112 atoms per unit cell. The latter phases can be considered as partially filled Ti2Ni variants with the additional oxygen atom occupying an octa­hedral position. Holleck & Thummler (1967[Holleck, H. & Thummler, F. (1967). Monatsh. Chem. 98, 133-134.]) studied a series of carbides, nitrides and oxides in ternary systems and reported that Nb4Ni2C (a = 11.64 Å) and Ta4Ni2C (a = 11.61 Å) crystallize in the same partially filled Ti2Ni structure. Sadrnezhaad et al. (2009[Sadrnezhaad, S. K., Ahmadi, E. & Malekzadeh, M. (2009). Mater. Sci. Technol. 25, 699-706.]) and Shigeo et al. (1993[Shigeo, K., Yasuyuki, S. & Masafumi, S. (1993). Res. Rep. Fac. Eng. Mie Univ, 18, 7-13.]) have confirmed the existence of the Ti4Ni2C phase. However, no detailed study has been performed so far with respect to the determination of its crystal structure.

In the present study, the crystal structure model of Ti4Ni2C has been refined on the basis of single-crystal X-ray diffraction data. The lattice parameter a is similar to those of previously reported isotypic phases (see above), and its chemical composition was refined to be exactly Ti4Ni2C in accordance with the EDX results (see Fig. S1 and Table S1 in the supporting information). Carbon present in the crystal structure most likely originated from the graphite crucible used during high pressure sinter­ing (HPS).

Ti4Ni2C crystallizes isotypically with other Ti4Ni2X compounds (X = C, N, O) with a partially filled Ti2Ni structure in space group type Fd[\overline{3}]m. Fig. 1[link] shows the distribution of the atoms in the unit cell of Ti4Ni2C. The environments of the Ti1 and C1 sites are shown in Figs. 2[link] and 3[link], respectively. The Ti1 atom is situated at a position with site symmetry .[\overline{3}]m (multiplicity 16, Wyckoff letter c). It is surrounded by six Ti2 atoms (2.mm, 48f) and six Ni1 atoms (.3m; 32e), defining the center of an icosa­hedron. The C1 atom occupies a position with site symmetry .[\overline{3}]m (16d) and centers an octa­hedron defined by six Ti2 atoms. The shortest Ti1⋯Ti2 separation is 2.9415 (9) Å and the shortest Ti1⋯Ni1 separation is 2.4750 (4) Å; the C1—Ti2 bond length is 2.1127 (4) Å.

[Figure 1]
Figure 1
The crystal structure of Ti4Ni2C (one unit cell), with displacement ellipsoids drawn at the 99% probability level.
[Figure 2]
Figure 2
(a) The icosa­hedron formed around the Ti1 atom at the 16 c site; (b) the environment of the Ti1 atom with displacement ellipsoids given at the 99% probability level. [Symmetry codes: (i) x − [{1\over 4}], −y, z − [{1\over 4}]; (ii) −x + [{1\over 4}], y, −z + [{1\over 4}]; (iii) −x, y − [{1\over 4}], z − [{1\over 4}]; (iv) x − [{1\over 4}], y − [{1\over 4}], −z; (v) −x + [{1\over 4}], −y + [{1\over 4}], z; (vi) x, −y + [{1\over 4}], −z + [{1\over 4}]; (vii) −z, x − [{1\over 4}], y − [{1\over 4}]; (viii) z, −x + [{1\over 4}], −y + [{1\over 4}]; (ix) y − [{1\over 4}], −z, x − [{1\over 4}]; (x) −y + [{1\over 4}], z, −x + [{1\over 4}].]
[Figure 3]
Figure 3
(a) The octa­hedron formed around the C1 atom at the 16 d site; (b) the environment of the C1 atom with displacement ellipsoids given at the 99% probability level. [Symmetry codes:·(xvi) −y + [{1\over 2}], −z + [{1\over 2}], −x + 1; (xvii) x, y + [{1\over 2}], z + [{1\over 2}]; (xviii) −x + 1, −y + [{1\over 2}], −z + [{1\over 2}]; (xix) z + [{1\over 2}], x, y + [{1\over 2}]; (xx) −z + [{1\over 2}], −x + 1, −y + [{1\over 2}]; (xxi) y + [{1\over 2}], z + [{1\over 2}], x.]

Synthesis and crystallization

The high-purity elements Ti (indicated purity 99.5%; 0.6291 g) and Ni (indicated purity 99.9%; 0.3869 g) were mixed uniformly in the stoichiometric ratio 2:1 and thoroughly ground in an agate mortar. The blended powders were then placed in a cemented carbide grinding mould of 5 mm diameter, and pressed into a tablet at about 4 MPa for 1 min. A cylindrical block was obtained without deformations or cracks. Details of the high-pressure sinter­ing experiment using a six-anvil high-temperature high-pressure apparatus can be found elsewhere (Liu & Fan, 2018[Liu, C. & Fan, C. (2018). IUCrData, 3, x180363.]). The samples were pressurized up to 6 GPa and heated to 1573 K for 40 min, and then rapidly cooled to room temperature by turning off the furnace power. A piece of a single-crystal (0.06×0.06×0.04 mm3) was selected and mounted on a glass fibre for SXRD measurements.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. For better comparison, the labeling scheme and atomic coordinates of Ti4Ni2C were adapted from Nb4Ni2C and Ta4Ni2C (Holleck & Thuemmler, 1967[Holleck, H. & Thummler, F. (1967). Monatsh. Chem. 98, 133-134.]). The maximum and minimum residual electron densities in the final difference map are located 1.10 Å from site Ni1 and 0.17 Å from Ti2, respectively.

Table 1
Experimental details

Crystal data
Chemical formula Ti4Ni2C
Mr 320.87
Crystal system, space group Cubic, Fd[\overline{3}]m
Temperature (K) 296
a (Å) 11.3235 (8)
V3) 1451.9 (3)
Z 16
Radiation type Mo Kα
μ (mm−1) 18.28
Crystal size (mm) 0.06 × 0.06 × 0.04
 
Data collection
Diffractometer Bruker D8 Venture Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.520, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12231, 105, 97
Rint 0.091
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.051, 1.22
No. of reflections 105
No. of parameters 12
Δρmax, Δρmin (e Å−3) 0.48, −0.70
Computer programs: APEX3 (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.]), SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2017[Brandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Tetratitanium dinickel carbide top
Crystal data top
Ti4Ni2CMo Kα radiation, λ = 0.71073 Å
Mr = 320.87Cell parameters from 3145 reflections
Cubic, Fd3mθ = 3.1–27.5°
a = 11.3235 (8) ŵ = 18.28 mm1
V = 1451.9 (3) Å3T = 296 K
Z = 16Lump, gray
F(000) = 24000.06 × 0.06 × 0.04 mm
Dx = 5.875 Mg m3
Data collection top
Bruker D8 Venture Photon 100 CMOS
diffractometer
97 reflections with I > 2σ(I)
phi and ω scansRint = 0.091
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.5°, θmin = 3.1°
Tmin = 0.520, Tmax = 0.746h = 1414
12231 measured reflectionsk = 1414
105 independent reflectionsl = 1414
Refinement top
Refinement on F212 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0226P)2 + 31.699P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max < 0.001
S = 1.22Δρmax = 0.48 e Å3
105 reflectionsΔρmin = 0.70 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.0000000.0000000.0000000.0054 (5)
Ni10.21179 (6)0.21179 (6)0.21179 (6)0.0080 (3)
Ti20.44034 (11)0.1250000.1250000.0052 (3)
C10.5000000.5000000.5000000.010 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0054 (5)0.0054 (5)0.0054 (5)0.0004 (5)0.0004 (5)0.0004 (5)
Ni10.0080 (3)0.0080 (3)0.0080 (3)0.0011 (2)0.0011 (2)0.0011 (2)
Ti20.0063 (6)0.0046 (4)0.0046 (4)0.0000.0000.0005 (4)
C10.010 (3)0.010 (3)0.010 (3)0.003 (3)0.003 (3)0.003 (3)
Geometric parameters (Å, º) top
Ti1—Ni1i2.4750 (4)Ni1—Ti2xiii2.6249 (9)
Ti1—Ni1ii2.4750 (4)Ni1—Ni1v2.7797 (18)
Ti1—Ni1iii2.4750 (4)Ni1—Ni1vi2.7797 (18)
Ti1—Ni1iv2.4750 (4)Ni1—Ni1ii2.7797 (18)
Ti1—Ni1v2.4750 (4)Ni1—Ti2xiv2.9376 (11)
Ti1—Ni1vi2.4750 (4)Ni1—Ti2xv2.9376 (11)
Ti1—Ti2vii2.9415 (9)Ni1—Ti22.9376 (11)
Ti1—Ti2viii2.9415 (9)Ti2—C1xvi2.1127 (4)
Ti1—Ti2ix2.9415 (9)Ti2—C1xvii2.1127 (4)
Ti1—Ti2iv2.9415 (9)Ti2—Ti2xviii2.9571 (17)
Ti1—Ti2v2.9415 (9)Ti2—Ti2xix2.9571 (17)
Ti1—Ti2x2.9415 (9)Ti2—Ti2xx2.9571 (17)
Ni1—Ti2xi2.6249 (9)Ti2—Ti2xxi2.9571 (17)
Ni1—Ti2xii2.6249 (9)
Ni1i—Ti1—Ni1ii180.00 (4)Ti2xiii—Ni1—Ti2xiv65.437 (12)
Ni1i—Ti1—Ni1iii68.33 (4)Ni1v—Ni1—Ti2xiv61.76 (2)
Ni1ii—Ti1—Ni1iii111.67 (4)Ni1vi—Ni1—Ti2xiv112.73 (2)
Ni1i—Ti1—Ni1iv68.33 (4)Ni1ii—Ni1—Ti2xiv112.73 (2)
Ni1ii—Ti1—Ni1iv111.67 (4)Ti1vi—Ni1—Ti2xv65.185 (5)
Ni1iii—Ti1—Ni1iv68.33 (4)Ti1v—Ni1—Ti2xv65.185 (5)
Ni1i—Ti1—Ni1v111.67 (4)Ti1ii—Ni1—Ti2xv166.08 (5)
Ni1ii—Ti1—Ni1v68.33 (4)Ti2xi—Ni1—Ti2xv65.437 (12)
Ni1iii—Ti1—Ni1v111.67 (4)Ti2xii—Ni1—Ti2xv123.55 (5)
Ni1iv—Ti1—Ni1v180.00 (6)Ti2xiii—Ni1—Ti2xv65.437 (12)
Ni1i—Ti1—Ni1vi111.67 (4)Ni1v—Ni1—Ti2xv112.73 (2)
Ni1ii—Ti1—Ni1vi68.33 (4)Ni1vi—Ni1—Ti2xv112.73 (2)
Ni1iii—Ti1—Ni1vi180.0Ni1ii—Ni1—Ti2xv61.76 (2)
Ni1iv—Ti1—Ni1vi111.67 (4)Ti2xiv—Ni1—Ti2xv118.526 (10)
Ni1v—Ti1—Ni1vi68.33 (4)Ti1vi—Ni1—Ti2166.08 (5)
Ni1i—Ti1—Ti2vii122.80 (3)Ti1v—Ni1—Ti265.185 (5)
Ni1ii—Ti1—Ti2vii57.20 (3)Ti1ii—Ni1—Ti265.185 (5)
Ni1iii—Ti1—Ti2vii65.020 (15)Ti2xi—Ni1—Ti265.437 (12)
Ni1iv—Ti1—Ti2vii65.020 (15)Ti2xii—Ni1—Ti265.437 (12)
Ni1v—Ti1—Ti2vii114.980 (15)Ti2xiii—Ni1—Ti2123.55 (5)
Ni1vi—Ti1—Ti2vii114.980 (15)Ni1v—Ni1—Ti2112.73 (2)
Ni1i—Ti1—Ti2viii57.20 (3)Ni1vi—Ni1—Ti261.76 (2)
Ni1ii—Ti1—Ti2viii122.80 (3)Ni1ii—Ni1—Ti2112.73 (2)
Ni1iii—Ti1—Ti2viii114.980 (15)Ti2xiv—Ni1—Ti2118.525 (10)
Ni1iv—Ti1—Ti2viii114.980 (15)Ti2xv—Ni1—Ti2118.525 (10)
Ni1v—Ti1—Ti2viii65.020 (15)C1xvi—Ti2—C1xvii142.70 (6)
Ni1vi—Ti1—Ti2viii65.020 (15)C1xvi—Ti2—Ni1xxii88.304 (12)
Ti2vii—Ti1—Ti2viii180.00 (3)C1xvii—Ti2—Ni1xxii88.304 (12)
Ni1i—Ti1—Ti2ix65.020 (15)C1xvi—Ti2—Ni1xxiii88.304 (12)
Ni1ii—Ti1—Ti2ix114.980 (15)C1xvii—Ti2—Ni1xxiii88.304 (12)
Ni1iii—Ti1—Ti2ix65.020 (15)Ni1xxii—Ti2—Ni1xxiii169.38 (6)
Ni1iv—Ti1—Ti2ix122.80 (3)C1xvi—Ti2—Ni1vi136.89 (5)
Ni1v—Ti1—Ti2ix57.20 (3)C1xvii—Ti2—Ni1vi80.41 (3)
Ni1vi—Ti1—Ti2ix114.980 (15)Ni1xxii—Ti2—Ni1vi94.68 (3)
Ti2vii—Ti1—Ti2ix118.270 (7)Ni1xxiii—Ti2—Ni1vi94.68 (3)
Ti2viii—Ti1—Ti2ix61.730 (7)C1xvi—Ti2—Ni180.41 (3)
Ni1i—Ti1—Ti2iv65.020 (15)C1xvii—Ti2—Ni1136.89 (5)
Ni1ii—Ti1—Ti2iv114.980 (15)Ni1xxii—Ti2—Ni194.68 (3)
Ni1iii—Ti1—Ti2iv122.80 (3)Ni1xxiii—Ti2—Ni194.68 (3)
Ni1iv—Ti1—Ti2iv65.020 (15)Ni1vi—Ti2—Ni156.48 (5)
Ni1v—Ti1—Ti2iv114.980 (15)C1xvi—Ti2—Ti1ii103.550 (18)
Ni1vi—Ti1—Ti2iv57.20 (3)C1xvii—Ti2—Ti1ii103.550 (18)
Ti2vii—Ti1—Ti2iv118.270 (7)Ni1xxii—Ti2—Ti1ii138.19 (4)
Ti2viii—Ti1—Ti2iv61.730 (7)Ni1xxiii—Ti2—Ti1ii52.426 (19)
Ti2ix—Ti1—Ti2iv118.270 (7)Ni1vi—Ti2—Ti1ii49.79 (2)
Ni1i—Ti1—Ti2v114.980 (15)Ni1—Ti2—Ti1ii49.79 (2)
Ni1ii—Ti1—Ti2v65.020 (15)C1xvi—Ti2—Ti1v103.550 (18)
Ni1iii—Ti1—Ti2v57.20 (3)C1xvii—Ti2—Ti1v103.550 (18)
Ni1iv—Ti1—Ti2v114.980 (15)Ni1xxii—Ti2—Ti1v52.426 (19)
Ni1v—Ti1—Ti2v65.020 (15)Ni1xxiii—Ti2—Ti1v138.19 (4)
Ni1vi—Ti1—Ti2v122.80 (3)Ni1vi—Ti2—Ti1v49.79 (2)
Ti2vii—Ti1—Ti2v61.730 (7)Ni1—Ti2—Ti1v49.79 (2)
Ti2viii—Ti1—Ti2v118.270 (7)Ti1ii—Ti2—Ti1v85.77 (3)
Ti2ix—Ti1—Ti2v61.730 (7)C1xvi—Ti2—Ti2xviii45.58 (2)
Ti2iv—Ti1—Ti2v180.00 (3)C1xvii—Ti2—Ti2xviii104.34 (3)
Ni1i—Ti1—Ti2x114.980 (15)Ni1xxii—Ti2—Ti2xviii115.62 (3)
Ni1ii—Ti1—Ti2x65.020 (15)Ni1xxiii—Ti2—Ti2xviii55.72 (2)
Ni1iii—Ti1—Ti2x114.980 (15)Ni1vi—Ti2—Ti2xviii149.263 (5)
Ni1iv—Ti1—Ti2x57.20 (3)Ni1—Ti2—Ti2xviii112.73 (2)
Ni1v—Ti1—Ti2x122.80 (3)Ti1ii—Ti2—Ti2xviii100.245 (14)
Ni1vi—Ti1—Ti2x65.020 (15)Ti1v—Ti2—Ti2xviii149.135 (4)
Ti2vii—Ti1—Ti2x61.730 (7)C1xvi—Ti2—Ti2xix45.58 (2)
Ti2viii—Ti1—Ti2x118.270 (7)C1xvii—Ti2—Ti2xix104.34 (3)
Ti2ix—Ti1—Ti2x180.0Ni1xxii—Ti2—Ti2xix55.72 (2)
Ti2iv—Ti1—Ti2x61.730 (7)Ni1xxiii—Ti2—Ti2xix115.62 (3)
Ti2v—Ti1—Ti2x118.270 (7)Ni1vi—Ti2—Ti2xix149.263 (5)
Ti1vi—Ni1—Ti1v107.95 (2)Ni1—Ti2—Ti2xix112.73 (2)
Ti1vi—Ni1—Ti1ii107.95 (2)Ti1ii—Ti2—Ti2xix149.135 (4)
Ti1v—Ni1—Ti1ii107.95 (2)Ti1v—Ti2—Ti2xix100.245 (14)
Ti1vi—Ni1—Ti2xi125.12 (2)Ti2xviii—Ti2—Ti2xix60.0
Ti1v—Ni1—Ti2xi70.38 (3)C1xvi—Ti2—Ti2xx104.34 (3)
Ti1ii—Ni1—Ti2xi125.12 (2)C1xvii—Ti2—Ti2xx45.58 (2)
Ti1vi—Ni1—Ti2xii125.12 (2)Ni1xxii—Ti2—Ti2xx115.62 (3)
Ti1v—Ni1—Ti2xii125.12 (2)Ni1xxiii—Ti2—Ti2xx55.72 (2)
Ti1ii—Ni1—Ti2xii70.38 (3)Ni1vi—Ti2—Ti2xx112.73 (2)
Ti2xi—Ni1—Ti2xii68.57 (5)Ni1—Ti2—Ti2xx149.262 (5)
Ti1vi—Ni1—Ti2xiii70.38 (3)Ti1ii—Ti2—Ti2xx100.245 (14)
Ti1v—Ni1—Ti2xiii125.12 (2)Ti1v—Ti2—Ti2xx149.135 (4)
Ti1ii—Ni1—Ti2xiii125.12 (2)Ti2xviii—Ti2—Ti2xx60.0
Ti2xi—Ni1—Ti2xiii68.57 (5)Ti2xix—Ti2—Ti2xx90.001 (1)
Ti2xii—Ni1—Ti2xiii68.57 (5)C1xvi—Ti2—Ti2xxi104.34 (3)
Ti1vi—Ni1—Ni1v55.837 (19)C1xvii—Ti2—Ti2xxi45.58 (2)
Ti1v—Ni1—Ni1v104.31 (2)Ni1xxii—Ti2—Ti2xxi55.72 (2)
Ti1ii—Ni1—Ni1v55.837 (19)Ni1xxiii—Ti2—Ti2xxi115.62 (3)
Ti2xi—Ni1—Ni1v174.69 (3)Ni1vi—Ti2—Ti2xxi112.73 (2)
Ti2xii—Ni1—Ni1v115.62 (3)Ni1—Ti2—Ti2xxi149.262 (5)
Ti2xiii—Ni1—Ni1v115.62 (3)Ti1ii—Ti2—Ti2xxi149.135 (3)
Ti1vi—Ni1—Ni1vi104.31 (2)Ti1v—Ti2—Ti2xxi100.245 (14)
Ti1v—Ni1—Ni1vi55.837 (19)Ti2xviii—Ti2—Ti2xxi90.0
Ti1ii—Ni1—Ni1vi55.837 (19)Ti2xix—Ti2—Ti2xxi60.0
Ti2xi—Ni1—Ni1vi115.62 (3)Ti2xx—Ti2—Ti2xxi60.0
Ti2xii—Ni1—Ni1vi115.62 (3)Ti2xxiv—C1—Ti2xxv91.17 (4)
Ti2xiii—Ni1—Ni1vi174.69 (3)Ti2xxiv—C1—Ti2xxvi88.83 (4)
Ni1v—Ni1—Ni1vi60.0Ti2xxv—C1—Ti2xxvi180.0
Ti1vi—Ni1—Ni1ii55.837 (19)Ti2xxiv—C1—Ti2xxvii91.17 (4)
Ti1v—Ni1—Ni1ii55.837 (19)Ti2xxv—C1—Ti2xxvii88.83 (4)
Ti1ii—Ni1—Ni1ii104.31 (2)Ti2xxvi—C1—Ti2xxvii91.17 (4)
Ti2xi—Ni1—Ni1ii115.62 (3)Ti2xxiv—C1—Ti2xxviii88.83 (4)
Ti2xii—Ni1—Ni1ii174.69 (3)Ti2xxv—C1—Ti2xxviii91.17 (4)
Ti2xiii—Ni1—Ni1ii115.62 (3)Ti2xxvi—C1—Ti2xxviii88.83 (4)
Ni1v—Ni1—Ni1ii60.0Ti2xxvii—C1—Ti2xxviii180.0
Ni1vi—Ni1—Ni1ii60.0Ti2xxiv—C1—Ti2xxix180.0
Ti1vi—Ni1—Ti2xiv65.185 (5)Ti2xxv—C1—Ti2xxix88.83 (4)
Ti1v—Ni1—Ti2xiv166.08 (5)Ti2xxvi—C1—Ti2xxix91.17 (4)
Ti1ii—Ni1—Ti2xiv65.185 (5)Ti2xxvii—C1—Ti2xxix88.83 (4)
Ti2xi—Ni1—Ti2xiv123.55 (5)Ti2xxviii—C1—Ti2xxix91.17 (4)
Ti2xii—Ni1—Ti2xiv65.437 (12)
Symmetry codes: (i) x1/4, y, z1/4; (ii) x+1/4, y, z+1/4; (iii) x, y1/4, z1/4; (iv) x1/4, y1/4, z; (v) x+1/4, y+1/4, z; (vi) x, y+1/4, z+1/4; (vii) z, x1/4, y1/4; (viii) z, x+1/4, y+1/4; (ix) y1/4, z, x1/4; (x) y+1/4, z, x+1/4; (xi) y+1/4, z+1/2, x1/4; (xii) z+1/2, x1/4, y+1/4; (xiii) x1/4, y+1/4, z+1/2; (xiv) y, z, x; (xv) z, x, y; (xvi) x, y+3/4, z+3/4; (xvii) x, y1/2, z1/2; (xviii) y+3/4, z, x+3/4; (xix) z+1/2, x+3/4, y+1/4; (xx) z+1/2, x1/2, y; (xxi) y+1/2, z, x1/2; (xxii) x+1/4, y+1/2, z1/4; (xxiii) x+1/4, y1/4, z+1/2; (xxiv) y+1/2, z+1/2, x+1; (xxv) x, y+1/2, z+1/2; (xxvi) x+1, y+1/2, z+1/2; (xxvii) z+1/2, x, y+1/2; (xxviii) z+1/2, x+1, y+1/2; (xxix) y+1/2, z+1/2, x.
 

Acknowledgements

The authors are indebted to Dr Qiang Ren from the High steel center of Yanshan University for assistance in performing the SEM/EDX measurements.

Funding information

Funding for this research was provided by: The National Natural Science Foundation of China (grant No. 52173231; grant No. 51925105); Hebei Natural Science Foundation (grant No. E2022203182); The Innovation Ability Promotion Project of Hebei supported by Hebei Key Lab for Optimizing Metal Product Technology and Performance (grant No. 22567609H).

References

First citationBrandenburg, K. & Putz, H. (2017). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA, 2008.  Google Scholar
First citationHolleck, H. & Thummler, F. (1967). Monatsh. Chem. 98, 133–134.  CrossRef ICSD CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, C. & Fan, C. (2018). IUCrData, 3, x180363.  Google Scholar
First citationMueller, M. H. & Knott, H. W. (1963). Trans. Metall. Soc. AIME, 227, 674–677.  CAS Google Scholar
First citationSadrnezhaad, S. K., Ahmadi, E. & Malekzadeh, M. (2009). Mater. Sci. Technol. 25, 699–706.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShigeo, K., Yasuyuki, S. & Masafumi, S. (1993). Res. Rep. Fac. Eng. Mie Univ, 18, 7–13.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146