metal-organic compounds
trans-Dichloridobis[(S)-(−)-1-(4-methylphenyl)ethylamine-κN]palladium(II)
aLab. Síntesis de Complejos, Fac. Cs. Quím.-BUAP, Ciudad Universitaria, PO Box 72592 Puebla, Mexico, and bInstituto de Química Universidad Autónoma de México UNAM, Circuito Exterior Cd. Universitaria, PO Box 04510, Ciudad de México, Mexico
*Correspondence e-mail: bertinanzaldo@outlook.com
The title complex, [PdCl2(C9H13N)2], comprises a single molecule in the The PdII atom is tetracoordinated by two N atoms from two trans-aligned organic ligands and two Cl ligands, forming a square-planar metal coordination environment. The distances from the ortho-H atoms on the phenyl ring to the central PdII atom fall within the range 4.70–5.30 Å, precluding any significant intramolecular Pd⋯H interactions.
Keywords: crystal structure; amine; palladium(II) complex; monodentate ligand.
CCDC reference: 2310033
Structure description
The chemistry of PdII compounds with diverse ligands represents a rich area within organometallic chemistry, extensively explored in organic synthesis (Hartwig, 1998; Müller & Beller, 1998). PdII compounds also exhibit cytotoxic activity, which makes them interesting for certain therapeutic applications. Moreover, PdII compounds with amine ligands have a central role in catalytic conversions due to the hydrogen bond developed between the amino group and the catalyst. In the presence of excess amine, 16-electron PdCl2L2 (L = amine) adducts, usually existing as a mixture of cis and trans isomers, emerge as viable starting materials for cyclopalladations (Ryabov, 1990; Cattalini & Martelli, 1969). While monodentate PdII–amine complexes tend to display general instability as reaction intermediates, bis(amine)–PdII complexes have garnered substantial attention for their involvement as intermediates in amination reactions (Widenhoefer & Buchwald, 1996; Seligson & Trogler, 1991). In this context, our focus has shifted towards complexes derived from optically pure chiral We present here the molecular and crystal structures of trans-dichlorido bis[(S)-(−)-1-[(4-methylphenyl)ethylamine]palladium(II).
The . The molecular complex adopts a square-planar metal coordination environment around the central PdII atom. There are slight distortions from the ideal square-planar geometry, as revealed by a deviation of 0.025 Å of the PdII atom from the plane defined by atoms Cl2, N2, Cl1, N1. The interatomic distances from the central PdII atom to the ligand atoms are 2.039 (4) Å [Pd1—N1] and 2.053 (4) Å [Pd1—N2]; the average Pd—Cl bond length is 2.298 Å. The pairs of Cl and amine ligands are trans-aligned around the central PdII atom and characterized by a Cl1—Pd1—Cl2 angle of 177.22 (6)° and an N1—Pd1—N2 angle of 179.39 (18)°; the Cl1—Pd1—N1 angle amounts to 88.25 (12)°, with other angles approximately 90°. The sp3 of the N atoms and the C9 and C17 atoms cause the non-planarity of the molecular structure. The amine ligands are arranged differently around the central PdII atom. The Cl1—Pd1—N1—C1 torsion angle is 73.2 (3)°, compared to 53.5 (3)° for Cl2—Pd1—N2—C17. Both amine ligands exhibit a gauche conformation, as revealed by the torsion angle C17—N2—N1—C1 = −55.6 (4)°.
comprises a single molecule, as shown in Fig. 1A view of the crystal packing shows that individual molecules are organized into supramolecular ribbons defined by C—H⋯Cl and N—H⋯Cl hydrogen bonding interactions (Table 1); the ribbons extend parallel to [100] (Fig. 2). The cohesion between the ribbons is accomplished mainly by weak van der Waals interactions (Steiner, 1996; Desiraju, 1996). The Pd⋯Pd separations between neighboring PdII complexes vary from 5.5027 (5) to 6.5385 (5) Å, indicating that there is no strong interaction among these metal atoms.
A search of the Cambridge Structural Database (CSD, version 5.42, current as of November 2023; Groom et al., 2016) yielded thirteen related entries to the title bis(amine)–PdII complex: UMIBOH (Sui-Seng & Zargarian, 2003), UMIBOH01 (Karami et al., 2018), WOCLEF (Decken et al., 2000), DUKMAA (Ha, 2020), BUYCIJ (Al-Jibori et al., 2015), TUWKEB (Grishin et al., 2003), YEFNUT (Vazquez et al., 2006), YEFNUT01 (Sabater et al., 2013), GAZZAI (Kuz'mina et al., 1987), GAZZEM (Kuz'mina et al., 1987), PEWZEY (Karami et al., 2013), POHKON (Martin et al., 2008), and CUGGIU (Jones et al., 1984). In the of PEWZEY (P21/c), molecules are linked by intermolecular N—H⋯Cl hydrogen bonds into zigzag chains running parallel to the b axis. The of GAZZEM (P21) comprises one molecule. In YEFNUT (C2), the amine ligands are trans-coordinated to a PdCl2 core, and arranged in a gauche conformation. The of TUWKEB (C2/c) comprises one molecule. In DUKMAA (I41cd), the complexes and solvent DMSO molecules are linked by N—H⋯O, N—H⋯Cl, C—H⋯Cl and C—H⋯O hydrogen bonds. The of UMIBOH crystallizes in P42/n with four independent molecules within the The of GAZZAI (P43212) comprises one molecule. In POHKON (P21/n), the PdII atom has a distorted square-planar environment with the ligands occupying a trans-configuration with two molecules of dimethyl sulfoxide (DMSO) in the crystal. In the of BUYCIJ, a hydrogen bonding interaction between the water molecule and the metal-bound chlorido ligand is present. CUGGIU comprises a PdII atom coordinated by the nitrogen atoms of four benzylamine ligands with hydrogen bonding of the N–H2 groups with the Cl− ion. The WOCLEF (P21/n) compound crystallizes with two molecules of DMSO and shows N—H⋯O and C—H⋯Cl hydrogen bonds between the complex and the DMSO molecules.
Synthesis and crystallization
A solution of bis(benzonitrile)palladium(II) chloride (0.66 g, 0.17 mmol) in CH2Cl2 (5 ml) was added to a solution of (S)-(+)-[1-(4-methylphenyl)-N-(4-biphenyl)methyliden]ethylamine (0.100 g, 0.34 mmol) in CH2Cl2 (10 ml). The solution was stirred for 24 h to give an orange precipitate. The solid was filtered off, dissolved in DMF, and the solution was slowly evaporated. After a few days, orange crystals were collected. Yield 23%.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2310033
https://doi.org/10.1107/S2414314624000361/wm4204sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314624000361/wm4204Isup2.hkl
[PdCl2(C9H13N)2] | Dx = 1.430 Mg m−3 |
Mr = 447.71 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 7901 reflections |
a = 6.5385 (2) Å | θ = 3.3–27.1° |
b = 16.7263 (8) Å | µ = 1.15 mm−1 |
c = 19.0096 (11) Å | T = 293 K |
V = 2078.99 (17) Å3 | Block, yellow |
Z = 4 | 0.58 × 0.38 × 0.14 mm |
F(000) = 912 |
Xcalibur, Atlas, Gemini diffractometer | 5561 reflections with I > 2σ(I) |
Detector resolution: 10.5564 pixels mm-1 | Rint = 0.061 |
ω scans | θmax = 33.1°, θmin = 3.3° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2015) | h = −10→10 |
Tmin = 0.722, Tmax = 0.915 | k = −25→25 |
45575 measured reflections | l = −29→29 |
7907 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.049 | w = 1/[σ2(Fo2) + (0.0333P)2 + 0.5029P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.095 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.62 e Å−3 |
7907 reflections | Δρmin = −0.64 e Å−3 |
212 parameters | Absolute structure: Flack x determined using 1800 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
0 restraints | Absolute structure parameter: −0.032 (18) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The hydrogen atoms attached to carbon and nitrogen atoms were positioned with idealized geometry and constrained to ride on their parent atoms, and were refined isotropically using a riding model. |
x | y | z | Uiso*/Ueq | ||
Pd1 | 0.43881 (5) | 0.37662 (2) | 0.46621 (2) | 0.04528 (10) | |
Cl1 | 0.72228 (19) | 0.43738 (10) | 0.51427 (9) | 0.0786 (5) | |
Cl2 | 0.14917 (17) | 0.31631 (8) | 0.42362 (8) | 0.0618 (4) | |
C1 | 0.2846 (8) | 0.5452 (3) | 0.4715 (3) | 0.0574 (12) | |
H1 | 0.427445 | 0.550708 | 0.456647 | 0.069* | |
C2 | 0.2394 (8) | 0.6133 (3) | 0.5206 (3) | 0.0529 (11) | |
C3 | 0.3892 (9) | 0.6670 (3) | 0.5384 (4) | 0.0700 (15) | |
H3 | 0.519174 | 0.660828 | 0.519264 | 0.084* | |
C4 | 0.3531 (12) | 0.7299 (4) | 0.5837 (4) | 0.082 (2) | |
H4 | 0.458570 | 0.764935 | 0.594914 | 0.099* | |
C5 | 0.1610 (12) | 0.7412 (3) | 0.6126 (3) | 0.0743 (17) | |
C6 | 0.0115 (9) | 0.6873 (4) | 0.5960 (3) | 0.0717 (16) | |
H6 | −0.117513 | 0.692942 | 0.616073 | 0.086* | |
C7 | 0.0475 (9) | 0.6243 (3) | 0.5499 (3) | 0.0658 (13) | |
H7 | −0.058080 | 0.589240 | 0.538736 | 0.079* | |
C8 | 0.1214 (15) | 0.8108 (4) | 0.6624 (4) | 0.109 (3) | |
H8A | −0.020601 | 0.811728 | 0.675214 | 0.163* | |
H8B | 0.156602 | 0.860098 | 0.639512 | 0.163* | |
H8C | 0.203350 | 0.804591 | 0.703986 | 0.163* | |
C9 | 0.1548 (13) | 0.5439 (4) | 0.4054 (3) | 0.089 (2) | |
H9A | 0.194650 | 0.499443 | 0.376566 | 0.133* | |
H9B | 0.174363 | 0.592758 | 0.379829 | 0.133* | |
H9C | 0.013344 | 0.538613 | 0.418088 | 0.133* | |
C10 | 0.6754 (7) | 0.1854 (3) | 0.3317 (3) | 0.0538 (12) | |
C11 | 0.5455 (8) | 0.1214 (4) | 0.3346 (3) | 0.0696 (14) | |
H11 | 0.410391 | 0.129536 | 0.348156 | 0.084* | |
C12 | 0.6089 (12) | 0.0453 (4) | 0.3181 (4) | 0.079 (2) | |
H12 | 0.515250 | 0.003482 | 0.318976 | 0.094* | |
C13 | 0.8098 (12) | 0.0302 (4) | 0.3004 (3) | 0.0724 (17) | |
C14 | 0.9381 (11) | 0.0941 (4) | 0.2986 (4) | 0.086 (2) | |
H14 | 1.074562 | 0.085587 | 0.287024 | 0.103* | |
C15 | 0.8753 (8) | 0.1713 (4) | 0.3133 (4) | 0.0789 (19) | |
H15 | 0.967897 | 0.213352 | 0.310781 | 0.095* | |
C16 | 0.8851 (15) | −0.0534 (4) | 0.2830 (4) | 0.111 (3) | |
H16A | 0.825566 | −0.090992 | 0.315120 | 0.166* | |
H16B | 1.031357 | −0.055076 | 0.286979 | 0.166* | |
H16C | 0.845891 | −0.066826 | 0.235748 | 0.166* | |
C17 | 0.5914 (7) | 0.2677 (3) | 0.3488 (3) | 0.0563 (12) | |
H17 | 0.444373 | 0.266492 | 0.338874 | 0.068* | |
C18 | 0.6817 (12) | 0.3357 (4) | 0.3063 (4) | 0.0852 (19) | |
H18A | 0.624801 | 0.385508 | 0.322108 | 0.128* | |
H18B | 0.649956 | 0.328210 | 0.257422 | 0.128* | |
H18C | 0.827385 | 0.336610 | 0.312394 | 0.128* | |
N1 | 0.2654 (6) | 0.4663 (2) | 0.5077 (2) | 0.0496 (9) | |
H1A | 0.134790 | 0.451351 | 0.506492 | 0.060* | |
H1B | 0.299856 | 0.472545 | 0.552656 | 0.060* | |
N2 | 0.6156 (6) | 0.2865 (2) | 0.4253 (2) | 0.0532 (10) | |
H2A | 0.746127 | 0.298909 | 0.432873 | 0.064* | |
H2B | 0.589351 | 0.242141 | 0.449531 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pd1 | 0.03448 (13) | 0.05194 (17) | 0.04942 (17) | 0.00021 (15) | −0.00095 (15) | −0.00264 (18) |
Cl1 | 0.0396 (6) | 0.1033 (11) | 0.0927 (12) | −0.0090 (7) | −0.0076 (6) | −0.0358 (9) |
Cl2 | 0.0343 (5) | 0.0663 (8) | 0.0849 (10) | −0.0047 (5) | −0.0015 (6) | −0.0168 (7) |
C1 | 0.065 (3) | 0.053 (3) | 0.054 (3) | 0.001 (2) | 0.008 (3) | 0.001 (3) |
C2 | 0.062 (3) | 0.046 (3) | 0.051 (3) | −0.001 (2) | 0.003 (2) | 0.001 (2) |
C3 | 0.075 (4) | 0.061 (3) | 0.074 (4) | −0.011 (3) | 0.010 (3) | 0.003 (3) |
C4 | 0.107 (5) | 0.061 (4) | 0.080 (5) | −0.023 (4) | −0.002 (4) | −0.005 (3) |
C5 | 0.110 (5) | 0.053 (3) | 0.060 (4) | 0.004 (3) | −0.004 (4) | −0.003 (3) |
C6 | 0.074 (4) | 0.076 (4) | 0.064 (4) | 0.014 (3) | 0.004 (3) | −0.005 (3) |
C7 | 0.070 (3) | 0.060 (3) | 0.067 (3) | 0.001 (3) | −0.009 (3) | −0.007 (3) |
C8 | 0.169 (9) | 0.079 (4) | 0.079 (5) | 0.006 (5) | 0.005 (5) | −0.027 (4) |
C9 | 0.139 (6) | 0.073 (4) | 0.054 (4) | 0.022 (4) | −0.004 (4) | −0.007 (3) |
C10 | 0.042 (2) | 0.073 (3) | 0.046 (3) | 0.005 (2) | −0.002 (2) | −0.006 (3) |
C11 | 0.055 (3) | 0.084 (4) | 0.070 (3) | 0.004 (4) | 0.008 (3) | 0.017 (3) |
C12 | 0.088 (5) | 0.067 (4) | 0.081 (5) | −0.002 (3) | 0.004 (4) | 0.013 (3) |
C13 | 0.096 (5) | 0.075 (4) | 0.046 (3) | 0.013 (4) | 0.003 (3) | −0.002 (3) |
C14 | 0.055 (3) | 0.108 (5) | 0.095 (5) | 0.015 (4) | 0.011 (4) | −0.035 (4) |
C15 | 0.048 (3) | 0.091 (4) | 0.098 (5) | 0.000 (3) | 0.011 (3) | −0.036 (4) |
C16 | 0.168 (9) | 0.085 (5) | 0.079 (5) | 0.036 (6) | 0.016 (5) | −0.001 (4) |
C17 | 0.042 (3) | 0.075 (3) | 0.051 (3) | 0.007 (2) | −0.005 (2) | −0.006 (3) |
C18 | 0.101 (5) | 0.080 (4) | 0.075 (5) | 0.009 (4) | 0.005 (4) | 0.008 (4) |
N1 | 0.049 (2) | 0.051 (2) | 0.049 (2) | 0.0013 (17) | 0.0052 (18) | −0.0033 (18) |
N2 | 0.0399 (19) | 0.065 (2) | 0.055 (3) | 0.0106 (18) | 0.0000 (17) | −0.005 (2) |
Pd1—Cl1 | 2.3028 (13) | C10—C11 | 1.368 (7) |
Pd1—Cl2 | 2.2933 (12) | C10—C15 | 1.373 (7) |
Pd1—N1 | 2.039 (4) | C10—C17 | 1.517 (7) |
Pd1—N2 | 2.053 (4) | C11—H11 | 0.9300 |
C1—H1 | 0.9800 | C11—C12 | 1.374 (8) |
C1—C2 | 1.502 (7) | C12—H12 | 0.9300 |
C1—C9 | 1.516 (9) | C12—C13 | 1.379 (10) |
C1—N1 | 1.494 (6) | C13—C14 | 1.360 (9) |
C2—C3 | 1.371 (7) | C13—C16 | 1.518 (9) |
C2—C7 | 1.385 (7) | C14—H14 | 0.9300 |
C3—H3 | 0.9300 | C14—C15 | 1.382 (8) |
C3—C4 | 1.381 (8) | C15—H15 | 0.9300 |
C4—H4 | 0.9300 | C16—H16A | 0.9600 |
C4—C5 | 1.383 (10) | C16—H16B | 0.9600 |
C5—C6 | 1.366 (9) | C16—H16C | 0.9600 |
C5—C8 | 1.524 (8) | C17—H17 | 0.9800 |
C6—H6 | 0.9300 | C17—C18 | 1.515 (8) |
C6—C7 | 1.391 (8) | C17—N2 | 1.496 (7) |
C7—H7 | 0.9300 | C18—H18A | 0.9600 |
C8—H8A | 0.9600 | C18—H18B | 0.9600 |
C8—H8B | 0.9600 | C18—H18C | 0.9600 |
C8—H8C | 0.9600 | N1—H1A | 0.8900 |
C9—H9A | 0.9600 | N1—H1B | 0.8900 |
C9—H9B | 0.9600 | N2—H2A | 0.8900 |
C9—H9C | 0.9600 | N2—H2B | 0.8900 |
Cl2—Pd1—Cl1 | 177.22 (6) | C10—C11—H11 | 119.1 |
N1—Pd1—Cl1 | 88.25 (12) | C10—C11—C12 | 121.9 (6) |
N1—Pd1—Cl2 | 90.05 (12) | C12—C11—H11 | 119.1 |
N1—Pd1—N2 | 179.39 (18) | C11—C12—H12 | 119.6 |
N2—Pd1—Cl1 | 91.21 (12) | C11—C12—C13 | 120.9 (7) |
N2—Pd1—Cl2 | 90.48 (12) | C13—C12—H12 | 119.6 |
C2—C1—H1 | 107.2 | C12—C13—C16 | 122.1 (7) |
C2—C1—C9 | 114.6 (4) | C14—C13—C12 | 116.7 (6) |
C9—C1—H1 | 107.2 | C14—C13—C16 | 121.2 (7) |
N1—C1—H1 | 107.2 | C13—C14—H14 | 118.5 |
N1—C1—C2 | 111.5 (4) | C13—C14—C15 | 123.1 (6) |
N1—C1—C9 | 108.8 (5) | C15—C14—H14 | 118.5 |
C3—C2—C1 | 120.6 (5) | C10—C15—C14 | 119.7 (6) |
C3—C2—C7 | 117.5 (5) | C10—C15—H15 | 120.2 |
C7—C2—C1 | 122.0 (5) | C14—C15—H15 | 120.2 |
C2—C3—H3 | 119.0 | C13—C16—H16A | 109.5 |
C2—C3—C4 | 122.1 (6) | C13—C16—H16B | 109.5 |
C4—C3—H3 | 119.0 | C13—C16—H16C | 109.5 |
C3—C4—H4 | 119.8 | H16A—C16—H16B | 109.5 |
C3—C4—C5 | 120.5 (6) | H16A—C16—H16C | 109.5 |
C5—C4—H4 | 119.8 | H16B—C16—H16C | 109.5 |
C4—C5—C8 | 120.3 (7) | C10—C17—H17 | 107.2 |
C6—C5—C4 | 117.9 (6) | C18—C17—C10 | 115.2 (5) |
C6—C5—C8 | 121.7 (7) | C18—C17—H17 | 107.2 |
C5—C6—H6 | 119.2 | N2—C17—C10 | 111.1 (4) |
C5—C6—C7 | 121.6 (6) | N2—C17—H17 | 107.2 |
C7—C6—H6 | 119.2 | N2—C17—C18 | 108.6 (5) |
C2—C7—C6 | 120.5 (5) | C17—C18—H18A | 109.5 |
C2—C7—H7 | 119.8 | C17—C18—H18B | 109.5 |
C6—C7—H7 | 119.8 | C17—C18—H18C | 109.5 |
C5—C8—H8A | 109.5 | H18A—C18—H18B | 109.5 |
C5—C8—H8B | 109.5 | H18A—C18—H18C | 109.5 |
C5—C8—H8C | 109.5 | H18B—C18—H18C | 109.5 |
H8A—C8—H8B | 109.5 | Pd1—N1—H1A | 108.5 |
H8A—C8—H8C | 109.5 | Pd1—N1—H1B | 108.5 |
H8B—C8—H8C | 109.5 | C1—N1—Pd1 | 115.2 (3) |
C1—C9—H9A | 109.5 | C1—N1—H1A | 108.5 |
C1—C9—H9B | 109.5 | C1—N1—H1B | 108.5 |
C1—C9—H9C | 109.5 | H1A—N1—H1B | 107.5 |
H9A—C9—H9B | 109.5 | Pd1—N2—H2A | 107.9 |
H9A—C9—H9C | 109.5 | Pd1—N2—H2B | 107.9 |
H9B—C9—H9C | 109.5 | C17—N2—Pd1 | 117.6 (3) |
C11—C10—C15 | 117.8 (6) | C17—N2—H2A | 107.9 |
C11—C10—C17 | 118.5 (5) | C17—N2—H2B | 107.9 |
C15—C10—C17 | 123.7 (5) | H2A—N2—H2B | 107.2 |
C1—C2—C3—C4 | −179.6 (6) | C11—C10—C15—C14 | 0.0 (10) |
C1—C2—C7—C6 | 179.1 (5) | C11—C10—C17—C18 | −144.6 (6) |
C2—C1—N1—Pd1 | −153.2 (3) | C11—C10—C17—N2 | 91.3 (6) |
C2—C3—C4—C5 | −0.5 (10) | C11—C12—C13—C14 | −1.4 (11) |
C3—C2—C7—C6 | −0.6 (8) | C11—C12—C13—C16 | 179.1 (6) |
C3—C4—C5—C6 | 1.4 (11) | C12—C13—C14—C15 | −0.3 (11) |
C3—C4—C5—C8 | −179.8 (6) | C13—C14—C15—C10 | 1.0 (12) |
C4—C5—C6—C7 | −1.9 (10) | C15—C10—C11—C12 | −1.7 (9) |
C5—C6—C7—C2 | 1.5 (9) | C15—C10—C17—C18 | 35.4 (8) |
C7—C2—C3—C4 | 0.1 (9) | C15—C10—C17—N2 | −88.7 (7) |
C8—C5—C6—C7 | 179.3 (6) | C16—C13—C14—C15 | 179.2 (7) |
C9—C1—C2—C3 | −120.9 (6) | C17—C10—C11—C12 | 178.3 (6) |
C9—C1—C2—C7 | 59.5 (7) | C17—C10—C15—C14 | 180.0 (6) |
C9—C1—N1—Pd1 | 79.5 (5) | C18—C17—N2—Pd1 | 70.7 (5) |
C10—C11—C12—C13 | 2.4 (10) | N1—C1—C2—C3 | 115.0 (5) |
C10—C17—N2—Pd1 | −161.6 (3) | N1—C1—C2—C7 | −64.6 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl1 | 0.98 | 2.92 | 3.479 (5) | 117 |
C17—H17···Cl2 | 0.98 | 2.65 | 3.323 (5) | 126 |
N1—H1A···Cl1i | 0.89 | 2.71 | 3.586 (4) | 168 |
N2—H2A···Cl2ii | 0.89 | 2.66 | 3.524 (4) | 165 |
N2—H2B···Cl2iii | 0.89 | 2.63 | 3.355 (4) | 139 |
Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x+1/2, −y+1/2, −z+1. |
Acknowledgements
We thank Dr Angel Mendoza for collecting the crystal data and Conahcyt for financial support (Fellowship 368610).
References
Al-Jibori, S. A., Hameed, W. J., Al-Hayaly, L. J., Basak-Modi, S. & Hogarth, G. (2015). Inorg. Chem. Commun. 62, 91–93. CAS Google Scholar
Cattalini, L. & Martelli, M. (1969). J. Am. Chem. Soc. 91, 312–316. CrossRef CAS Web of Science Google Scholar
Decken, A., Pisegna, G. L., Vogels, C. M. & Westcott, S. A. (2000). Acta Cryst. C56, 1071–1072. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441–449. CrossRef CAS PubMed Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Grishin, Y. K., Razmyslova, E. D., Churakov, A. V., Kuz'mina, L. G. & Dunina, V. V. (2003). Private communication (refcode: TUWKEB). CCDC, Cambridge, England. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ha, K. (2020). Z. Kristallogr. 235, 629–630. CAS Google Scholar
Hartwig, J. F. (1998). Angew. Chem. Int. Ed. 37, 2046–2067. CrossRef CAS Google Scholar
Jones, T. C., Nielson, A. J. & Rickard, C. E. (1984). Aust. J. Chem. 37, 2179–2192. CSD CrossRef CAS Web of Science Google Scholar
Karami, K., Alinaghi, M., Amirghofran, Z. & Lipkowski, J. (2018). Inorg. Chim. Acta, 471, 797–807. Web of Science CSD CrossRef CAS Google Scholar
Karami, K., Kharat, M. H., Rizzoli, C. & Lipkowski, J. (2013). J. Organomet. Chem. 728, 16–22. Web of Science CSD CrossRef CAS Google Scholar
Kuz'mina, L. G., Struchkov, Y. T., Dunina, V. V., Zalevskaya, O. A. & Potapov, V. M. (1987). Zh. Obshch. Khim. 57, 599–609. CAS Google Scholar
Martin, C. D., Appoh, F. E., Vogels, C. M., Decken, A. & Westcott, S. A. (2008). Anal. Sci. X-ray Struct. Anal. Online, 24, x223–x224. CSD CrossRef CAS Google Scholar
Müller, T. E. & Beller, M. (1998). Chem. Rev. 98, 675–704. Web of Science CrossRef PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Ryabov, A. D. (1990). Chem. Rev. 90, 403–424. CrossRef CAS Web of Science Google Scholar
Sabater, S., Mata, J. A. & Peris, E. (2013). Organometallics, 32, 1112–1120. Web of Science CSD CrossRef CAS Google Scholar
Seligson, A. L. & Trogler, W. C. (1991). J. Am. Chem. Soc. 113, 2520–2527. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Steiner, T. (1996). Crystallogr. Rev. 6, 1–51. CrossRef CAS Google Scholar
Sui-Seng, C. & Zargarian, D. (2003). Acta Cryst. E59, m957–m958. Web of Science CSD CrossRef IUCr Journals Google Scholar
Vázquez, J., Bernès, S., Hernández, G., Aguilar, H. & Gutiérrez, R. (2006). Acta Cryst. E62, m502–m504. Web of Science CSD CrossRef IUCr Journals Google Scholar
Widenhoefer, R. A. & Buchwald, S. L. (1996). Organometallics, 15, 3534–3542. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.