metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­chlorido­(4,7-dimeth­­oxy-1,10-phenanthroline-κ2N,N′)zinc(II)

crossmark logo

aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, Texas 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 December 2023; accepted 9 January 2024; online 12 January 2024)

In the title complex, [ZnCl2(C14H12N2O2)], the ZnII atom is located on a twofold rotation axis and is fourfold coordinated by two chlorido ligands and a bidentate 4,7-meth­oxy-1,10-phenanthroline ligand in a distorted tetra­hedral environment. Weak ππ stacking inter­actions between adjacent 4,7-dimeth­oxy-1,10-phenanthroline rings [centroid-to-centroid distances = 3.5969 (11) and 3.7738 (11) Å] contribute to the alignment of the complexes in layers parallel to ([\overline{2}]01).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Over the last five years, metal complexes containing 4,7-dimeth­oxy-1,10-phenanthroline have garnered significant attention due to their catalytic activity (EL-Atawy et al., 2018[EL-Atawy, M. A., Ferretti, F. & Ragaini, F. (2018). Eur. J. Org. Chem. pp. 4818-4825.]; Liu et al., 2020[Liu, M., Zhang, Z., Yan, J., Liu, S., Liu, H., Liu, Z., Wang, W., He, Z. & Han, B. (2020). Chem, 6, 3288-3296.]) and potential as anti­tumor agents (Khoury et al., 2022[Khoury, A., Elias, E., Mehanna, S., Shebaby, W., Deo, K. M., Mansour, N., Khalil, C., Sayyed, K., Sakoff, J. A., Gilbert, J., Daher, C. F., Gordon, C. P., Taleb, R. I. & Aldrich-Wright, J. R. (2022). J. Med. Chem. 65, 16481-16493.]). Likewise, oxidovanadium(IV) complexes incorporating 4,7-dimeth­oxy-1,10-phenanthroline have been found to be effective against several cancer cell lines, including A2780 human ovarian adenocarcinoma and HCT116 human colorectal carcinoma (Choroba et al., 2023[Choroba, K., Filipe, B., Świtlicka, A., Penkala, M., Machura, B., Bieńko, A., Cordeiro, S., Baptista, P. V. & Fernandes, A. R. (2023). J. Med. Chem. 66, 8580-8599.]). Currently, our research group focuses on creating metal complexes that have uses in biological systems. As part of this work, herein we present the synthesis and crystal structure of the title complex, which shows promise as a valuable precursor for the synthesis of novel zinc(II) complexes.

In the centrosymmetric crystal structure of the title complex, the zinc(II) atom is located on a twofold rotation axis (multiplicity 4, Wyckoff letter e) of space group C2/c. The coordination environment is that of a distorted tetra­hedron defined by two pyridine nitro­gen atoms from the 4,7-meth­oxy-1,10-phenanthroline ligand and two chlorido ligands (Fig. 1[link]). The Zn—N bond lengths are in good agreement with comparable tetra­hedral 1,10-phenanthroline complexes currently available in the Cambridge Structure Database (CSD, version 5.45, Nov 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]): refcodes DUCBOT (Niu et al., 2009[Niu, C.-Y., Dang, Y.-L., Wan, X.-S. & Kou, C.-H. (2009). Acta Cryst. E65, m860.]); TOBGOH (Li et al., 2008[Li, H., Hu, T. Q. & Zhang, S. G. (2008). Acta Cryst. E64, m771.]); GODCOU (Luo et al., 2019[Luo, Q., Peng, K., Zhang, J. & Xia, J. (2019). Organometallics, 38, 647-653.]); QEVLIQ (Cetin et al., 2020[Cetin, M. M., Shafiei-Haghighi, S., Chen, J., Zhang, S., Miller, A. C., Unruh, D. K., Casadonte, D. J. Jr, Lohr, T. L., Marks, T. J., Mayer, M. F., Stoddart, J. F. & Findlater, M. (2020). J. Polym. Sci. 58, 1130-1143.]); ZNPHAT (Reimann et al., 1966[Reimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185-1189.]). At this time no 4,7-dimeth­oxy-1,10-phenanthroline zinc metal complexes have been deposited in the database. Similar behavior is observed for the Zn—Cl bond lengths. The τ4 descriptor value (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) of 0.87 reflects the distortion from the perfect tetra­hedral coordination (τ4 = 1.0). Numerical data of relevant bond lengths and angles are presented in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Zn1—Cl1 2.2186 (5) Zn1—N1i 2.0744 (18)
Zn1—Cl1i 2.2186 (5) Zn1—N1 2.0744 (18)
       
Cl1—Zn1—Cl1i 120.75 (3) N1i—Zn1—Cl1 107.88 (4)
N1i—Zn1—Cl1i 116.53 (4) N1—Zn1—Cl1i 107.88 (4)
N1—Zn1—Cl1 116.53 (4) N1i—Zn1—N1 80.66 (9)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity. Symmetry code: (i) −x + 1, y, −z + [{1\over 2}].

The title complex packs into layers parallel to ([\overline{2}]01) (Fig. 2[link]). Contiguous pyridine rings show weak ππ stacking inter­actions, with centroid-to-centroid distances (CgCg) alternating between 3.5969 (11) and 3.7738 (11) Å, and offset distances of 1.370 and 1.822 Å, respectively. No other significant supra­molecular inter­actions are present in the crystal packing of the title compound.

[Figure 2]
Figure 2
Perspective view of the crystal packing of the title complex approximately along the b axis; H atoms are omitted for clarity.

Synthesis and crystallization

The title complex was synthesized by the addition of 4,7-dimeth­oxy-1,10-phenanthroline (0.176 g, 0.733 mmol) to a 40.0 ml aceto­nitrile suspension of zinc(II) chloride (0.100 g, 0.733 mmol). After the ligand was added, the resulting solution was heated at 333 K and stirred for 2 h. The resulting solution was then filtrated using a PTFE syringe filter to obtain a clear solution. Crystal suitable for X-ray diffraction were grown by vapor diffusion of diethyl ether over a satur­ated acetonitrile solution of the title complex.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [ZnCl2(C14H12N2O2)]
Mr 376.53
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 14.7877 (6), 9.9287 (4), 9.5230 (3)
β (°) 95.233 (4)
V3) 1392.36 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.03
Crystal size (mm) 0.10 × 0.05 × 0.03
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.780, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6451, 1385, 1282
Rint 0.044
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.07
No. of reflections 1385
No. of parameters 97
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.54
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Dichlorido(4,7-dimethoxy-1,10-phenanthroline-κ2N,N')zinc(II) top
Crystal data top
[ZnCl2(C14H12N2O2)]F(000) = 760
Mr = 376.53Dx = 1.796 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 14.7877 (6) ÅCell parameters from 4164 reflections
b = 9.9287 (4) Åθ = 4.6–76.0°
c = 9.5230 (3) ŵ = 6.03 mm1
β = 95.233 (4)°T = 100 K
V = 1392.36 (9) Å3Block, clear colourless
Z = 40.10 × 0.05 × 0.03 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
1385 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1282 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.044
Detector resolution: 10.0000 pixels mm-1θmax = 76.1°, θmin = 5.4°
ω scansh = 1817
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
k = 1012
Tmin = 0.780, Tmax = 1.000l = 711
6451 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0424P)2 + 1.5215P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1385 reflectionsΔρmax = 0.36 e Å3
97 parametersΔρmin = 0.54 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.5000000.13609 (4)0.2500000.02301 (15)
Cl10.39338 (4)0.02563 (5)0.35249 (5)0.03050 (17)
O10.66212 (10)0.65250 (14)0.53657 (14)0.0218 (3)
N10.56174 (11)0.29536 (17)0.36247 (16)0.0199 (3)
C50.53355 (13)0.4178 (2)0.30988 (19)0.0182 (4)
C40.56632 (13)0.5410 (2)0.36602 (19)0.0183 (4)
C60.53195 (13)0.6646 (2)0.30625 (19)0.0189 (4)
H60.5538520.7477730.3452890.023*
C20.66450 (14)0.4095 (2)0.5321 (2)0.0218 (4)
H20.7113810.4029370.6069480.026*
C30.63399 (13)0.5341 (2)0.48287 (19)0.0194 (4)
C10.62520 (13)0.2938 (2)0.4699 (2)0.0214 (4)
H10.6451310.2088350.5068400.026*
C70.73512 (14)0.6509 (2)0.6477 (2)0.0239 (4)
H7A0.7894590.6118720.6121570.036*
H7B0.7173170.5966320.7266100.036*
H7C0.7482200.7432070.6799640.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0248 (2)0.0126 (2)0.0319 (2)0.0000.00398 (15)0.000
Cl10.0338 (3)0.0212 (3)0.0364 (3)0.0083 (2)0.0030 (2)0.0048 (2)
O10.0250 (7)0.0181 (7)0.0219 (7)0.0025 (6)0.0002 (5)0.0008 (5)
N10.0218 (7)0.0143 (8)0.0243 (8)0.0015 (7)0.0068 (6)0.0027 (6)
C50.0202 (9)0.0141 (10)0.0211 (8)0.0012 (8)0.0075 (7)0.0012 (7)
C40.0196 (8)0.0168 (10)0.0192 (8)0.0011 (7)0.0063 (7)0.0004 (7)
C60.0208 (9)0.0147 (9)0.0220 (9)0.0008 (8)0.0058 (7)0.0009 (7)
C20.0221 (9)0.0235 (11)0.0206 (8)0.0013 (8)0.0050 (7)0.0021 (8)
C30.0213 (9)0.0185 (10)0.0196 (9)0.0016 (8)0.0076 (7)0.0013 (7)
C10.0234 (9)0.0174 (10)0.0241 (9)0.0032 (8)0.0059 (7)0.0052 (8)
C70.0239 (9)0.0263 (11)0.0210 (9)0.0028 (9)0.0005 (7)0.0004 (8)
Geometric parameters (Å, º) top
Zn1—Cl12.2186 (5)C4—C31.429 (3)
Zn1—Cl1i2.2186 (5)C6—C6i1.362 (4)
Zn1—N1i2.0744 (18)C6—H60.9500
Zn1—N12.0744 (18)C2—H20.9500
O1—C31.334 (2)C2—C31.383 (3)
O1—C71.441 (2)C2—C11.395 (3)
N1—C51.365 (3)C1—H10.9500
N1—C11.324 (3)C7—H7A0.9800
C5—C5i1.442 (4)C7—H7B0.9800
C5—C41.404 (3)C7—H7C0.9800
C4—C61.427 (3)
Cl1—Zn1—Cl1i120.75 (3)C6i—C6—C4120.66 (11)
N1i—Zn1—Cl1i116.53 (4)C6i—C6—H6119.7
N1—Zn1—Cl1116.53 (4)C3—C2—H2120.6
N1i—Zn1—Cl1107.88 (4)C3—C2—C1118.81 (19)
N1—Zn1—Cl1i107.88 (4)C1—C2—H2120.6
N1i—Zn1—N180.66 (9)O1—C3—C4115.33 (18)
C3—O1—C7117.29 (16)O1—C3—C2125.27 (18)
C5—N1—Zn1112.59 (13)C2—C3—C4119.40 (19)
C1—N1—Zn1129.60 (15)N1—C1—C2123.82 (19)
C1—N1—C5117.74 (18)N1—C1—H1118.1
N1—C5—C5i117.08 (11)C2—C1—H1118.1
N1—C5—C4123.58 (18)O1—C7—H7A109.5
C4—C5—C5i119.34 (11)O1—C7—H7B109.5
C5—C4—C6119.99 (18)O1—C7—H7C109.5
C5—C4—C3116.58 (18)H7A—C7—H7B109.5
C6—C4—C3123.43 (18)H7A—C7—H7C109.5
C4—C6—H6119.7H7B—C7—H7C109.5
Zn1—N1—C5—C5i1.0 (2)C6—C4—C3—O11.8 (2)
Zn1—N1—C5—C4178.96 (14)C6—C4—C3—C2178.77 (17)
Zn1—N1—C1—C2176.64 (13)C3—C4—C6—C6i179.3 (2)
N1—C5—C4—C6178.83 (16)C3—C2—C1—N12.2 (3)
N1—C5—C4—C31.2 (3)C1—N1—C5—C5i178.14 (19)
C5—N1—C1—C20.1 (3)C1—N1—C5—C41.8 (3)
C5i—C5—C4—C61.2 (3)C1—C2—C3—O1176.58 (17)
C5i—C5—C4—C3178.81 (19)C1—C2—C3—C42.8 (3)
C5—C4—C6—C6i0.7 (3)C7—O1—C3—C4175.50 (15)
C5—C4—C3—O1178.24 (15)C7—O1—C3—C25.1 (3)
C5—C4—C3—C21.2 (2)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at the University of Texas at San Antonio.

Funding information

Funding for this research was provided by: National Science Foundation (award No. 1920059); Welch Foundation (award No. BN0032); The University of the Incarnate Word Faculty Endowed Research Award; Constance and Miriam Jauchler Jones Endowed Chair.

References

First citationCetin, M. M., Shafiei–Haghighi, S., Chen, J., Zhang, S., Miller, A. C., Unruh, D. K., Casadonte, D. J. Jr, Lohr, T. L., Marks, T. J., Mayer, M. F., Stoddart, J. F. & Findlater, M. (2020). J. Polym. Sci. 58, 1130–1143.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoroba, K., Filipe, B., Świtlicka, A., Penkala, M., Machura, B., Bieńko, A., Cordeiro, S., Baptista, P. V. & Fernandes, A. R. (2023). J. Med. Chem. 66, 8580–8599.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEL-Atawy, M. A., Ferretti, F. & Ragaini, F. (2018). Eur. J. Org. Chem. pp. 4818–4825.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhoury, A., Elias, E., Mehanna, S., Shebaby, W., Deo, K. M., Mansour, N., Khalil, C., Sayyed, K., Sakoff, J. A., Gilbert, J., Daher, C. F., Gordon, C. P., Taleb, R. I. & Aldrich-Wright, J. R. (2022). J. Med. Chem. 65, 16481–16493.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, H., Hu, T. Q. & Zhang, S. G. (2008). Acta Cryst. E64, m771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, M., Zhang, Z., Yan, J., Liu, S., Liu, H., Liu, Z., Wang, W., He, Z. & Han, B. (2020). Chem, 6, 3288–3296.  Web of Science CrossRef CAS Google Scholar
First citationLuo, Q., Peng, K., Zhang, J. & Xia, J. (2019). Organometallics, 38, 647–653.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiu, C.-Y., Dang, Y.-L., Wan, X.-S. & Kou, C.-H. (2009). Acta Cryst. E65, m860.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185–1189.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146