metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(2-hy­dr­oxy-2,3-di­hydro-1H-inden-1-aminium) tetra­chlorido­palladate(II) hemihydrate

crossmark logo

aDepartment of Chemistry, Chonnam National University, Gwangju, Republic of Korea
*Correspondence e-mail: hrpark@chonnam.ac.kr, leespy@chonnam.ac.kr

Edited by E. R. T. Tiekink, Sunway University, Malaysia (Received 15 January 2024; accepted 17 January 2024; online 26 January 2024)

A new square-planar palladium complex salt hydrate, (C9H12NO)2[PdCl4]·0.5H2O, has been characterized. The asymmetric unit of the complex salt comprises two [PdCl4]2− dianions, four 2-hy­droxy-2,3-di­hydro-1H-inden-1-aminium cations, each derived from (1R,2S)-(+)-1-amino­indan-2-ol, and one water mol­ecule of crystallization. In the crystal, a two-dimensional layer parallel to (001) features a number of O—H⋯O, N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Palladium catalysis has become a versatile tool in modern organic synthesis, revolution­izing chemical transformations (Chen et al., 2013[Chen, Q.-A., Ye, Z.-S., Duan, Y. & Zhou, Y.-G. (2013). Chem. Soc. Rev. 42, 497-511.]; Biffis et al., 2018[Biffis, A., Centomo, P., Del Zotto, A. & Zecca, M. (2018). Chem. Rev. 118, 2249-2295.]; Han, 2023[Han, S. (2023). Bull. Korean Chem. Soc. 44, 172-201.]). In particular, palladium complexes with chiral ligands has received increasing attention in asymmetric reactions (Uchikura et al., 2023[Uchikura, T., Kato, S., Makino, Y., Fujikawa, M. J., Yamanaka, M. & Akiyama, T. (2023). J. Am. Chem. Soc. 145, 15906-15911.]). In this field, we have been inter­ested in the synthesis of chiral palladium complexes and recently reported several palladium complexes with chiral tridentate ligands based on (1R,2S)-(+)-1-amino­indan-2-ol (Singh et al., 2022[Singh, O., Lee, J. M., Kang, Y. Y., Jung, S. H., Park, G. T., Prakash, O., Ryu, J. Y. & Lee, J. (2022). Inorg. Chem. 61, 32-36.]). During these studies, we unexpectedly isolated the title complex, (C9H12NO)2[PdCl4]·0.5H2O. In the complex, the PdII centre did not form the anti­cipated bonds to O and N atoms of the ammonium chloride salt based on (1R,2S)-(+)-1-amino­indan-2-ol, but binds with chloride ions instead, to form a [PdCl4]2− dianion.

The asymmetric unit comprises two [PdCl4]2− dianions, four ammonium cations derived from (1R,2S)-(+)-1-amino­indan-2-ol and a H2O mol­ecule of crystallization, as shown in Fig. 1[link]. The dianions adopt a square-planar PdII coordination environment. A search of the Cambridge Structural Database (CSD, Version 5.42, November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) provided a large number of related tetra­chlorido- and tetra­bromido­palladate salts (e.g. Mais et al., 1972[Mais, R. H. B., Owston, P. G. & Wood, A. M. (1972). Acta Cryst. B28, 393-399.]; Martin et al., 1975[Martin, D. S., Bonte, J. L., Rush, R. M. & Jacobson, R. A. (1975). Acta Cryst. B31, 2538-2539.]; Takazawa et al., 1988[Takazawa, H., Ohba, S. & Saito, Y. (1988). Acta Cryst. B44, 580-585.]).

[Figure 1]
Figure 1
The mol­ecular structures of the components comprising the asymmetric unit of the title complex salt hydrate, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

In the packing, a number of O—H⋯O, N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen bonds are observed (Table 1[link]). All O and N atoms participate in hydrogen bonding, but not all Cl atoms. The hydrogen bonds feature within a two-dimensional layer structure parallel to (001) (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl4i 0.82 2.57 3.116 (9) 126
N1—H1B⋯Cl6 0.89 2.43 3.177 (10) 141
O2—H2A⋯O4 0.82 2.13 2.870 (11) 150
O3—H3⋯O1 0.82 2.01 2.779 (11) 155
N3—H3C⋯Cl6 0.91 2.41 3.185 (11) 144
N3—H3E⋯O5i 0.91 1.90 2.766 (12) 157
O4—H4⋯Cl5 0.82 2.48 3.110 (9) 134
N4—H4A⋯O5 0.89 1.92 2.804 (12) 171
N4—H4C⋯Cl5ii 0.89 2.44 3.111 (11) 132
O5—H5A⋯Cl8 0.87 2.32 3.156 (10) 161
O5—H5B⋯Cl3iii 0.87 2.36 3.192 (10) 160
Symmetry codes: (i) [x, y+1, z]; (ii) [x, y-1, z]; (iii) [x+1, y, z].
[Figure 2]
Figure 2
The packing of the title complex salt hydrate in projection along the b axis. The dashed lines indicate inter­molecular hydrogen bonds. All H atoms not involved in hydrogen bonding have been omitted for clarity and displacement ellipsoids are drawn at the 50% probability level.

Synthesis and crystallization

Palladium(II) chloride (0.089 g, 0.502 mmol) was added to a methanol (10 ml) solution of (1R,2S)-(+)-1-amino­indan-2-ol (0.149 g, 1.00 mmol) in the presence of aqueous HCl (1 M, 1 ml). The resulting solution was heated at 303 K for 12 h and filtered through a 0.45 mm PTFE syringe filter. Crystals suitable for X-ray diffraction studies were obtained by slow evaporation of a saturated methanol solution of the salt hydrate at 298 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Owing to poor agreement, 17 reflections were omitted from the final cycles of refinement; see CIF for details.

Table 2
Experimental details

Crystal data
Chemical formula (C9H12NO)2[PdCl4]·0.5H2O
Mr 557.62
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 8.4593 (2), 8.3940 (2), 30.7294 (6)
β (°) 97.033 (1)
V3) 2165.60 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.37
Crystal size (mm) 0.1 × 0.1 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.631, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 29908, 8256, 5555
Rint 0.096
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.129, 1.05
No. of reflections 8256
No. of parameters 500
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.66, −1.75
Absolute structure Flack x determined using 1805 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.02 (3)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS1997 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), XL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Bis(2-hydroxy-2,3-dihydro-1H-inden-1-aminium) tetrachloridopalladate(II) hemihydrate top
Crystal data top
(C9H12NO)2[PdCl4]·0.5H2OF(000) = 1124
Mr = 557.62Dx = 1.710 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.4593 (2) ÅCell parameters from 6451 reflections
b = 8.3940 (2) Åθ = 3.4–25.8°
c = 30.7294 (6) ŵ = 1.37 mm1
β = 97.033 (1)°T = 100 K
V = 2165.60 (8) Å3Block, light yellow
Z = 40.1 × 0.1 × 0.1 mm
Data collection top
Bruker APEXII CCD
diffractometer
5555 reflections with I > 2σ(I)
φ and ω scansRint = 0.096
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.9°, θmin = 0.7°
Tmin = 0.631, Tmax = 0.745h = 1010
29908 measured reflectionsk = 1010
8256 independent reflectionsl = 3737
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.6412P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.129(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.66 e Å3
8256 reflectionsΔρmin = 1.75 e Å3
500 parametersAbsolute structure: Flack x determined using 1805 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.02 (3)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.51806 (11)0.01645 (12)0.26089 (3)0.0194 (3)
Cl10.6917 (4)0.2318 (4)0.26513 (10)0.0243 (8)
Cl20.5878 (4)0.0454 (4)0.33361 (10)0.0298 (8)
Cl30.3496 (4)0.2011 (4)0.25398 (11)0.0328 (8)
Cl40.4437 (4)0.0790 (4)0.18830 (9)0.0229 (7)
Pd20.98172 (11)0.53371 (12)0.24203 (3)0.0212 (3)
Cl51.0264 (4)0.6271 (4)0.31266 (10)0.0238 (8)
Cl60.7552 (4)0.6893 (4)0.23258 (11)0.0280 (8)
Cl70.9281 (4)0.4289 (4)0.17266 (10)0.0350 (9)
Cl81.2149 (4)0.3883 (4)0.25495 (10)0.0279 (8)
O10.3933 (9)0.7398 (10)0.1478 (3)0.028 (2)
H10.37920.78550.17050.033*
N10.4767 (11)0.4627 (12)0.1906 (3)0.021 (2)
H1A0.42350.49020.21270.026*
H1B0.55330.53360.18810.026*
H1C0.51990.36680.19570.026*
C10.3645 (14)0.4583 (15)0.1491 (4)0.020 (3)
H1D0.28190.37500.15190.024*
C20.2814 (15)0.6179 (14)0.1392 (4)0.024 (3)
H20.18880.63200.15620.029*
C30.2294 (14)0.6100 (16)0.0904 (4)0.030 (3)
H3A0.22310.71770.07710.036*
H3B0.12460.55690.08390.036*
C40.3607 (13)0.5117 (18)0.0736 (4)0.022 (3)
C50.4035 (16)0.4977 (19)0.0316 (4)0.032 (4)
H50.34650.55380.00780.038*
C60.5329 (16)0.3988 (17)0.0249 (4)0.034 (4)
H60.56310.38620.00370.041*
C70.6149 (17)0.3211 (17)0.0597 (4)0.036 (4)
H70.70440.25830.05480.043*
C80.5722 (14)0.3301 (15)0.1026 (4)0.023 (3)
H80.62970.27400.12630.028*
C90.4412 (14)0.4256 (15)0.1085 (4)0.021 (3)
O20.8692 (9)0.4604 (10)0.3926 (3)0.030 (2)
H2A0.95320.42340.38630.037*
N20.6483 (12)0.5424 (15)0.3288 (3)0.032 (3)
H2B0.74390.58050.33900.039*
H2C0.57830.62200.32550.039*
H2D0.65320.49550.30300.039*
C100.5966 (14)0.4227 (15)0.3603 (4)0.022 (3)
H100.52880.33920.34410.027*
C110.7492 (14)0.3447 (15)0.3858 (4)0.023 (3)
H110.78530.25140.36930.027*
C120.6896 (14)0.2911 (17)0.4286 (4)0.025 (3)
H12A0.64160.18350.42560.030*
H12B0.77710.29060.45310.030*
C130.5671 (14)0.4145 (16)0.4354 (4)0.025 (3)
C140.4972 (15)0.4543 (16)0.4728 (4)0.030 (3)
H140.53490.40680.50010.036*
C150.3710 (15)0.5644 (17)0.4701 (4)0.033 (4)
H150.32110.58960.49530.039*
C160.3206 (16)0.6359 (17)0.4298 (5)0.037 (4)
H160.23600.71100.42810.045*
C170.3903 (16)0.6011 (17)0.3920 (4)0.035 (4)
H170.35490.65060.36480.041*
C180.5127 (14)0.4917 (16)0.3961 (4)0.025 (3)
O30.5973 (9)0.9031 (10)0.0991 (3)0.028 (2)
H30.51980.87890.11140.034*
N30.8073 (11)0.9780 (13)0.1686 (3)0.026 (3)
H3C0.75240.92450.18770.031*
H3D0.74291.05250.15410.031*
H3E0.89321.02680.18370.031*
C190.8619 (14)0.8638 (15)0.1366 (4)0.021 (3)
H190.92730.77880.15290.025*
C200.7187 (14)0.7862 (15)0.1089 (4)0.023 (3)
H200.67950.68960.12330.028*
C210.7854 (14)0.7463 (16)0.0656 (4)0.028 (3)
H21A0.83220.63810.06680.034*
H21B0.70050.75230.04050.034*
C220.9131 (14)0.8726 (15)0.0617 (4)0.021 (3)
C230.9887 (14)0.9149 (15)0.0265 (4)0.026 (3)
H230.95940.86860.00150.031*
C241.1095 (14)1.0275 (19)0.0330 (4)0.029 (3)
H241.16211.06000.00890.034*
C251.1545 (16)1.0925 (17)0.0734 (4)0.033 (3)
H251.24041.16620.07710.039*
C261.0770 (14)1.0527 (15)0.1091 (4)0.025 (3)
H261.10431.10210.13680.030*
C270.9577 (13)0.9380 (16)0.1029 (4)0.020 (3)
O41.0775 (9)0.2777 (10)0.3450 (3)0.028 (2)
H41.11780.35390.33380.033*
N40.9755 (10)0.0059 (12)0.3100 (3)0.024 (3)
H4A1.01660.01220.28520.028*
H4B0.90590.07060.31410.028*
H4C0.92630.09970.30840.028*
C281.1051 (13)0.0067 (15)0.3470 (3)0.021 (3)
H281.18280.09270.34210.025*
C291.1930 (13)0.1520 (15)0.3522 (4)0.024 (3)
H291.27660.16050.33200.029*
C301.2655 (15)0.1539 (16)0.4003 (4)0.033 (4)
H30A1.37070.10060.40430.040*
H30B1.27730.26410.41170.040*
C311.1432 (14)0.0609 (17)0.4228 (4)0.028 (3)
C321.1172 (16)0.053 (2)0.4668 (4)0.038 (4)
H321.18280.11200.48830.046*
C330.9965 (17)0.0411 (19)0.4788 (4)0.041 (4)
H330.97700.04460.50860.050*
C340.9044 (16)0.1296 (18)0.4479 (4)0.036 (4)
H340.82140.19420.45650.044*
C350.9302 (15)0.1262 (16)0.4049 (4)0.031 (3)
H350.86620.18980.38410.037*
C361.0479 (13)0.0315 (14)0.3914 (4)0.020 (3)
O51.0720 (9)0.0508 (12)0.2273 (3)0.033 (2)
H5A1.10840.14780.22820.049*
H5B1.14900.00530.24100.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0202 (5)0.0185 (6)0.0201 (5)0.0019 (5)0.0050 (4)0.0014 (5)
Cl10.0241 (16)0.0201 (18)0.0277 (19)0.0025 (14)0.0010 (14)0.0005 (14)
Cl20.0345 (19)0.029 (2)0.0268 (18)0.0015 (15)0.0061 (15)0.0040 (15)
Cl30.0336 (19)0.025 (2)0.041 (2)0.0093 (16)0.0104 (16)0.0034 (16)
Cl40.0275 (17)0.0187 (18)0.0219 (17)0.0005 (13)0.0014 (14)0.0021 (13)
Pd20.0214 (5)0.0224 (7)0.0207 (5)0.0002 (5)0.0060 (4)0.0007 (5)
Cl50.0254 (17)0.0215 (19)0.0245 (18)0.0003 (14)0.0036 (14)0.0021 (14)
Cl60.0222 (17)0.030 (2)0.0323 (19)0.0022 (15)0.0042 (14)0.0030 (15)
Cl70.038 (2)0.044 (2)0.0233 (19)0.0047 (18)0.0051 (16)0.0054 (16)
Cl80.0275 (18)0.0255 (19)0.033 (2)0.0018 (15)0.0115 (15)0.0010 (15)
O10.032 (5)0.025 (5)0.027 (5)0.012 (4)0.008 (4)0.011 (4)
N10.028 (6)0.019 (6)0.018 (6)0.000 (5)0.006 (5)0.002 (4)
C10.019 (7)0.021 (8)0.019 (7)0.009 (6)0.001 (5)0.008 (6)
C20.031 (8)0.012 (7)0.028 (8)0.002 (6)0.003 (6)0.001 (6)
C30.020 (7)0.018 (8)0.051 (9)0.008 (6)0.003 (6)0.005 (6)
C40.023 (7)0.019 (7)0.023 (7)0.008 (7)0.002 (5)0.000 (7)
C50.041 (8)0.034 (11)0.019 (7)0.009 (8)0.004 (6)0.003 (7)
C60.044 (9)0.041 (9)0.016 (7)0.012 (8)0.002 (7)0.007 (7)
C70.055 (10)0.028 (9)0.025 (8)0.002 (7)0.009 (7)0.018 (7)
C80.026 (7)0.018 (8)0.025 (8)0.007 (6)0.004 (6)0.002 (6)
C90.031 (8)0.016 (7)0.016 (7)0.005 (6)0.001 (6)0.008 (5)
O20.024 (5)0.030 (6)0.038 (6)0.005 (4)0.004 (4)0.002 (4)
N20.040 (7)0.027 (7)0.031 (6)0.005 (6)0.010 (5)0.007 (6)
C100.031 (8)0.013 (7)0.025 (7)0.001 (6)0.012 (6)0.000 (5)
C110.024 (7)0.016 (7)0.028 (8)0.004 (6)0.007 (6)0.001 (6)
C120.020 (7)0.031 (8)0.026 (8)0.013 (6)0.008 (6)0.007 (6)
C130.030 (8)0.029 (8)0.018 (7)0.011 (7)0.005 (6)0.001 (6)
C140.031 (8)0.027 (8)0.032 (8)0.007 (7)0.004 (6)0.001 (6)
C150.035 (8)0.040 (11)0.027 (8)0.001 (7)0.019 (6)0.014 (7)
C160.031 (8)0.031 (9)0.052 (10)0.013 (7)0.019 (7)0.001 (7)
C170.040 (9)0.032 (9)0.032 (8)0.001 (7)0.010 (7)0.004 (7)
C180.016 (6)0.030 (9)0.030 (7)0.001 (6)0.012 (6)0.014 (6)
O30.019 (5)0.035 (6)0.030 (5)0.005 (4)0.005 (4)0.005 (4)
N30.025 (6)0.038 (8)0.015 (5)0.006 (5)0.005 (4)0.003 (5)
C190.023 (7)0.021 (8)0.019 (7)0.005 (6)0.000 (6)0.004 (6)
C200.026 (7)0.020 (7)0.025 (7)0.003 (6)0.010 (6)0.004 (6)
C210.024 (7)0.022 (8)0.037 (9)0.001 (6)0.000 (6)0.011 (6)
C220.024 (7)0.018 (7)0.019 (7)0.004 (6)0.003 (5)0.001 (5)
C230.030 (7)0.032 (9)0.015 (7)0.007 (7)0.003 (6)0.006 (6)
C240.035 (7)0.025 (8)0.028 (7)0.006 (8)0.015 (6)0.012 (7)
C250.033 (8)0.030 (8)0.037 (9)0.014 (7)0.010 (7)0.002 (7)
C260.026 (7)0.016 (8)0.034 (7)0.004 (6)0.004 (6)0.001 (6)
C270.011 (6)0.027 (8)0.025 (7)0.008 (6)0.005 (5)0.001 (6)
O40.020 (5)0.016 (5)0.049 (6)0.001 (4)0.014 (4)0.008 (4)
N40.023 (5)0.022 (7)0.027 (6)0.002 (5)0.006 (4)0.007 (5)
C280.020 (6)0.020 (8)0.020 (7)0.001 (6)0.010 (5)0.005 (5)
C290.011 (6)0.017 (8)0.045 (9)0.006 (6)0.008 (6)0.009 (6)
C300.027 (8)0.020 (8)0.052 (10)0.001 (6)0.002 (7)0.011 (7)
C310.019 (7)0.023 (9)0.042 (8)0.009 (6)0.002 (6)0.004 (7)
C320.054 (10)0.036 (11)0.021 (8)0.005 (9)0.011 (7)0.014 (7)
C330.044 (9)0.059 (11)0.024 (8)0.015 (8)0.015 (7)0.005 (7)
C340.033 (8)0.048 (10)0.030 (9)0.012 (7)0.011 (7)0.019 (8)
C350.033 (8)0.024 (8)0.033 (8)0.010 (7)0.010 (7)0.012 (6)
C360.016 (6)0.014 (7)0.029 (7)0.005 (5)0.001 (6)0.007 (5)
O50.024 (5)0.037 (6)0.038 (5)0.006 (5)0.006 (4)0.005 (5)
Geometric parameters (Å, º) top
Pd1—Cl12.323 (3)C16—C171.397 (17)
Pd1—Cl22.300 (3)C17—H170.9500
Pd1—Cl32.310 (3)C17—C181.379 (17)
Pd1—Cl42.303 (3)O3—H30.8205
Pd2—Cl52.295 (3)O3—C201.425 (14)
Pd2—Cl62.307 (3)N3—H3C0.9100
Pd2—Cl72.299 (3)N3—H3D0.9100
Pd2—Cl82.312 (3)N3—H3E0.9100
O1—H10.8198N3—C191.487 (14)
O1—C21.397 (14)C19—H191.0000
N1—H1A0.8897C19—C201.536 (16)
N1—H1B0.8901C19—C271.523 (16)
N1—H1C0.8899C20—H201.0000
N1—C11.494 (13)C20—C211.544 (16)
C1—H1D1.0000C21—H21A0.9900
C1—C21.526 (16)C21—H21B0.9900
C1—C91.499 (15)C21—C221.529 (16)
C2—H21.0000C22—C231.369 (16)
C2—C31.514 (16)C22—C271.389 (16)
C3—H3A0.9900C23—H230.9500
C3—H3B0.9900C23—C241.389 (17)
C3—C41.522 (17)C24—H240.9500
C4—C51.389 (15)C24—C251.366 (17)
C4—C91.399 (16)C25—H250.9500
C5—H50.9500C25—C261.386 (16)
C5—C61.410 (18)C26—H260.9500
C6—H60.9500C26—C271.390 (16)
C6—C71.366 (18)O4—H40.8203
C7—H70.9500O4—C291.437 (13)
C7—C81.411 (17)N4—H4A0.8896
C8—H80.9500N4—H4B0.8900
C8—C91.398 (16)N4—H4C0.8898
O2—H2A0.8203N4—C281.481 (13)
O2—C111.402 (14)C28—H281.0000
N2—H2B0.8899C28—C291.524 (16)
N2—H2C0.8902C28—C361.516 (15)
N2—H2D0.8899C29—H291.0000
N2—C101.498 (15)C29—C301.530 (17)
C10—H101.0000C30—H30A0.9900
C10—C111.568 (16)C30—H30B0.9900
C10—C181.495 (15)C30—C311.527 (17)
C11—H111.0000C31—C321.396 (17)
C11—C121.532 (16)C31—C361.411 (17)
C12—H12A0.9900C32—H320.9500
C12—H12B0.9900C32—C331.376 (19)
C12—C131.498 (17)C33—H330.9500
C13—C141.394 (16)C33—C341.371 (19)
C13—C181.400 (17)C34—H340.9500
C14—H140.9500C34—C351.365 (17)
C14—C151.407 (17)C35—H350.9500
C15—H150.9500C35—C361.377 (16)
C15—C161.394 (17)O5—H5A0.8701
C16—H160.9500O5—H5B0.8700
Cl2—Pd1—Cl192.07 (11)C18—C17—C16117.0 (13)
Cl2—Pd1—Cl389.58 (13)C18—C17—H17121.5
Cl2—Pd1—Cl4179.00 (12)C13—C18—C10108.7 (11)
Cl3—Pd1—Cl1177.56 (13)C17—C18—C10127.7 (12)
Cl4—Pd1—Cl188.45 (12)C17—C18—C13123.4 (11)
Cl4—Pd1—Cl389.94 (12)C20—O3—H3109.2
Cl5—Pd2—Cl687.93 (12)H3C—N3—H3D109.5
Cl5—Pd2—Cl7176.74 (13)H3C—N3—H3E109.5
Cl5—Pd2—Cl888.82 (11)H3D—N3—H3E109.5
Cl6—Pd2—Cl8176.45 (13)C19—N3—H3C109.5
Cl7—Pd2—Cl691.92 (12)C19—N3—H3D109.5
Cl7—Pd2—Cl891.40 (12)C19—N3—H3E109.5
C2—O1—H1109.7N3—C19—H19109.0
H1A—N1—H1B109.5N3—C19—C20110.6 (9)
H1A—N1—H1C109.5N3—C19—C27114.9 (10)
H1B—N1—H1C109.5C20—C19—H19109.0
C1—N1—H1A109.3C27—C19—H19109.0
C1—N1—H1B109.6C27—C19—C20104.3 (10)
C1—N1—H1C109.5O3—C20—C19108.9 (10)
N1—C1—H1D108.8O3—C20—H20112.4
N1—C1—C2112.2 (9)O3—C20—C21107.3 (9)
N1—C1—C9114.8 (10)C19—C20—H20112.4
C2—C1—H1D108.8C19—C20—C21102.8 (9)
C9—C1—H1D108.8C21—C20—H20112.4
C9—C1—C2103.4 (10)C20—C21—H21A110.8
O1—C2—C1108.7 (9)C20—C21—H21B110.8
O1—C2—H2111.8H21A—C21—H21B108.9
O1—C2—C3109.0 (10)C22—C21—C20104.7 (10)
C1—C2—H2111.8C22—C21—H21A110.8
C3—C2—C1103.3 (10)C22—C21—H21B110.8
C3—C2—H2111.8C23—C22—C21130.2 (11)
C2—C3—H3A111.2C23—C22—C27121.1 (12)
C2—C3—H3B111.2C27—C22—C21108.5 (10)
C2—C3—C4102.9 (9)C22—C23—H23121.0
H3A—C3—H3B109.1C22—C23—C24118.0 (12)
C4—C3—H3A111.2C24—C23—H23121.0
C4—C3—H3B111.2C23—C24—H24119.3
C5—C4—C3130.1 (12)C25—C24—C23121.4 (11)
C5—C4—C9120.8 (13)C25—C24—H24119.3
C9—C4—C3109.2 (10)C24—C25—H25119.5
C4—C5—H5120.6C24—C25—C26121.1 (12)
C4—C5—C6118.8 (12)C26—C25—H25119.5
C6—C5—H5120.6C25—C26—H26121.2
C5—C6—H6120.2C25—C26—C27117.7 (12)
C7—C6—C5119.7 (12)C27—C26—H26121.2
C7—C6—H6120.2C22—C27—C19110.4 (11)
C6—C7—H7118.6C22—C27—C26120.7 (11)
C6—C7—C8122.8 (13)C26—C27—C19128.9 (11)
C8—C7—H7118.6C29—O4—H4109.1
C7—C8—H8121.6H4A—N4—H4B109.5
C9—C8—C7116.8 (12)H4A—N4—H4C109.5
C9—C8—H8121.6H4B—N4—H4C109.5
C4—C9—C1108.9 (11)C28—N4—H4A109.2
C8—C9—C1130.1 (11)C28—N4—H4B109.6
C8—C9—C4121.0 (11)C28—N4—H4C109.6
C11—O2—H2A109.5N4—C28—H28109.0
H2B—N2—H2C109.5N4—C28—C29112.5 (9)
H2B—N2—H2D109.5N4—C28—C36113.8 (9)
H2C—N2—H2D109.5C29—C28—H28109.0
C10—N2—H2B109.7C36—C28—H28109.0
C10—N2—H2C109.6C36—C28—C29103.4 (10)
C10—N2—H2D109.2O4—C29—C28108.1 (9)
N2—C10—H10110.0O4—C29—H29111.8
N2—C10—C11108.4 (9)O4—C29—C30109.1 (10)
C11—C10—H10110.0C28—C29—H29111.8
C18—C10—N2114.7 (10)C28—C29—C30104.0 (10)
C18—C10—H10110.0C30—C29—H29111.8
C18—C10—C11103.4 (10)C29—C30—H30A111.2
O2—C11—C10108.8 (10)C29—C30—H30B111.2
O2—C11—H11111.0H30A—C30—H30B109.2
O2—C11—C12112.5 (10)C31—C30—C29102.6 (10)
C10—C11—H11111.0C31—C30—H30A111.2
C12—C11—C10102.3 (9)C31—C30—H30B111.2
C12—C11—H11111.0C32—C31—C30131.2 (13)
C11—C12—H12A111.2C32—C31—C36119.3 (13)
C11—C12—H12B111.2C36—C31—C30109.5 (11)
H12A—C12—H12B109.1C31—C32—H32120.1
C13—C12—C11102.9 (10)C33—C32—C31119.9 (13)
C13—C12—H12A111.2C33—C32—H32120.1
C13—C12—H12B111.2C32—C33—H33119.9
C14—C13—C12130.7 (12)C34—C33—C32120.1 (13)
C14—C13—C18118.2 (12)C34—C33—H33119.9
C18—C13—C12111.0 (11)C33—C34—H34119.5
C13—C14—H14119.9C35—C34—C33121.0 (14)
C13—C14—C15120.3 (12)C35—C34—H34119.5
C15—C14—H14119.9C34—C35—H35119.7
C14—C15—H15120.6C34—C35—C36120.7 (13)
C16—C15—C14118.9 (11)C36—C35—H35119.7
C16—C15—H15120.6C31—C36—C28108.7 (10)
C15—C16—H16118.9C35—C36—C28132.2 (12)
C15—C16—C17122.2 (13)C35—C36—C31119.0 (12)
C17—C16—H16118.9H5A—O5—H5B104.5
C16—C17—H17121.5
O1—C2—C3—C482.6 (12)O3—C20—C21—C2285.6 (11)
N1—C1—C2—O142.7 (13)N3—C19—C20—O338.7 (13)
N1—C1—C2—C3158.4 (9)N3—C19—C20—C21152.3 (10)
N1—C1—C9—C4145.1 (10)N3—C19—C27—C22138.8 (11)
N1—C1—C9—C834.0 (18)N3—C19—C27—C2642.4 (17)
C1—C2—C3—C432.8 (12)C19—C20—C21—C2229.2 (12)
C2—C1—C9—C422.7 (13)C20—C19—C27—C2217.6 (13)
C2—C1—C9—C8156.4 (12)C20—C19—C27—C26163.6 (12)
C2—C3—C4—C5161.2 (14)C20—C21—C22—C23165.7 (13)
C2—C3—C4—C919.9 (14)C20—C21—C22—C2719.5 (13)
C3—C4—C5—C6179.2 (13)C21—C22—C23—C24175.5 (12)
C3—C4—C9—C11.8 (14)C21—C22—C27—C191.2 (14)
C3—C4—C9—C8177.4 (11)C21—C22—C27—C26177.7 (11)
C4—C5—C6—C71 (2)C22—C23—C24—C251 (2)
C5—C4—C9—C1177.3 (11)C23—C22—C27—C19176.6 (11)
C5—C4—C9—C83.5 (19)C23—C22—C27—C262.3 (19)
C5—C6—C7—C82 (2)C23—C24—C25—C262 (2)
C6—C7—C8—C90.9 (19)C24—C25—C26—C273 (2)
C7—C8—C9—C1178.9 (12)C25—C26—C27—C19175.4 (12)
C7—C8—C9—C42.1 (17)C25—C26—C27—C223.3 (18)
C9—C1—C2—O181.5 (11)C27—C19—C20—O385.3 (11)
C9—C1—C2—C334.2 (12)C27—C19—C20—C2128.3 (12)
C9—C4—C5—C62 (2)C27—C22—C23—C241.2 (19)
O2—C11—C12—C1384.6 (12)O4—C29—C30—C3183.0 (11)
N2—C10—C11—O235.4 (13)N4—C28—C29—O440.6 (13)
N2—C10—C11—C12154.6 (10)N4—C28—C29—C30156.4 (10)
N2—C10—C18—C13138.5 (11)N4—C28—C36—C31143.9 (10)
N2—C10—C18—C1747.6 (18)N4—C28—C36—C3538.1 (18)
C10—C11—C12—C1332.0 (12)C28—C29—C30—C3132.2 (12)
C11—C10—C18—C1320.7 (13)C29—C28—C36—C3121.6 (12)
C11—C10—C18—C17165.4 (13)C29—C28—C36—C35160.4 (13)
C11—C12—C13—C14163.2 (13)C29—C30—C31—C32162.0 (14)
C11—C12—C13—C1820.9 (14)C29—C30—C31—C3619.6 (13)
C12—C13—C14—C15173.1 (13)C30—C31—C32—C33179.7 (13)
C12—C13—C18—C100.2 (15)C30—C31—C36—C281.2 (14)
C12—C13—C18—C17174.4 (12)C30—C31—C36—C35179.4 (11)
C13—C14—C15—C161.8 (19)C31—C32—C33—C342 (2)
C14—C13—C18—C10176.3 (11)C32—C31—C36—C28177.5 (12)
C14—C13—C18—C172 (2)C32—C31—C36—C350.8 (19)
C14—C15—C16—C170 (2)C32—C33—C34—C350 (2)
C15—C16—C17—C180 (2)C33—C34—C35—C361 (2)
C16—C17—C18—C10173.9 (13)C34—C35—C36—C28178.5 (13)
C16—C17—C18—C131 (2)C34—C35—C36—C310.7 (19)
C18—C10—C11—O286.7 (11)C36—C28—C29—O482.7 (11)
C18—C10—C11—C1232.5 (12)C36—C28—C29—C3033.2 (11)
C18—C13—C14—C152.5 (19)C36—C31—C32—C332 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl4i0.822.573.116 (9)126
N1—H1B···Cl60.892.433.177 (10)141
O2—H2A···O40.822.132.870 (11)150
O3—H3···O10.822.012.779 (11)155
N3—H3C···Cl60.912.413.185 (11)144
N3—H3E···O5i0.911.902.766 (12)157
O4—H4···Cl50.822.483.110 (9)134
N4—H4A···O50.891.922.804 (12)171
N4—H4C···Cl5ii0.892.443.111 (11)132
O5—H5A···Cl80.872.323.156 (10)161
O5—H5B···Cl3iii0.872.363.192 (10)160
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+1, y, z.
 

Funding information

Funding for this research was provided by: National Research Foundation of Korea (grant No. 2022R1A2C100611312).

References

First citationBiffis, A., Centomo, P., Del Zotto, A. & Zecca, M. (2018). Chem. Rev. 118, 2249–2295.  CrossRef CAS PubMed Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Q.-A., Ye, Z.-S., Duan, Y. & Zhou, Y.-G. (2013). Chem. Soc. Rev. 42, 497–511.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHan, S. (2023). Bull. Korean Chem. Soc. 44, 172–201.  CrossRef CAS Google Scholar
First citationMais, R. H. B., Owston, P. G. & Wood, A. M. (1972). Acta Cryst. B28, 393–399.  CrossRef ICSD IUCr Journals Google Scholar
First citationMartin, D. S., Bonte, J. L., Rush, R. M. & Jacobson, R. A. (1975). Acta Cryst. B31, 2538–2539.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, O., Lee, J. M., Kang, Y. Y., Jung, S. H., Park, G. T., Prakash, O., Ryu, J. Y. & Lee, J. (2022). Inorg. Chem. 61, 32–36.  CSD CrossRef CAS PubMed Google Scholar
First citationTakazawa, H., Ohba, S. & Saito, Y. (1988). Acta Cryst. B44, 580–585.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationUchikura, T., Kato, S., Makino, Y., Fujikawa, M. J., Yamanaka, M. & Akiyama, T. (2023). J. Am. Chem. Soc. 145, 15906–15911.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146