metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Di­chlorido­bis­­[(S)-(−)-1-(4-methyl­phen­yl)ethyl­amine-κN]palladium(II)

crossmark logo

aLab. Síntesis de Complejos, Fac. Cs. Quím.-BUAP, Ciudad Universitaria, PO Box 72592 Puebla, Mexico, and bInstituto de Química Universidad Autónoma de México UNAM, Circuito Exterior Cd. Universitaria, PO Box 04510, Ciudad de México, Mexico
*Correspondence e-mail: bertinanzaldo@outlook.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 December 2023; accepted 9 January 2024; online 12 January 2024)

The title complex, [PdCl2(C9H13N)2], comprises a single mol­ecule in the asymmetric unit. The PdII atom is tetra­coordinated by two N atoms from two trans-aligned organic ligands and two Cl ligands, forming a square-planar metal coordination environment. The distances from the ortho-H atoms on the phenyl ring to the central PdII atom fall within the range 4.70–5.30 Å, precluding any significant intra­molecular Pd⋯H inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The chemistry of PdII compounds with diverse ligands represents a rich area within organometallic chemistry, extensively explored in organic synthesis (Hartwig, 1998[Hartwig, J. F. (1998). Angew. Chem. Int. Ed. 37, 2046-2067.]; Müller & Beller, 1998[Müller, T. E. & Beller, M. (1998). Chem. Rev. 98, 675-704.]). PdII compounds also exhibit cytotoxic activity, which makes them inter­esting for certain therapeutic applications. Moreover, PdII compounds with amine ligands have a central role in catalytic conversions due to the hydrogen bond developed between the amino group and the catalyst. In the presence of excess amine, 16-electron PdCl2L2 (L = amine) adducts, usually existing as a mixture of cis and trans isomers, emerge as viable starting materials for cyclo­palladations (Ryabov, 1990[Ryabov, A. D. (1990). Chem. Rev. 90, 403-424.]; Cattalini & Martelli, 1969[Cattalini, L. & Martelli, M. (1969). J. Am. Chem. Soc. 91, 312-316.]). While monodentate PdII–amine complexes tend to display general instability as reaction inter­mediates, bis­(amine)–PdII complexes have garnered substantial attention for their involvement as inter­mediates in amination reactions (Widenhoefer & Buchwald, 1996[Widenhoefer, R. A. & Buchwald, S. L. (1996). Organometallics, 15, 3534-3542.]; Seligson & Trogler, 1991[Seligson, A. L. & Trogler, W. C. (1991). J. Am. Chem. Soc. 113, 2520-2527.]). In this context, our focus has shifted towards complexes derived from optically pure chiral amines. We present here the mol­ecular and crystal structures of trans-di­chlorido bis­[(S)-(−)-1-[(4-methyl­phen­yl)ethylamine]­palladium(II).

The asymmetric unit comprises a single mol­ecule, as shown in Fig. 1[link]. The mol­ecular complex adopts a square-planar metal coordination environment around the central PdII atom. There are slight distortions from the ideal square-planar geometry, as revealed by a deviation of 0.025 Å of the PdII atom from the plane defined by atoms Cl2, N2, Cl1, N1. The inter­atomic distances from the central PdII atom to the ligand atoms are 2.039 (4) Å [Pd1—N1] and 2.053 (4) Å [Pd1—N2]; the average Pd—Cl bond length is 2.298 Å. The pairs of Cl and amine ligands are trans-aligned around the central PdII atom and characterized by a Cl1—Pd1—Cl2 angle of 177.22 (6)° and an N1—Pd1—N2 angle of 179.39 (18)°; the Cl1—Pd1—N1 angle amounts to 88.25 (12)°, with other angles approximately 90°. The sp3 hybridization of the N atoms and the C9 and C17 atoms cause the non-planarity of the mol­ecular structure. The amine ligands are arranged differently around the central PdII atom. The Cl1—Pd1—N1—C1 torsion angle is 73.2 (3)°, compared to 53.5 (3)° for Cl2—Pd1—N2—C17. Both amine ligands exhibit a gauche conformation, as revealed by the torsion angle C17—N2—N1—C1 = −55.6 (4)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title complex with displacement ellipsoids drawn at the 50% probability level.

A view of the crystal packing shows that individual mol­ecules are organized into supra­molecular ribbons defined by C—H⋯Cl and N—H⋯Cl hydrogen bonding inter­actions (Table 1[link]); the ribbons extend parallel to [100] (Fig. 2[link]). The cohesion between the ribbons is accomplished mainly by weak van der Waals inter­actions (Steiner, 1996[Steiner, T. (1996). Crystallogr. Rev. 6, 1-51.]; Desiraju, 1996[Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.]). The Pd⋯Pd separations between neighboring PdII complexes vary from 5.5027 (5) to 6.5385 (5) Å, indicating that there is no strong inter­action among these metal atoms.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1 0.98 2.92 3.479 (5) 117
C17—H17⋯Cl2 0.98 2.65 3.323 (5) 126
N1—H1A⋯Cl1i 0.89 2.71 3.586 (4) 168
N2—H2A⋯Cl2ii 0.89 2.66 3.524 (4) 165
N2—H2B⋯Cl2iii 0.89 2.63 3.355 (4) 139
Symmetry codes: (i) [x-1, y, z]; (ii) [x+1, y, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 2]
Figure 2
The crystal packing of the title complex in a projection along [100]. The dashed lines indicate inter­molecular hydrogen bonds. All H atoms that are not involved in these inter­actions have been omitted for clarity; displacement ellipsoids are drawn at the 50% probability level.

A search of the Cambridge Structural Database (CSD, version 5.42, current as of November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded thirteen related entries to the title bis­(amine)–PdII complex: UMIBOH (Sui-Seng & Zargarian, 2003[Sui-Seng, C. & Zargarian, D. (2003). Acta Cryst. E59, m957-m958.]), UMIBOH01 (Karami et al., 2018[Karami, K., Alinaghi, M., Amirghofran, Z. & Lipkowski, J. (2018). Inorg. Chim. Acta, 471, 797-807.]), WOCLEF (Decken et al., 2000[Decken, A., Pisegna, G. L., Vogels, C. M. & Westcott, S. A. (2000). Acta Cryst. C56, 1071-1072.]), DUKMAA (Ha, 2020[Ha, K. (2020). Z. Kristallogr. 235, 629-630.]), BUYCIJ (Al-Jibori et al., 2015[Al-Jibori, S. A., Hameed, W. J., Al-Hayaly, L. J., Basak-Modi, S. & Hogarth, G. (2015). Inorg. Chem. Commun. 62, 91-93.]), TUWKEB (Grishin et al., 2003[Grishin, Y. K., Razmyslova, E. D., Churakov, A. V., Kuz'mina, L. G. & Dunina, V. V. (2003). Private communication (refcode: TUWKEB). CCDC, Cambridge, England.]), YEFNUT (Vazquez et al., 2006[Vázquez, J., Bernès, S., Hernández, G., Aguilar, H. & Gutiérrez, R. (2006). Acta Cryst. E62, m502-m504.]), YEFNUT01 (Sabater et al., 2013[Sabater, S., Mata, J. A. & Peris, E. (2013). Organometallics, 32, 1112-1120.]), GAZZAI (Kuz'mina et al., 1987[Kuz'mina, L. G., Struchkov, Y. T., Dunina, V. V., Zalevskaya, O. A. & Potapov, V. M. (1987). Zh. Obshch. Khim. 57, 599-609.]), GAZZEM (Kuz'mina et al., 1987[Kuz'mina, L. G., Struchkov, Y. T., Dunina, V. V., Zalevskaya, O. A. & Potapov, V. M. (1987). Zh. Obshch. Khim. 57, 599-609.]), PEWZEY (Karami et al., 2013[Karami, K., Kharat, M. H., Rizzoli, C. & Lipkowski, J. (2013). J. Organomet. Chem. 728, 16-22.]), POHKON (Martin et al., 2008[Martin, C. D., Appoh, F. E., Vogels, C. M., Decken, A. & Westcott, S. A. (2008). Anal. Sci. X-ray Struct. Anal. Online, 24, x223-x224.]), and CUGGIU (Jones et al., 1984[Jones, T. C., Nielson, A. J. & Rickard, C. E. (1984). Aust. J. Chem. 37, 2179-2192.]). In the crystal structure of PEWZEY (P21/c), mol­ecules are linked by inter­molecular N—H⋯Cl hydrogen bonds into zigzag chains running parallel to the b axis. The asymmetric unit of GAZZEM (P21) comprises one mol­ecule. In YEFNUT (C2), the amine ligands are trans-coordinated to a PdCl2 core, and arranged in a gauche conformation. The asymmetric unit of TUWKEB (C2/c) comprises one mol­ecule. In DUKMAA (I41cd), the complexes and solvent DMSO mol­ecules are linked by N—H⋯O, N—H⋯Cl, C—H⋯Cl and C—H⋯O hydrogen bonds. The crystal structure of UMIBOH crystallizes in space group P42/n with four independent mol­ecules within the unit cell. The asymmetric unit of GAZZAI (P43212) comprises one mol­ecule. In POHKON (P21/n), the PdII atom has a distorted square-planar environment with the ligands occupying a trans-configuration with two mol­ecules of dimethyl sulfoxide (DMSO) in the crystal. In the crystal structure of BUYCIJ, a hydrogen bonding inter­action between the water mol­ecule and the metal-bound chlorido ligand is present. CUGGIU comprises a PdII atom coordinated by the nitro­gen atoms of four benzyl­amine ligands with hydrogen bonding of the N–H2 groups with the Cl ion. The WOCLEF (P21/n) compound crystallizes with two mol­ecules of DMSO and shows N—H⋯O and C—H⋯Cl hydrogen bonds between the complex and the DMSO mol­ecules.

Synthesis and crystallization

A solution of bis­(benzo­nitrile)­palladium(II) chloride (0.66 g, 0.17 mmol) in CH2Cl2 (5 ml) was added to a solution of (S)-(+)-[1-(4-methyl­phen­yl)-N-(4-biphen­yl)methyl­iden]ethyl­amine (0.100 g, 0.34 mmol) in CH2Cl2 (10 ml). The solution was stirred for 24 h to give an orange precipitate. The solid was filtered off, dissolved in DMF, and the solution was slowly evaporated. After a few days, orange crystals were collected. Yield 23%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [PdCl2(C9H13N)2]
Mr 447.71
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c (Å) 6.5385 (2), 16.7263 (8), 19.0096 (11)
V3) 2078.99 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.15
Crystal size (mm) 0.58 × 0.38 × 0.14
 
Data collection
Diffractometer Xcalibur, Atlas, Gemini
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.722, 0.915
No. of measured, independent and observed [I > 2σ(I)] reflections 45575, 7907, 5561
Rint 0.061
(sin θ/λ)max−1) 0.769
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.095, 1.05
No. of reflections 7907
No. of parameters 212
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.62, −0.64
Absolute structure Flack x determined using 1800 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.032 (18)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

trans-Dichloridobis[(S)-(–)-1-(4-methylphenyl)ethylamine-κN]palladium(II) top
Crystal data top
[PdCl2(C9H13N)2]Dx = 1.430 Mg m3
Mr = 447.71Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7901 reflections
a = 6.5385 (2) Åθ = 3.3–27.1°
b = 16.7263 (8) ŵ = 1.15 mm1
c = 19.0096 (11) ÅT = 293 K
V = 2078.99 (17) Å3Block, yellow
Z = 40.58 × 0.38 × 0.14 mm
F(000) = 912
Data collection top
Xcalibur, Atlas, Gemini
diffractometer
5561 reflections with I > 2σ(I)
Detector resolution: 10.5564 pixels mm-1Rint = 0.061
ω scansθmax = 33.1°, θmin = 3.3°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2015)
h = 1010
Tmin = 0.722, Tmax = 0.915k = 2525
45575 measured reflectionsl = 2929
7907 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0333P)2 + 0.5029P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.62 e Å3
7907 reflectionsΔρmin = 0.64 e Å3
212 parametersAbsolute structure: Flack x determined using 1800 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.032 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms attached to carbon and nitrogen atoms were positioned with idealized geometry and constrained to ride on their parent atoms, and were refined isotropically using a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.43881 (5)0.37662 (2)0.46621 (2)0.04528 (10)
Cl10.72228 (19)0.43738 (10)0.51427 (9)0.0786 (5)
Cl20.14917 (17)0.31631 (8)0.42362 (8)0.0618 (4)
C10.2846 (8)0.5452 (3)0.4715 (3)0.0574 (12)
H10.4274450.5507080.4566470.069*
C20.2394 (8)0.6133 (3)0.5206 (3)0.0529 (11)
C30.3892 (9)0.6670 (3)0.5384 (4)0.0700 (15)
H30.5191740.6608280.5192640.084*
C40.3531 (12)0.7299 (4)0.5837 (4)0.082 (2)
H40.4585700.7649350.5949140.099*
C50.1610 (12)0.7412 (3)0.6126 (3)0.0743 (17)
C60.0115 (9)0.6873 (4)0.5960 (3)0.0717 (16)
H60.1175130.6929420.6160730.086*
C70.0475 (9)0.6243 (3)0.5499 (3)0.0658 (13)
H70.0580800.5892400.5387360.079*
C80.1214 (15)0.8108 (4)0.6624 (4)0.109 (3)
H8A0.0206010.8117280.6752140.163*
H8B0.1566020.8600980.6395120.163*
H8C0.2033500.8045910.7039860.163*
C90.1548 (13)0.5439 (4)0.4054 (3)0.089 (2)
H9A0.1946500.4994430.3765660.133*
H9B0.1743630.5927580.3798290.133*
H9C0.0133440.5386130.4180880.133*
C100.6754 (7)0.1854 (3)0.3317 (3)0.0538 (12)
C110.5455 (8)0.1214 (4)0.3346 (3)0.0696 (14)
H110.4103910.1295360.3481560.084*
C120.6089 (12)0.0453 (4)0.3181 (4)0.079 (2)
H120.5152500.0034820.3189760.094*
C130.8098 (12)0.0302 (4)0.3004 (3)0.0724 (17)
C140.9381 (11)0.0941 (4)0.2986 (4)0.086 (2)
H141.0745620.0855870.2870240.103*
C150.8753 (8)0.1713 (4)0.3133 (4)0.0789 (19)
H150.9678970.2133520.3107810.095*
C160.8851 (15)0.0534 (4)0.2830 (4)0.111 (3)
H16A0.8255660.0909920.3151200.166*
H16B1.0313570.0550760.2869790.166*
H16C0.8458910.0668260.2357480.166*
C170.5914 (7)0.2677 (3)0.3488 (3)0.0563 (12)
H170.4443730.2664920.3388740.068*
C180.6817 (12)0.3357 (4)0.3063 (4)0.0852 (19)
H18A0.6248010.3855080.3221080.128*
H18B0.6499560.3282100.2574220.128*
H18C0.8273850.3366100.3123940.128*
N10.2654 (6)0.4663 (2)0.5077 (2)0.0496 (9)
H1A0.1347900.4513510.5064920.060*
H1B0.2998560.4725450.5526560.060*
N20.6156 (6)0.2865 (2)0.4253 (2)0.0532 (10)
H2A0.7461270.2989090.4328730.064*
H2B0.5893510.2421410.4495310.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.03448 (13)0.05194 (17)0.04942 (17)0.00021 (15)0.00095 (15)0.00264 (18)
Cl10.0396 (6)0.1033 (11)0.0927 (12)0.0090 (7)0.0076 (6)0.0358 (9)
Cl20.0343 (5)0.0663 (8)0.0849 (10)0.0047 (5)0.0015 (6)0.0168 (7)
C10.065 (3)0.053 (3)0.054 (3)0.001 (2)0.008 (3)0.001 (3)
C20.062 (3)0.046 (3)0.051 (3)0.001 (2)0.003 (2)0.001 (2)
C30.075 (4)0.061 (3)0.074 (4)0.011 (3)0.010 (3)0.003 (3)
C40.107 (5)0.061 (4)0.080 (5)0.023 (4)0.002 (4)0.005 (3)
C50.110 (5)0.053 (3)0.060 (4)0.004 (3)0.004 (4)0.003 (3)
C60.074 (4)0.076 (4)0.064 (4)0.014 (3)0.004 (3)0.005 (3)
C70.070 (3)0.060 (3)0.067 (3)0.001 (3)0.009 (3)0.007 (3)
C80.169 (9)0.079 (4)0.079 (5)0.006 (5)0.005 (5)0.027 (4)
C90.139 (6)0.073 (4)0.054 (4)0.022 (4)0.004 (4)0.007 (3)
C100.042 (2)0.073 (3)0.046 (3)0.005 (2)0.002 (2)0.006 (3)
C110.055 (3)0.084 (4)0.070 (3)0.004 (4)0.008 (3)0.017 (3)
C120.088 (5)0.067 (4)0.081 (5)0.002 (3)0.004 (4)0.013 (3)
C130.096 (5)0.075 (4)0.046 (3)0.013 (4)0.003 (3)0.002 (3)
C140.055 (3)0.108 (5)0.095 (5)0.015 (4)0.011 (4)0.035 (4)
C150.048 (3)0.091 (4)0.098 (5)0.000 (3)0.011 (3)0.036 (4)
C160.168 (9)0.085 (5)0.079 (5)0.036 (6)0.016 (5)0.001 (4)
C170.042 (3)0.075 (3)0.051 (3)0.007 (2)0.005 (2)0.006 (3)
C180.101 (5)0.080 (4)0.075 (5)0.009 (4)0.005 (4)0.008 (4)
N10.049 (2)0.051 (2)0.049 (2)0.0013 (17)0.0052 (18)0.0033 (18)
N20.0399 (19)0.065 (2)0.055 (3)0.0106 (18)0.0000 (17)0.005 (2)
Geometric parameters (Å, º) top
Pd1—Cl12.3028 (13)C10—C111.368 (7)
Pd1—Cl22.2933 (12)C10—C151.373 (7)
Pd1—N12.039 (4)C10—C171.517 (7)
Pd1—N22.053 (4)C11—H110.9300
C1—H10.9800C11—C121.374 (8)
C1—C21.502 (7)C12—H120.9300
C1—C91.516 (9)C12—C131.379 (10)
C1—N11.494 (6)C13—C141.360 (9)
C2—C31.371 (7)C13—C161.518 (9)
C2—C71.385 (7)C14—H140.9300
C3—H30.9300C14—C151.382 (8)
C3—C41.381 (8)C15—H150.9300
C4—H40.9300C16—H16A0.9600
C4—C51.383 (10)C16—H16B0.9600
C5—C61.366 (9)C16—H16C0.9600
C5—C81.524 (8)C17—H170.9800
C6—H60.9300C17—C181.515 (8)
C6—C71.391 (8)C17—N21.496 (7)
C7—H70.9300C18—H18A0.9600
C8—H8A0.9600C18—H18B0.9600
C8—H8B0.9600C18—H18C0.9600
C8—H8C0.9600N1—H1A0.8900
C9—H9A0.9600N1—H1B0.8900
C9—H9B0.9600N2—H2A0.8900
C9—H9C0.9600N2—H2B0.8900
Cl2—Pd1—Cl1177.22 (6)C10—C11—H11119.1
N1—Pd1—Cl188.25 (12)C10—C11—C12121.9 (6)
N1—Pd1—Cl290.05 (12)C12—C11—H11119.1
N1—Pd1—N2179.39 (18)C11—C12—H12119.6
N2—Pd1—Cl191.21 (12)C11—C12—C13120.9 (7)
N2—Pd1—Cl290.48 (12)C13—C12—H12119.6
C2—C1—H1107.2C12—C13—C16122.1 (7)
C2—C1—C9114.6 (4)C14—C13—C12116.7 (6)
C9—C1—H1107.2C14—C13—C16121.2 (7)
N1—C1—H1107.2C13—C14—H14118.5
N1—C1—C2111.5 (4)C13—C14—C15123.1 (6)
N1—C1—C9108.8 (5)C15—C14—H14118.5
C3—C2—C1120.6 (5)C10—C15—C14119.7 (6)
C3—C2—C7117.5 (5)C10—C15—H15120.2
C7—C2—C1122.0 (5)C14—C15—H15120.2
C2—C3—H3119.0C13—C16—H16A109.5
C2—C3—C4122.1 (6)C13—C16—H16B109.5
C4—C3—H3119.0C13—C16—H16C109.5
C3—C4—H4119.8H16A—C16—H16B109.5
C3—C4—C5120.5 (6)H16A—C16—H16C109.5
C5—C4—H4119.8H16B—C16—H16C109.5
C4—C5—C8120.3 (7)C10—C17—H17107.2
C6—C5—C4117.9 (6)C18—C17—C10115.2 (5)
C6—C5—C8121.7 (7)C18—C17—H17107.2
C5—C6—H6119.2N2—C17—C10111.1 (4)
C5—C6—C7121.6 (6)N2—C17—H17107.2
C7—C6—H6119.2N2—C17—C18108.6 (5)
C2—C7—C6120.5 (5)C17—C18—H18A109.5
C2—C7—H7119.8C17—C18—H18B109.5
C6—C7—H7119.8C17—C18—H18C109.5
C5—C8—H8A109.5H18A—C18—H18B109.5
C5—C8—H8B109.5H18A—C18—H18C109.5
C5—C8—H8C109.5H18B—C18—H18C109.5
H8A—C8—H8B109.5Pd1—N1—H1A108.5
H8A—C8—H8C109.5Pd1—N1—H1B108.5
H8B—C8—H8C109.5C1—N1—Pd1115.2 (3)
C1—C9—H9A109.5C1—N1—H1A108.5
C1—C9—H9B109.5C1—N1—H1B108.5
C1—C9—H9C109.5H1A—N1—H1B107.5
H9A—C9—H9B109.5Pd1—N2—H2A107.9
H9A—C9—H9C109.5Pd1—N2—H2B107.9
H9B—C9—H9C109.5C17—N2—Pd1117.6 (3)
C11—C10—C15117.8 (6)C17—N2—H2A107.9
C11—C10—C17118.5 (5)C17—N2—H2B107.9
C15—C10—C17123.7 (5)H2A—N2—H2B107.2
C1—C2—C3—C4179.6 (6)C11—C10—C15—C140.0 (10)
C1—C2—C7—C6179.1 (5)C11—C10—C17—C18144.6 (6)
C2—C1—N1—Pd1153.2 (3)C11—C10—C17—N291.3 (6)
C2—C3—C4—C50.5 (10)C11—C12—C13—C141.4 (11)
C3—C2—C7—C60.6 (8)C11—C12—C13—C16179.1 (6)
C3—C4—C5—C61.4 (11)C12—C13—C14—C150.3 (11)
C3—C4—C5—C8179.8 (6)C13—C14—C15—C101.0 (12)
C4—C5—C6—C71.9 (10)C15—C10—C11—C121.7 (9)
C5—C6—C7—C21.5 (9)C15—C10—C17—C1835.4 (8)
C7—C2—C3—C40.1 (9)C15—C10—C17—N288.7 (7)
C8—C5—C6—C7179.3 (6)C16—C13—C14—C15179.2 (7)
C9—C1—C2—C3120.9 (6)C17—C10—C11—C12178.3 (6)
C9—C1—C2—C759.5 (7)C17—C10—C15—C14180.0 (6)
C9—C1—N1—Pd179.5 (5)C18—C17—N2—Pd170.7 (5)
C10—C11—C12—C132.4 (10)N1—C1—C2—C3115.0 (5)
C10—C17—N2—Pd1161.6 (3)N1—C1—C2—C764.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.982.923.479 (5)117
C17—H17···Cl20.982.653.323 (5)126
N1—H1A···Cl1i0.892.713.586 (4)168
N2—H2A···Cl2ii0.892.663.524 (4)165
N2—H2B···Cl2iii0.892.633.355 (4)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1.
 

Acknowledgements

We thank Dr Angel Mendoza for collecting the crystal data and Conahcyt for financial support (Fellowship 368610).

References

First citationAl-Jibori, S. A., Hameed, W. J., Al-Hayaly, L. J., Basak-Modi, S. & Hogarth, G. (2015). Inorg. Chem. Commun. 62, 91–93.  CAS Google Scholar
First citationCattalini, L. & Martelli, M. (1969). J. Am. Chem. Soc. 91, 312–316.  CrossRef CAS Web of Science Google Scholar
First citationDecken, A., Pisegna, G. L., Vogels, C. M. & Westcott, S. A. (2000). Acta Cryst. C56, 1071–1072.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGrishin, Y. K., Razmyslova, E. D., Churakov, A. V., Kuz'mina, L. G. & Dunina, V. V. (2003). Private communication (refcode: TUWKEB). CCDC, Cambridge, England.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHa, K. (2020). Z. Kristallogr. 235, 629–630.  CAS Google Scholar
First citationHartwig, J. F. (1998). Angew. Chem. Int. Ed. 37, 2046–2067.  CrossRef CAS Google Scholar
First citationJones, T. C., Nielson, A. J. & Rickard, C. E. (1984). Aust. J. Chem. 37, 2179–2192.  CSD CrossRef CAS Web of Science Google Scholar
First citationKarami, K., Alinaghi, M., Amirghofran, Z. & Lipkowski, J. (2018). Inorg. Chim. Acta, 471, 797–807.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarami, K., Kharat, M. H., Rizzoli, C. & Lipkowski, J. (2013). J. Organomet. Chem. 728, 16–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuz'mina, L. G., Struchkov, Y. T., Dunina, V. V., Zalevskaya, O. A. & Potapov, V. M. (1987). Zh. Obshch. Khim. 57, 599–609.  CAS Google Scholar
First citationMartin, C. D., Appoh, F. E., Vogels, C. M., Decken, A. & Westcott, S. A. (2008). Anal. Sci. X-ray Struct. Anal. Online, 24, x223–x224.  CSD CrossRef CAS Google Scholar
First citationMüller, T. E. & Beller, M. (1998). Chem. Rev. 98, 675–704.  Web of Science CrossRef PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRyabov, A. D. (1990). Chem. Rev. 90, 403–424.  CrossRef CAS Web of Science Google Scholar
First citationSabater, S., Mata, J. A. & Peris, E. (2013). Organometallics, 32, 1112–1120.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeligson, A. L. & Trogler, W. C. (1991). J. Am. Chem. Soc. 113, 2520–2527.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiner, T. (1996). Crystallogr. Rev. 6, 1–51.  CrossRef CAS Google Scholar
First citationSui-Seng, C. & Zargarian, D. (2003). Acta Cryst. E59, m957–m958.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVázquez, J., Bernès, S., Hernández, G., Aguilar, H. & Gutiérrez, R. (2006). Acta Cryst. E62, m502–m504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWidenhoefer, R. A. & Buchwald, S. L. (1996). Organometallics, 15, 3534–3542.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146