metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4-Butyl-1-ethyl-1,2,4-triazol-5-yl­­idene)[(1,2,5,6-η)-cyclo­octa-1,5-diene](tri­phenyl­phosphane)rhodium(I) tetra­fluorido­borate

crossmark logo

aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and bDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 11 January 2024; accepted 17 January 2024; online 26 January 2024)

In the title triazole-based N-heterocyclic carbene rhodium(I) cationic complex with a tetra­fluorido­borate counter-anion, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4, which crystallizes with two cations and two anions in the asymmetric unit, the Rh center has a distorted square-planar coordination geometry with expected bond distances. Several nonclassical C—H⋯F hydrogen-bonding inter­actions help to consolidate the packing. Two of the F atoms of one of the anions are disordered over adjacent sites in a 0.814 (4):0.186 (4) ratio.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

N-Heterocyclic carbenes (NHCs) have become important alternatives to phosphines as ancillary ligands in transition-metal chemistry, synthesis, and in homogeneous catalysis (Cazin, 2013[Cazin, C. S. J. (2013). Dalton Trans. 42, 7254.]; de Frémont et al., 2009[Frémont, P. de, Marion, N. & Nolan, S. P. (2009). Coord. Chem. Rev. 253, 862-892.]; Díez-González et al., 2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]; Rovis & Nolan, 2013[Rovis, T. & Nolan, S. (2013). Synlett, 24, 1188-1189.]; Ruff et al., 2016[Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327-335.]; Zuo et al., 2014[Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791-5801.]). Their catalytic activity in the transfer hydrogenation of ketones and imines has also been studied and reported (Albrecht et al., 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]). The use of N-heterocyclic carbenes as ligands and having different substituents on the N atoms, enables the variation of the steric and electronic properties of the metal center (Díez-González et al., 2007[Díez-González, S. & Nolan, S. P. (2007). Coord. Chem. Rev. 251, 874-883.]; Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]). Many imidazole- and triazole-based NHC rhodium and iridium complexes have been synthesized and structurally characterized (Herrmann et al., 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Wang & Lin 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]; Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]). We continue to synthesize new imidazole- and triazole-based NHC complexes of rhodium and iridium to study the effect of different substituents on the NHC and the other ligands coordinated to the metal in transfer hydrogenation reactions (Nichol et al., 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. 2009, 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Idrees et al., 2017a[Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.],b[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.]; Rood et al., 2021[Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.]; Rushlow et al., 2021[Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.]; Newman et al., 2021[Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.]; Castaldi et al., 2021[Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.]; Maynard et al., 2023[Maynard, A., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230903.]).

The mol­ecular structure of the title complex, [Rh(C8H12)(C8H15N3)(C18H15P)]BF4 (4), comprises an RhI cation complex and a tetra­fluorido­borate counter-anion, illustrated in Fig. 1[link]. No solvent mol­ecules were found in the structure. The compound crystallizes in the monoclinic space group Pc with two cations (A containing Rh1 and B containing Rh1′) and two anions in the asymmetric unit. The coordination sphere around the RhI ion, formed by the bidentate (1,2,5,6-η)-cyclo­octa-1,5-diene ligand (C8H12; COD), the C8H15N3 NHC ligand and the tri­phenyl­phosphane ligand, results in a distorted RhCP(η2C=C)2 square-planar geometry. The carbene atom, C1/C1′, deviates from the expected sp2 hybridization in that the N1—C1—N3 (cation A) and N1′—C1′—N3′ (cation B) bond angles are 103.3 (3) and 102.9 (3)°, respectively. Other selected bond lengths and angles in cations A and B are Rh—CNHC = 2.034 (4) and 2.038 (4) Å, Rh—P = 2.3162 (9) and 2.3135 (9) Å, and CNHC—Rh—P = 91.84 (10) and 90.63 (10)°, respectively. Fig. 2[link] shows the packing diagram of the title compound viewed along [100], with nonclassical C—H⋯F hydrogen bonds shown as dotted green lines; the CH moieties for these inter­actions arise from both the N-heterocyclic carbene and phenyl moieties (Table 1[link]). The extremely short H⋯F contact distance of 1.81 Å for C2—H2⋯F1 is probably an artefact of disorder of the F atom.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F3′i 0.95 2.37 3.263 (5) 157
C2—H2⋯F1"i 0.95 1.81 2.722 (13) 160
C17—H17⋯F2"ii 0.95 2.30 3.229 (17) 165
C2′—H2′⋯F3 0.95 2.19 3.002 (5) 142
C13′—H13′⋯F1"iii 0.95 2.36 3.163 (17) 142
Symmetry codes: (i) [x-1, y, z-1]; (ii) [x, y, z-1]; (iii) [x, -y+2, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular entities of the title compound (4), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing diagram of the title compound (4), viewed along the a-axis direction. C—H⋯F hydrogen bonds are shown as dotted green lines.

Synthesis and crystallization

1-Ethyl-1,2,4-triazole (1) was purchased from Matrix Scientific. All other compounds used in the syntheses were obtained from Sigma–Aldrich and Strem and used as received; all syntheses were performed under a nitro­gen atmosphere. The reaction scheme for the synthesis of the title compound is shown in Fig. 3[link]. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz (operating at 100 MHz for 13C and 162 MHz for 31P) Varian spectrometer and referenced to the residual solvent peak (δ in ppm). The title compound (4) was crystallized by slow diffusion of pentane into a CH2Cl2 solution.

[Figure 3]
Figure 3
Reaction schemes for synthesis of (a) the triazolium salt (2) and (b) title compound (4).

4-Butyl-1-ethyl-1,2,4-triazolium bromide (2): 1-ethyl-1,2,4-triazole (1) (1.001 g, 10.30 mmol) and excess 1-bromo­butane (5.113 g, 37.31 mmol) were added to toluene (15 ml), and the mixture was refluxed in the dark for 48 h. After the mixture was cooled, the white solid was filtered off, washed with ether, and dried under vacuum (yield: 2.120 g, 88%). 1H NMR: δ 11.66 (s, 1H, N—C5H—N), 8.94 (s, 1H, N—C3H—N), 4.59 (q, 2H, N—CH2 of eth­yl), 4.55 (t, 2H, N—CH2 of but­yl), 1.98 (m, 2H, CH2 of but­yl), 1.64 (t, 3H, CH3 of eth­yl), 1.42 (m, 2H, CH2 of but­yl), 0.97 (t, 3H, CH3 of Bu). 13C NMR: δ 143.62 (N—C5—N), 142.71 (N—C3—N), 48.56 (N—CH2 of eth­yl), 48.34 (N—CH2 of but­yl), 31.98 (CH2 of but­yl), 19.48 (CH2 of but­yl), 14.21 (CH3 of eth­yl), 13.41 (CH3 of but­yl).

(4-Butyl-1-ethyl-1,2,4-triazol-5-yl­idene)[(1,2,5,6-η)-cyclo­octa-1,5-diene]chlorido­rhodium (3): triazolium bromide (2) (0.095 g, 0.406 mmol) and Ag2O (0.047 g, 0.203 mmol) were stirred at room temperature in the dark for 1 h in CH2Cl2 (10 ml). The mixture was then filtered through Celite into [Rh(cod)Cl]2 (0.100 g, 0.203 mmol), and stirred again in the dark for 1.5 h. The resulting solution was filtered through Celite and the solvent was removed under reduced pressure in a rotary evaporator. The yellow solid product (3) was dried under vacuum (yield: 0.158 g, 98%). 1H NMR: δ 7.86 (s, 1H, N—C3H—N), 4.75 (q, 2H, N—CH2 of eth­yl), 4.62 (t, 2H, N—CH2 of but­yl), 4.50 (m, 2H, CH of COD), 4.48 (m, 2H, CH of COD), 3.36–3.24 (m, 4H, CH2 of COD), 2.38–2.08 (m, 4H, CH2 of COD), 1.89 (m, 2H, CH2 of but­yl), 1.55 (m, 2H, CH2 of but­yl), 1.43 (m, 2H, CH2 of but­yl), 1.50 (t, 3H, CH3 of eth­yl), 1.05 (t, 3H, CH3 of but­yl). 13C NMR: δ 184.73 (d, Rh—C, JC–Rh = 50.9 Hz), 141.76 (N—C3H—N), 99.50, 99.43, 99.32, 99.25 (CH of COD), 48.45 (N—CH2 of eth­yl), 47.91 (N—CH2 of but­yl), 33.10, 32.69, 32.61, 29.09 (CH2 of COD), 28.61 (CH2 of but­yl), 20.02 (CH2 of but­yl), 15.39 (CH3 of eth­yl), 13.69 (CH3 of but­yl).

(4-Butyl-1-ethyl-1,2,4-triazol-5-yl­idene)[(1,2,5,6-η)-cyclo­octa-1,5-diene](tri­phenyl­phosphane)rhodium(I) tetra­fluorido­borate (4): tri­phenyl­phosphane (0.104 g, 0.395 mmol) and AgBF4 (0.077 g, 0.395 mmol) were added to (3) (0.158 g, 0.395 mmol) in CH2Cl2 (15 ml). The solution was stirred in the dark for 1.5 h. The resulting mixture was filtered through Celite and the solvent was removed under reduced pressure. The bright-orange solid product (4) was dried under vacuum. Orange blocks suitable for data collection were recrystallized from xxx solution [???] (yield: 0.282 g, 99%). 1H NMR: δ 8.14 (s, 1H, N—C3H—N), 7.58–7.26 (m, 15H, Harom), 4.78 (q, 2H, N—CH2 of eth­yl), 4.51 (t, 2H, N—CH2 of but­yl), 4.43 (m, 2H, CH of COD), 4.36 (m, 2H, CH of COD), 3.92 (m, 2H, CH2 of COD), 3.77 (m, 2H, CH2 of COD), 2.56 (m, 2H, CH2 of COD), 2.46 (m, 2H, CH2 of COD), 2.26 (m, CH2 of but­yl), 1.92 (m, 2H, CH2 of but­yl), 1.22 (t, 3H, CH3 of eth­yl), 0.95 (t, 3H, CH3 of but­yl). 13C NMR: δ 180.96 (d, Rh—C, JC–Rh = 49.3 Hz), 143.61 (N—C3H—N), 133.44–128.66 (Carom), 97.99, 97.82, 96.89, 95.19 (CH of COD), 48.63 (N—CH2 of eth­yl), 47.94 (N—CH2 of but­yl), 31.70, 31.59, 30.57, 30.55 (CH2 of COD), 30.19 (CH2 of but­yl), 20.04 (CH2 of but­yl), 13.97 (CH3 of eth­yl), 13.30 (CH3 of but­yl).31P NMR: δ 25.91 (d, Rh—P, JP–Rh = 154 Hz).

Refinement

All H atoms were placed geometrically and refined as riding atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Two of the F atoms are disordered over adjacent sites in a 0.814 (4):0.186 (4) ratio. Refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Rh(C8H12)(C8H15N3)(C18H15P)]BF4
Mr 713.39
Crystal system, space group Monoclinic, Pc
Temperature (K) 100
a, b, c (Å) 14.1427 (4), 12.3145 (4), 18.8729 (5)
β (°) 98.442 (3)
V3) 3251.30 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.63
Crystal size (mm) 0.24 × 0.11 × 0.09
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.873, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 51545, 14495, 12922
Rint 0.043
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.079, 1.07
No. of reflections 14495
No. of parameters 825
No. of restraints 83
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.89, −0.59
Absolute structure Flack x determined using 5071 quotients [(I+) − (I)]/[(I+) + (I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.015 (11)
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

(4-Butyl-1-ethyl-1,2,4-triazol-5-ylidene)[(1,2,5,6-η)-cycloocta-1,5-diene](triphenylphosphane)rhodium(I) tetrafluoridoborate top
Crystal data top
[Rh(C8H12)(C8H15N3)(C18H15P)]BF4F(000) = 1472
Mr = 713.39Dx = 1.457 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 14.1427 (4) ÅCell parameters from 29059 reflections
b = 12.3145 (4) Åθ = 2.2–28.3°
c = 18.8729 (5) ŵ = 0.63 mm1
β = 98.442 (3)°T = 100 K
V = 3251.30 (17) Å3Block, orange
Z = 40.24 × 0.11 × 0.09 mm
Data collection top
Rigaku XtaLAB Synergy-S
diffractometer
12922 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.043
ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
SCALE3 ABSPACK
h = 1818
Tmin = 0.873, Tmax = 1.000k = 1416
51545 measured reflectionsl = 2523
14495 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.0978P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.89 e Å3
14495 reflectionsΔρmin = 0.59 e Å3
825 parametersAbsolute structure: Flack x determined using 5071 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
83 restraintsAbsolute structure parameter: 0.015 (11)
Primary atom site location: iterative
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.23043 (2)0.54241 (2)0.22149 (2)0.01140 (11)
P10.35044 (7)0.66162 (7)0.20155 (5)0.0126 (2)
N10.0963 (2)0.7316 (2)0.21225 (16)0.0169 (6)
N20.0233 (3)0.7901 (3)0.17234 (17)0.0241 (7)
N30.0703 (2)0.6506 (2)0.11185 (16)0.0188 (7)
C10.1270 (3)0.6469 (3)0.17711 (19)0.0157 (7)
C20.0092 (3)0.7377 (3)0.1121 (2)0.0247 (9)
H20.0376970.7570360.0728310.030*
C30.1287 (3)0.7643 (3)0.2866 (2)0.0208 (8)
H3A0.1479070.8416700.2877770.025*
H3B0.1853330.7207250.3063060.025*
C40.0504 (3)0.7484 (4)0.3328 (2)0.0294 (9)
H4A0.0043420.7946510.3149500.044*
H4B0.0746890.7679840.3824300.044*
H4C0.0302180.6721330.3307180.044*
C50.0709 (3)0.5775 (3)0.0507 (2)0.0226 (8)
H5A0.1250300.5261280.0610690.027*
H5B0.0806390.6205100.0080070.027*
C60.0221 (3)0.5135 (3)0.0342 (2)0.0235 (8)
H6A0.0769090.5639720.0327510.028*
H6B0.0259620.4603610.0730180.028*
C70.0291 (4)0.4536 (3)0.0373 (3)0.0259 (11)
H7A0.0216900.5063010.0756690.031*
H7B0.0237360.4003390.0348620.031*
C80.1244 (3)0.3945 (4)0.0558 (2)0.0342 (10)
H8A0.1250730.3546910.1008500.051*
H8B0.1766540.4474360.0610680.051*
H8C0.1325800.3433210.0173890.051*
C90.3233 (3)0.8062 (3)0.1857 (2)0.0165 (7)
C100.3651 (3)0.8906 (3)0.2285 (2)0.0248 (9)
H100.4090470.8749110.2703290.030*
C110.3423 (3)0.9983 (3)0.2100 (3)0.0326 (10)
H110.3712981.0554550.2393250.039*
C120.2783 (3)1.0229 (3)0.1498 (3)0.0305 (10)
H120.2634641.0964660.1377370.037*
C130.2357 (3)0.9401 (3)0.1068 (2)0.0265 (9)
H130.1914430.9567580.0653830.032*
C140.2578 (3)0.8322 (3)0.1245 (2)0.0240 (8)
H140.2284020.7756450.0948770.029*
C150.4034 (3)0.6293 (3)0.12137 (19)0.0150 (7)
C160.4761 (3)0.6959 (3)0.1030 (2)0.0200 (8)
H160.4958980.7578640.1313390.024*
C170.5196 (3)0.6717 (3)0.0432 (2)0.0251 (9)
H170.5695520.7164590.0310620.030*
C180.4895 (3)0.5818 (3)0.0017 (2)0.0250 (9)
H180.5190250.5651140.0390860.030*
C190.4167 (3)0.5162 (3)0.0191 (2)0.0233 (8)
H190.3963710.4550650.0099270.028*
C200.3731 (3)0.5395 (3)0.0791 (2)0.0184 (8)
H200.3231460.4945220.0909930.022*
C210.4501 (3)0.6576 (3)0.27486 (19)0.0168 (7)
C220.5350 (3)0.6010 (3)0.2688 (2)0.0224 (8)
H220.5452380.5724580.2237980.027*
C230.6042 (3)0.5869 (3)0.3291 (2)0.0307 (10)
H230.6614760.5487540.3249540.037*
C240.5895 (4)0.6283 (4)0.3947 (2)0.0350 (11)
H240.6368420.6187700.4354460.042*
C250.5061 (3)0.6836 (3)0.4012 (2)0.0314 (10)
H250.4966300.7124530.4463090.038*
C260.4361 (3)0.6972 (3)0.3420 (2)0.0232 (9)
H260.3782870.7336190.3472210.028*
C270.3181 (3)0.4482 (3)0.3088 (2)0.0181 (8)
H270.3693720.4919220.3378350.022*
C280.3413 (3)0.4137 (3)0.2441 (2)0.0170 (9)
H280.4064720.4359960.2350140.020*
C290.3032 (3)0.3131 (3)0.2044 (2)0.0200 (8)
H29A0.3390550.2492550.2260380.024*
H29B0.3147710.3185700.1540160.024*
C300.1958 (3)0.2946 (3)0.2054 (2)0.0196 (8)
H30A0.1699550.2503430.1631700.024*
H30B0.1878410.2523870.2487460.024*
C310.1376 (3)0.3981 (3)0.2047 (2)0.0199 (9)
H310.0866500.4043130.1621760.024*
C320.1159 (3)0.4519 (3)0.2640 (2)0.0219 (8)
H320.0524100.4891200.2563320.026*
C330.1515 (3)0.4248 (3)0.3408 (2)0.0280 (9)
H33A0.1103310.3675000.3568080.034*
H33B0.1457100.4900500.3705790.034*
C340.2561 (3)0.3857 (3)0.3534 (2)0.0241 (8)
H34A0.2821560.3941220.4047580.029*
H34B0.2581680.3075210.3414170.029*
Rh1'0.73530 (2)0.95710 (2)0.73108 (2)0.01291 (13)
P1'0.85977 (7)0.84605 (7)0.70922 (5)0.0131 (2)
N1'0.6095 (2)0.7600 (2)0.72286 (17)0.0179 (7)
N2'0.5440 (3)0.6938 (3)0.68242 (18)0.0270 (8)
N3'0.5873 (2)0.8326 (3)0.61993 (18)0.0227 (7)
C1'0.6382 (3)0.8450 (3)0.6868 (2)0.0172 (7)
C2'0.5320 (3)0.7405 (4)0.6201 (2)0.0265 (9)
H2'0.4903270.7143730.5796470.032*
C3'0.6345 (3)0.7359 (3)0.7994 (2)0.0204 (8)
H3'A0.6864810.7849500.8207340.024*
H3'B0.6578810.6602350.8056070.024*
C4'0.5481 (3)0.7508 (4)0.8375 (2)0.0268 (9)
H4'A0.4983590.6986490.8185270.040*
H4'B0.5234280.8248110.8295500.040*
H4'C0.5666680.7383880.8889240.040*
C5'0.5869 (3)0.9051 (3)0.5583 (2)0.0248 (9)
H5'A0.6014120.8627150.5166050.030*
H5'B0.6372710.9608300.5695550.030*
C6'0.4898 (3)0.9608 (3)0.5391 (2)0.0271 (9)
H6'A0.4389430.9048990.5332160.033*
H6'B0.4785901.0088680.5790990.033*
C7'0.4834 (3)1.0276 (4)0.4706 (3)0.0321 (10)
H7'A0.5331901.0846870.4768890.039*
H7'B0.4961250.9799030.4308130.039*
C8'0.3861 (4)1.0804 (4)0.4510 (3)0.0422 (12)
H8'A0.3367821.0240200.4431670.063*
H8'B0.3853571.1230270.4070330.063*
H8'C0.3734571.1281920.4899920.063*
C9'0.9043 (3)0.8808 (3)0.62603 (18)0.0145 (7)
C10'0.9738 (3)0.8152 (3)0.6024 (2)0.0185 (7)
H10'0.9960740.7521890.6287680.022*
C11'1.0107 (3)0.8418 (3)0.5402 (2)0.0237 (8)
H11'1.0585570.7975750.5245080.028*
C12'0.9775 (3)0.9331 (4)0.5010 (2)0.0251 (10)
H12'1.0026550.9511730.4585660.030*
C13'0.9076 (3)0.9981 (3)0.5238 (2)0.0238 (8)
H13'0.8849451.0603120.4967290.029*
C14'0.8705 (3)0.9723 (3)0.5863 (2)0.0194 (8)
H14'0.8225171.0166810.6017560.023*
C15'0.8355 (3)0.7005 (3)0.6965 (2)0.0170 (7)
C16'0.8639 (3)0.6211 (3)0.7476 (2)0.0278 (9)
H16'0.9009570.6404440.7918930.033*
C17'0.8379 (4)0.5130 (3)0.7339 (3)0.0397 (12)
H17'0.8577490.4590750.7688860.048*
C18'0.7835 (3)0.4835 (3)0.6698 (3)0.0317 (10)
H18'0.7659640.4097880.6609300.038*
C19'0.7548 (3)0.5622 (3)0.6184 (2)0.0281 (9)
H19'0.7175440.5423600.5742670.034*
C20'0.7805 (3)0.6700 (3)0.6317 (2)0.0233 (8)
H20'0.7605040.7236250.5965120.028*
C21'0.9652 (3)0.8568 (3)0.77776 (19)0.0158 (7)
C22'0.9593 (3)0.8222 (3)0.8480 (2)0.0215 (8)
H22'0.9022470.7890280.8582550.026*
C23'1.0352 (3)0.8358 (3)0.9021 (2)0.0249 (9)
H23'1.0303750.8104080.9489860.030*
C24'1.1180 (3)0.8860 (3)0.8889 (2)0.0262 (9)
H24'1.1701880.8947250.9263530.031*
C25'1.1246 (3)0.9237 (3)0.8203 (2)0.0234 (8)
H25'1.1811020.9594840.8110560.028*
C26'1.0484 (3)0.9093 (3)0.76472 (19)0.0167 (7)
H26'1.0533500.9352610.7180080.020*
C27'0.8399 (3)1.0917 (3)0.7551 (3)0.0222 (10)
H27'0.9058151.0732440.7456910.027*
C28'0.8189 (3)1.0523 (3)0.8189 (2)0.0230 (9)
H28'0.8721281.0110410.8476440.028*
C29'0.7548 (4)1.1113 (4)0.8628 (3)0.0417 (12)
H29C0.7785351.0991910.9142130.050*
H29D0.7585821.1901540.8534040.050*
C30'0.6531 (4)1.0766 (5)0.8477 (3)0.0463 (13)
H30C0.6126891.1365810.8612060.056*
H30D0.6441271.0139130.8788990.056*
C31'0.6177 (3)1.0451 (3)0.7714 (3)0.0247 (9)
H31'0.5557921.0046050.7650660.030*
C32'0.6370 (3)1.0957 (4)0.7101 (3)0.0260 (10)
H32'0.5862001.0854930.6678230.031*
C33'0.6924 (3)1.2019 (3)0.7089 (3)0.0380 (12)
H33C0.6699811.2394250.6631100.046*
H33D0.6762221.2488430.7479820.046*
C34'0.7989 (3)1.1922 (3)0.7167 (3)0.0360 (11)
H34C0.8275901.2565660.7429990.043*
H34D0.8182291.1934090.6684010.043*
F10.2509 (2)0.6636 (2)0.42532 (15)0.0411 (7)
F20.2156 (2)0.8288 (2)0.46740 (19)0.0511 (8)
F30.3461 (2)0.7351 (2)0.52034 (18)0.0471 (7)
F40.1968 (2)0.6753 (2)0.53083 (15)0.0465 (7)
B10.2520 (4)0.7271 (4)0.4853 (3)0.0289 (10)
F1'0.7750 (3)0.7124 (3)1.05755 (18)0.0515 (9)0.814 (4)
F2'0.7148 (3)0.8192 (3)0.9653 (3)0.0526 (10)0.814 (4)
F4'0.7153 (2)0.6401 (2)0.95288 (17)0.0470 (7)
F3'0.8557 (2)0.7306 (3)0.96511 (18)0.0351 (7)0.814 (4)
B1'0.7619 (4)0.7298 (5)0.9835 (3)0.0392 (10)
F2"0.7129 (11)0.8046 (12)1.0293 (8)0.0544 (18)0.186 (4)
F3"0.7460 (12)0.8254 (10)0.9307 (8)0.0406 (18)0.186 (4)
F1"0.8545 (8)0.7527 (14)1.0082 (9)0.0499 (18)0.186 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01014 (19)0.00934 (13)0.0149 (3)0.00091 (10)0.0025 (2)0.00020 (11)
P10.0133 (5)0.0103 (4)0.0145 (5)0.0028 (3)0.0030 (4)0.0010 (3)
N10.0176 (17)0.0156 (14)0.0172 (15)0.0053 (12)0.0011 (12)0.0006 (12)
N20.0249 (19)0.0272 (17)0.0194 (16)0.0122 (14)0.0005 (14)0.0024 (13)
N30.0188 (18)0.0214 (16)0.0158 (15)0.0044 (12)0.0013 (13)0.0042 (12)
C10.0143 (19)0.0149 (17)0.0177 (18)0.0008 (13)0.0018 (14)0.0014 (13)
C20.022 (2)0.032 (2)0.0194 (19)0.0125 (17)0.0009 (16)0.0010 (16)
C30.022 (2)0.022 (2)0.0183 (19)0.0040 (15)0.0016 (16)0.0030 (15)
C40.026 (2)0.042 (2)0.021 (2)0.0131 (18)0.0056 (17)0.0019 (17)
C50.025 (2)0.026 (2)0.0172 (18)0.0032 (16)0.0030 (16)0.0054 (15)
C60.017 (2)0.033 (2)0.0197 (19)0.0037 (16)0.0004 (15)0.0024 (16)
C70.023 (2)0.032 (2)0.021 (2)0.0010 (16)0.0006 (18)0.0048 (16)
C80.032 (3)0.044 (3)0.026 (2)0.0048 (19)0.0018 (18)0.0045 (18)
C90.017 (2)0.0140 (17)0.0199 (19)0.0021 (13)0.0089 (15)0.0002 (14)
C100.024 (2)0.0168 (19)0.033 (2)0.0014 (15)0.0005 (17)0.0047 (16)
C110.033 (3)0.015 (2)0.048 (3)0.0015 (17)0.001 (2)0.0095 (18)
C120.033 (3)0.0165 (19)0.043 (3)0.0054 (17)0.009 (2)0.0015 (17)
C130.032 (3)0.0224 (19)0.025 (2)0.0040 (16)0.0036 (18)0.0067 (15)
C140.032 (2)0.0180 (19)0.0216 (19)0.0031 (16)0.0022 (17)0.0021 (14)
C150.0133 (18)0.0160 (17)0.0162 (17)0.0002 (13)0.0038 (14)0.0001 (13)
C160.020 (2)0.0176 (18)0.0236 (19)0.0037 (14)0.0062 (16)0.0009 (14)
C170.024 (2)0.026 (2)0.029 (2)0.0022 (16)0.0146 (18)0.0034 (16)
C180.032 (2)0.026 (2)0.020 (2)0.0064 (18)0.0126 (17)0.0025 (16)
C190.031 (2)0.0216 (19)0.0178 (18)0.0020 (16)0.0047 (16)0.0034 (14)
C200.020 (2)0.0171 (18)0.0180 (18)0.0008 (13)0.0024 (15)0.0027 (13)
C210.019 (2)0.0148 (17)0.0159 (17)0.0074 (13)0.0001 (14)0.0019 (13)
C220.019 (2)0.0189 (18)0.028 (2)0.0048 (14)0.0002 (16)0.0038 (15)
C230.025 (2)0.026 (2)0.038 (2)0.0063 (17)0.0068 (19)0.0117 (18)
C240.035 (3)0.040 (3)0.026 (2)0.019 (2)0.0121 (19)0.0129 (18)
C250.042 (3)0.034 (2)0.0164 (19)0.020 (2)0.0014 (18)0.0048 (16)
C260.028 (2)0.021 (2)0.0218 (19)0.0137 (16)0.0058 (17)0.0002 (16)
C270.018 (2)0.0145 (17)0.0198 (18)0.0007 (13)0.0045 (15)0.0051 (13)
C280.012 (2)0.0104 (19)0.028 (2)0.0036 (13)0.0010 (16)0.0024 (15)
C290.0169 (19)0.0092 (17)0.033 (2)0.0027 (13)0.0000 (16)0.0005 (14)
C300.018 (2)0.0128 (17)0.027 (2)0.0018 (14)0.0007 (16)0.0032 (14)
C310.015 (2)0.017 (2)0.028 (2)0.0063 (15)0.0027 (17)0.0018 (16)
C320.014 (2)0.0171 (19)0.037 (2)0.0032 (13)0.0119 (17)0.0056 (15)
C330.033 (2)0.022 (2)0.033 (2)0.0047 (17)0.0169 (19)0.0074 (17)
C340.029 (2)0.0230 (19)0.0197 (19)0.0027 (16)0.0023 (16)0.0073 (15)
Rh1'0.00952 (19)0.01020 (14)0.0189 (3)0.00142 (10)0.0018 (2)0.00004 (11)
P1'0.0108 (5)0.0117 (4)0.0172 (5)0.0015 (3)0.0035 (4)0.0027 (3)
N1'0.0146 (17)0.0195 (15)0.0196 (16)0.0073 (12)0.0024 (13)0.0009 (12)
N2'0.024 (2)0.0332 (19)0.0232 (18)0.0150 (15)0.0015 (15)0.0073 (14)
N3'0.0192 (18)0.0272 (17)0.0218 (17)0.0067 (13)0.0033 (14)0.0012 (13)
C1'0.0126 (18)0.0168 (17)0.0230 (19)0.0017 (13)0.0051 (15)0.0003 (14)
C2'0.021 (2)0.035 (2)0.023 (2)0.0131 (17)0.0035 (17)0.0049 (17)
C3'0.019 (2)0.0216 (19)0.0206 (19)0.0056 (15)0.0015 (15)0.0034 (15)
C4'0.022 (2)0.037 (2)0.022 (2)0.0073 (17)0.0043 (16)0.0013 (17)
C5'0.021 (2)0.034 (2)0.0191 (19)0.0029 (16)0.0030 (16)0.0038 (16)
C6'0.017 (2)0.043 (3)0.021 (2)0.0035 (17)0.0024 (16)0.0009 (17)
C7'0.026 (3)0.042 (3)0.029 (2)0.0028 (19)0.007 (2)0.0041 (19)
C8'0.029 (3)0.059 (3)0.038 (3)0.011 (2)0.003 (2)0.011 (2)
C9'0.0118 (17)0.0172 (17)0.0147 (16)0.0007 (13)0.0028 (13)0.0028 (13)
C10'0.018 (2)0.0183 (18)0.0196 (18)0.0001 (14)0.0037 (15)0.0005 (14)
C11'0.023 (2)0.028 (2)0.0218 (19)0.0029 (16)0.0073 (16)0.0039 (15)
C12'0.030 (3)0.030 (2)0.017 (2)0.0084 (19)0.0084 (18)0.0003 (17)
C13'0.031 (2)0.0187 (19)0.0201 (19)0.0031 (16)0.0006 (17)0.0067 (15)
C14'0.019 (2)0.0171 (17)0.0218 (19)0.0005 (14)0.0006 (15)0.0007 (14)
C15'0.0150 (19)0.0118 (17)0.026 (2)0.0001 (13)0.0073 (15)0.0023 (14)
C16'0.029 (2)0.018 (2)0.034 (2)0.0020 (16)0.0038 (18)0.0045 (16)
C17'0.043 (3)0.016 (2)0.056 (3)0.0013 (18)0.005 (2)0.0131 (19)
C18'0.034 (3)0.0140 (18)0.047 (3)0.0056 (17)0.006 (2)0.0012 (17)
C19'0.031 (2)0.021 (2)0.032 (2)0.0030 (17)0.0067 (19)0.0043 (16)
C20'0.030 (2)0.0166 (18)0.024 (2)0.0006 (15)0.0072 (17)0.0003 (14)
C21'0.0162 (19)0.0138 (17)0.0178 (17)0.0059 (13)0.0042 (14)0.0003 (13)
C22'0.024 (2)0.0189 (19)0.023 (2)0.0068 (15)0.0079 (16)0.0036 (15)
C23'0.032 (2)0.025 (2)0.0167 (18)0.0119 (17)0.0006 (17)0.0004 (15)
C24'0.025 (2)0.028 (2)0.023 (2)0.0079 (16)0.0055 (17)0.0095 (16)
C25'0.017 (2)0.024 (2)0.028 (2)0.0013 (15)0.0008 (16)0.0085 (16)
C26'0.0164 (19)0.0173 (17)0.0166 (17)0.0047 (13)0.0028 (14)0.0018 (13)
C27'0.015 (2)0.0094 (19)0.038 (3)0.0018 (14)0.0075 (18)0.0001 (16)
C28'0.020 (2)0.0191 (19)0.027 (2)0.0057 (14)0.0057 (17)0.0059 (15)
C29'0.041 (3)0.047 (3)0.036 (3)0.010 (2)0.003 (2)0.019 (2)
C30'0.038 (3)0.058 (3)0.048 (3)0.003 (2)0.023 (3)0.016 (3)
C31'0.014 (2)0.019 (2)0.044 (3)0.0024 (14)0.0135 (18)0.0024 (16)
C32'0.012 (2)0.022 (2)0.043 (3)0.0080 (16)0.0020 (19)0.0043 (19)
C33'0.020 (2)0.021 (2)0.073 (4)0.0059 (16)0.009 (2)0.019 (2)
C34'0.024 (2)0.019 (2)0.060 (3)0.0059 (16)0.009 (2)0.0103 (19)
F10.0358 (16)0.0561 (17)0.0292 (14)0.0060 (12)0.0029 (12)0.0049 (12)
F20.0383 (17)0.0366 (16)0.074 (2)0.0045 (13)0.0068 (15)0.0002 (14)
F30.0286 (15)0.0442 (16)0.0623 (19)0.0027 (12)0.0133 (14)0.0119 (14)
F40.0390 (17)0.0674 (19)0.0347 (15)0.0025 (14)0.0103 (13)0.0050 (13)
B10.019 (3)0.033 (3)0.033 (3)0.0067 (19)0.004 (2)0.005 (2)
F1'0.0413 (19)0.091 (2)0.0230 (15)0.0086 (17)0.0089 (14)0.0018 (15)
F2'0.041 (2)0.0395 (17)0.069 (2)0.0048 (15)0.0205 (18)0.0083 (18)
F4'0.0335 (16)0.0489 (17)0.0541 (18)0.0048 (13)0.0079 (14)0.0041 (14)
F3'0.0273 (16)0.0563 (18)0.0233 (16)0.0085 (13)0.0094 (12)0.0082 (13)
B1'0.030 (2)0.058 (2)0.0284 (19)0.0047 (18)0.0011 (17)0.0003 (18)
F2"0.044 (3)0.069 (3)0.049 (3)0.007 (3)0.000 (3)0.006 (3)
F3"0.033 (3)0.049 (3)0.037 (3)0.003 (3)0.002 (3)0.004 (3)
F1"0.039 (3)0.073 (3)0.037 (3)0.008 (3)0.002 (3)0.005 (3)
Geometric parameters (Å, º) top
Rh1—P12.3162 (9)P1'—C9'1.826 (3)
Rh1—C12.034 (4)P1'—C15'1.834 (4)
Rh1—C272.236 (4)P1'—C21'1.829 (4)
Rh1—C282.227 (4)N1'—N2'1.377 (4)
Rh1—C312.205 (4)N1'—C1'1.344 (5)
Rh1—C322.211 (4)N1'—C3'1.466 (5)
P1—C91.837 (4)N2'—C2'1.297 (5)
P1—C151.828 (3)N3'—C1'1.366 (5)
P1—C211.825 (4)N3'—C2'1.378 (5)
N1—N21.388 (4)N3'—C5'1.466 (5)
N1—C11.341 (4)C2'—H2'0.9500
N1—C31.467 (5)C3'—H3'A0.9900
N2—C21.297 (5)C3'—H3'B0.9900
N3—C11.368 (5)C3'—C4'1.517 (5)
N3—C21.378 (5)C4'—H4'A0.9800
N3—C51.465 (4)C4'—H4'B0.9800
C2—H20.9500C4'—H4'C0.9800
C3—H3A0.9900C5'—H5'A0.9900
C3—H3B0.9900C5'—H5'B0.9900
C3—C41.520 (6)C5'—C6'1.529 (6)
C4—H4A0.9800C6'—H6'A0.9900
C4—H4B0.9800C6'—H6'B0.9900
C4—H4C0.9800C6'—C7'1.525 (6)
C5—H5A0.9900C7'—H7'A0.9900
C5—H5B0.9900C7'—H7'B0.9900
C5—C61.526 (6)C7'—C8'1.517 (6)
C6—H6A0.9900C8'—H8'A0.9800
C6—H6B0.9900C8'—H8'B0.9800
C6—C71.528 (6)C8'—H8'C0.9800
C7—H7A0.9900C9'—C10'1.396 (5)
C7—H7B0.9900C9'—C14'1.399 (5)
C7—C81.527 (6)C10'—H10'0.9500
C8—H8A0.9800C10'—C11'1.391 (5)
C8—H8B0.9800C11'—H11'0.9500
C8—H8C0.9800C11'—C12'1.389 (6)
C9—C101.393 (5)C12'—H12'0.9500
C9—C141.407 (6)C12'—C13'1.387 (6)
C10—H100.9500C13'—H13'0.9500
C10—C111.397 (6)C13'—C14'1.397 (5)
C11—H110.9500C14'—H14'0.9500
C11—C121.379 (7)C15'—C16'1.391 (5)
C12—H120.9500C15'—C20'1.400 (6)
C12—C131.384 (6)C16'—H16'0.9500
C13—H130.9500C16'—C17'1.395 (6)
C13—C141.394 (5)C17'—H17'0.9500
C14—H140.9500C17'—C18'1.383 (7)
C15—C161.398 (5)C18'—H18'0.9500
C15—C201.394 (5)C18'—C19'1.388 (6)
C16—H160.9500C19'—H19'0.9500
C16—C171.394 (5)C19'—C20'1.390 (5)
C17—H170.9500C20'—H20'0.9500
C17—C181.387 (6)C21'—C22'1.405 (5)
C18—H180.9500C21'—C26'1.396 (5)
C18—C191.386 (6)C22'—H22'0.9500
C19—H190.9500C22'—C23'1.380 (6)
C19—C201.397 (5)C23'—H23'0.9500
C20—H200.9500C23'—C24'1.379 (6)
C21—C221.406 (5)C24'—H24'0.9500
C21—C261.400 (5)C24'—C25'1.392 (6)
C22—H220.9500C25'—H25'0.9500
C22—C231.399 (6)C25'—C26'1.400 (5)
C23—H230.9500C26'—H26'0.9500
C23—C241.383 (7)C27'—H27'1.0000
C24—H240.9500C27'—C28'1.370 (6)
C24—C251.383 (7)C27'—C34'1.506 (6)
C25—H250.9500C28'—H28'1.0000
C25—C261.389 (6)C28'—C29'1.502 (6)
C26—H260.9500C29'—H29C0.9900
C27—H271.0000C29'—H29D0.9900
C27—C281.379 (6)C29'—C30'1.488 (7)
C27—C341.511 (5)C30'—H30C0.9900
C28—H281.0000C30'—H30D0.9900
C28—C291.506 (5)C30'—C31'1.505 (7)
C29—H29A0.9900C31'—H31'1.0000
C29—H29B0.9900C31'—C32'1.375 (6)
C29—C301.539 (6)C32'—H32'1.0000
C30—H30A0.9900C32'—C33'1.527 (6)
C30—H30B0.9900C33'—H33C0.9900
C30—C311.517 (6)C33'—H33D0.9900
C31—H311.0000C33'—C34'1.497 (7)
C31—C321.372 (6)C34'—H34C0.9900
C32—H321.0000C34'—H34D0.9900
C32—C331.502 (6)F1—B11.374 (6)
C33—H33A0.9900F2—B11.378 (6)
C33—H33B0.9900F3—B11.400 (5)
C33—C341.541 (6)F4—B11.397 (6)
C34—H34A0.9900F1'—B1'1.398 (6)
C34—H34B0.9900F2'—B1'1.306 (7)
Rh1'—P1'2.3135 (9)F4'—B1'1.370 (6)
Rh1'—C1'2.038 (4)F3'—B1'1.421 (6)
Rh1'—C27'2.224 (4)B1'—F2"1.500 (10)
Rh1'—C28'2.223 (4)B1'—F3"1.538 (10)
Rh1'—C31'2.211 (4)B1'—F1"1.354 (10)
Rh1'—C32'2.201 (4)
C1—Rh1—P191.84 (10)C31'—Rh1'—C27'94.36 (16)
C1—Rh1—C27156.80 (14)C31'—Rh1'—C28'80.19 (16)
C1—Rh1—C28166.63 (15)C32'—Rh1'—P1'154.65 (13)
C1—Rh1—C3194.22 (15)C32'—Rh1'—C27'80.94 (15)
C1—Rh1—C3286.99 (15)C32'—Rh1'—C28'88.73 (17)
C27—Rh1—P196.24 (10)C32'—Rh1'—C31'36.32 (17)
C28—Rh1—P188.28 (11)C9'—P1'—Rh1'112.49 (12)
C28—Rh1—C2735.99 (15)C9'—P1'—C15'101.39 (17)
C31—Rh1—P1157.34 (12)C9'—P1'—C21'104.06 (17)
C31—Rh1—C2786.63 (16)C15'—P1'—Rh1'117.95 (12)
C31—Rh1—C2880.88 (15)C21'—P1'—Rh1'113.17 (11)
C31—Rh1—C3236.20 (15)C21'—P1'—C15'106.29 (17)
C32—Rh1—P1166.31 (11)N2'—N1'—C3'118.2 (3)
C32—Rh1—C2780.05 (15)C1'—N1'—N2'114.1 (3)
C32—Rh1—C2896.00 (15)C1'—N1'—C3'127.6 (3)
C9—P1—Rh1120.02 (12)C2'—N2'—N1'103.2 (3)
C15—P1—Rh1113.30 (12)C1'—N3'—C2'108.2 (3)
C15—P1—C9100.23 (16)C1'—N3'—C5'127.2 (3)
C21—P1—Rh1111.25 (11)C2'—N3'—C5'124.6 (3)
C21—P1—C9105.63 (17)N1'—C1'—Rh1'123.7 (3)
C21—P1—C15104.88 (17)N1'—C1'—N3'102.9 (3)
N2—N1—C3118.6 (3)N3'—C1'—Rh1'133.4 (3)
C1—N1—N2113.9 (3)N2'—C2'—N3'111.6 (4)
C1—N1—C3127.5 (3)N2'—C2'—H2'124.2
C2—N2—N1102.9 (3)N3'—C2'—H2'124.2
C1—N3—C2107.9 (3)N1'—C3'—H3'A109.6
C1—N3—C5128.3 (3)N1'—C3'—H3'B109.6
C2—N3—C5123.9 (3)N1'—C3'—C4'110.3 (3)
N1—C1—Rh1123.6 (3)H3'A—C3'—H3'B108.1
N1—C1—N3103.3 (3)C4'—C3'—H3'A109.6
N3—C1—Rh1133.0 (3)C4'—C3'—H3'B109.6
N2—C2—N3112.0 (3)C3'—C4'—H4'A109.5
N2—C2—H2124.0C3'—C4'—H4'B109.5
N3—C2—H2124.0C3'—C4'—H4'C109.5
N1—C3—H3A109.4H4'A—C4'—H4'B109.5
N1—C3—H3B109.4H4'A—C4'—H4'C109.5
N1—C3—C4111.2 (3)H4'B—C4'—H4'C109.5
H3A—C3—H3B108.0N3'—C5'—H5'A109.4
C4—C3—H3A109.4N3'—C5'—H5'B109.4
C4—C3—H3B109.4N3'—C5'—C6'111.1 (3)
C3—C4—H4A109.5H5'A—C5'—H5'B108.0
C3—C4—H4B109.5C6'—C5'—H5'A109.4
C3—C4—H4C109.5C6'—C5'—H5'B109.4
H4A—C4—H4B109.5C5'—C6'—H6'A109.1
H4A—C4—H4C109.5C5'—C6'—H6'B109.1
H4B—C4—H4C109.5H6'A—C6'—H6'B107.8
N3—C5—H5A109.2C7'—C6'—C5'112.5 (3)
N3—C5—H5B109.2C7'—C6'—H6'A109.1
N3—C5—C6111.9 (3)C7'—C6'—H6'B109.1
H5A—C5—H5B107.9C6'—C7'—H7'A109.2
C6—C5—H5A109.2C6'—C7'—H7'B109.2
C6—C5—H5B109.2H7'A—C7'—H7'B107.9
C5—C6—H6A109.3C8'—C7'—C6'112.2 (4)
C5—C6—H6B109.3C8'—C7'—H7'A109.2
C5—C6—C7111.8 (3)C8'—C7'—H7'B109.2
H6A—C6—H6B107.9C7'—C8'—H8'A109.5
C7—C6—H6A109.3C7'—C8'—H8'B109.5
C7—C6—H6B109.3C7'—C8'—H8'C109.5
C6—C7—H7A109.2H8'A—C8'—H8'B109.5
C6—C7—H7B109.2H8'A—C8'—H8'C109.5
H7A—C7—H7B107.9H8'B—C8'—H8'C109.5
C8—C7—C6111.9 (4)C10'—C9'—P1'119.2 (3)
C8—C7—H7A109.2C10'—C9'—C14'119.8 (3)
C8—C7—H7B109.2C14'—C9'—P1'121.0 (3)
C7—C8—H8A109.5C9'—C10'—H10'119.9
C7—C8—H8B109.5C11'—C10'—C9'120.1 (3)
C7—C8—H8C109.5C11'—C10'—H10'119.9
H8A—C8—H8B109.5C10'—C11'—H11'120.0
H8A—C8—H8C109.5C12'—C11'—C10'120.1 (4)
H8B—C8—H8C109.5C12'—C11'—H11'120.0
C10—C9—P1124.6 (3)C11'—C12'—H12'119.9
C10—C9—C14118.6 (3)C13'—C12'—C11'120.2 (4)
C14—C9—P1116.8 (3)C13'—C12'—H12'119.9
C9—C10—H10120.0C12'—C13'—H13'119.9
C9—C10—C11120.0 (4)C12'—C13'—C14'120.2 (4)
C11—C10—H10120.0C14'—C13'—H13'119.9
C10—C11—H11119.5C9'—C14'—H14'120.2
C12—C11—C10120.9 (4)C13'—C14'—C9'119.7 (4)
C12—C11—H11119.5C13'—C14'—H14'120.2
C11—C12—H12120.1C16'—C15'—P1'124.6 (3)
C11—C12—C13119.8 (4)C16'—C15'—C20'118.9 (3)
C13—C12—H12120.1C20'—C15'—P1'116.5 (3)
C12—C13—H13120.0C15'—C16'—H16'120.0
C12—C13—C14120.0 (4)C15'—C16'—C17'120.1 (4)
C14—C13—H13120.0C17'—C16'—H16'120.0
C9—C14—H14119.7C16'—C17'—H17'119.7
C13—C14—C9120.7 (4)C18'—C17'—C16'120.7 (4)
C13—C14—H14119.7C18'—C17'—H17'119.7
C16—C15—P1118.9 (3)C17'—C18'—H18'120.1
C20—C15—P1121.2 (3)C17'—C18'—C19'119.7 (4)
C20—C15—C16119.9 (3)C19'—C18'—H18'120.1
C15—C16—H16119.9C18'—C19'—H19'120.1
C17—C16—C15120.2 (3)C18'—C19'—C20'119.9 (4)
C17—C16—H16119.9C20'—C19'—H19'120.1
C16—C17—H17120.2C15'—C20'—H20'119.6
C18—C17—C16119.5 (4)C19'—C20'—C15'120.8 (4)
C18—C17—H17120.2C19'—C20'—H20'119.6
C17—C18—H18119.7C22'—C21'—P1'119.3 (3)
C19—C18—C17120.6 (4)C26'—C21'—P1'122.0 (3)
C19—C18—H18119.7C26'—C21'—C22'118.3 (4)
C18—C19—H19119.9C21'—C22'—H22'119.5
C18—C19—C20120.3 (4)C23'—C22'—C21'121.0 (4)
C20—C19—H19119.9C23'—C22'—H22'119.5
C15—C20—C19119.5 (4)C22'—C23'—H23'119.7
C15—C20—H20120.3C24'—C23'—C22'120.6 (4)
C19—C20—H20120.3C24'—C23'—H23'119.7
C22—C21—P1121.7 (3)C23'—C24'—H24'120.2
C26—C21—P1118.7 (3)C23'—C24'—C25'119.5 (4)
C26—C21—C22118.9 (4)C25'—C24'—H24'120.2
C21—C22—H22120.0C24'—C25'—H25'119.9
C23—C22—C21119.9 (4)C24'—C25'—C26'120.3 (4)
C23—C22—H22120.0C26'—C25'—H25'119.9
C22—C23—H23119.9C21'—C26'—C25'120.2 (3)
C24—C23—C22120.2 (4)C21'—C26'—H26'119.9
C24—C23—H23119.9C25'—C26'—H26'119.9
C23—C24—H24119.9Rh1'—C27'—H27'113.8
C23—C24—C25120.2 (4)C28'—C27'—Rh1'72.0 (2)
C25—C24—H24119.9C28'—C27'—H27'113.8
C24—C25—H25119.8C28'—C27'—C34'126.5 (4)
C24—C25—C26120.3 (4)C34'—C27'—Rh1'108.5 (3)
C26—C25—H25119.8C34'—C27'—H27'113.8
C21—C26—H26119.8Rh1'—C28'—H28'114.4
C25—C26—C21120.5 (4)C27'—C28'—Rh1'72.1 (2)
C25—C26—H26119.8C27'—C28'—H28'114.4
Rh1—C27—H27113.8C27'—C28'—C29'122.7 (4)
C28—C27—Rh171.6 (2)C29'—C28'—Rh1'111.7 (3)
C28—C27—H27113.8C29'—C28'—H28'114.4
C28—C27—C34124.8 (3)C28'—C29'—H29C108.9
C34—C27—Rh1111.8 (3)C28'—C29'—H29D108.9
C34—C27—H27113.8H29C—C29'—H29D107.7
Rh1—C28—H28114.4C30'—C29'—C28'113.5 (4)
C27—C28—Rh172.4 (2)C30'—C29'—H29C108.9
C27—C28—H28114.4C30'—C29'—H29D108.9
C27—C28—C29125.4 (4)C29'—C30'—H30C108.4
C29—C28—Rh1107.5 (3)C29'—C30'—H30D108.4
C29—C28—H28114.4C29'—C30'—C31'115.7 (4)
C28—C29—H29A108.9H30C—C30'—H30D107.4
C28—C29—H29B108.9C31'—C30'—H30C108.4
C28—C29—C30113.4 (3)C31'—C30'—H30D108.4
H29A—C29—H29B107.7Rh1'—C31'—H31'113.8
C30—C29—H29A108.9C30'—C31'—Rh1'107.1 (3)
C30—C29—H29B108.9C30'—C31'—H31'113.8
C29—C30—H30A108.7C32'—C31'—Rh1'71.4 (2)
C29—C30—H30B108.7C32'—C31'—C30'127.5 (4)
H30A—C30—H30B107.6C32'—C31'—H31'113.8
C31—C30—C29114.3 (3)Rh1'—C32'—H32'114.0
C31—C30—H30A108.7C31'—C32'—Rh1'72.2 (2)
C31—C30—H30B108.7C31'—C32'—H32'114.0
Rh1—C31—H31113.4C31'—C32'—C33'124.5 (5)
C30—C31—Rh1111.4 (3)C33'—C32'—Rh1'110.8 (3)
C30—C31—H31113.4C33'—C32'—H32'114.0
C32—C31—Rh172.1 (2)C32'—C33'—H33C108.2
C32—C31—C30125.8 (4)C32'—C33'—H33D108.2
C32—C31—H31113.4H33C—C33'—H33D107.4
Rh1—C32—H32114.0C34'—C33'—C32'116.2 (4)
C31—C32—Rh171.7 (2)C34'—C33'—H33C108.2
C31—C32—H32114.0C34'—C33'—H33D108.2
C31—C32—C33126.6 (4)C27'—C34'—H34C108.5
C33—C32—Rh1107.6 (3)C27'—C34'—H34D108.5
C33—C32—H32114.0C33'—C34'—C27'115.1 (4)
C32—C33—H33A108.9C33'—C34'—H34C108.5
C32—C33—H33B108.9C33'—C34'—H34D108.5
C32—C33—C34113.3 (3)H34C—C34'—H34D107.5
H33A—C33—H33B107.7F1—B1—F2110.9 (4)
C34—C33—H33A108.9F1—B1—F3108.9 (4)
C34—C33—H33B108.9F1—B1—F4107.9 (4)
C27—C34—C33112.1 (3)F2—B1—F3110.3 (4)
C27—C34—H34A109.2F2—B1—F4110.0 (4)
C27—C34—H34B109.2F4—B1—F3108.7 (4)
C33—C34—H34A109.2F1'—B1'—F3'104.7 (4)
C33—C34—H34B109.2F2'—B1'—F1'112.3 (5)
H34A—C34—H34B107.9F2'—B1'—F4'111.9 (5)
C1'—Rh1'—P1'90.63 (10)F2'—B1'—F3'112.8 (5)
C1'—Rh1'—C27'167.58 (16)F4'—B1'—F1'106.5 (4)
C1'—Rh1'—C28'156.28 (15)F4'—B1'—F3'108.1 (4)
C1'—Rh1'—C31'88.72 (15)F4'—B1'—F2"120.2 (7)
C1'—Rh1'—C32'94.68 (17)F4'—B1'—F3"109.1 (7)
C27'—Rh1'—P1'88.62 (12)F2"—B1'—F3"82.4 (8)
C28'—Rh1'—P1'96.28 (10)F1"—B1'—F4'134.0 (9)
C28'—Rh1'—C27'35.91 (17)F1"—B1'—F2"100.3 (10)
C31'—Rh1'—P1'168.94 (12)F1"—B1'—F3"96.0 (9)
Rh1—P1—C9—C10119.7 (3)Rh1'—P1'—C9'—C10'174.5 (3)
Rh1—P1—C9—C1462.5 (3)Rh1'—P1'—C9'—C14'6.1 (3)
Rh1—P1—C15—C16179.4 (3)Rh1'—P1'—C15'—C16'104.0 (3)
Rh1—P1—C15—C201.2 (3)Rh1'—P1'—C15'—C20'72.7 (3)
Rh1—P1—C21—C22101.9 (3)Rh1'—P1'—C21'—C22'65.4 (3)
Rh1—P1—C21—C2668.1 (3)Rh1'—P1'—C21'—C26'107.4 (3)
Rh1—C27—C28—C2999.2 (4)Rh1'—C27'—C28'—C29'104.7 (4)
Rh1—C27—C34—C3314.9 (4)Rh1'—C27'—C34'—C33'32.5 (6)
Rh1—C28—C29—C3039.0 (4)Rh1'—C28'—C29'—C30'11.4 (5)
Rh1—C31—C32—C3398.7 (4)Rh1'—C31'—C32'—C33'103.4 (4)
Rh1—C32—C33—C3442.6 (4)Rh1'—C32'—C33'—C34'4.0 (6)
P1—C9—C10—C11177.3 (3)P1'—C9'—C10'—C11'178.2 (3)
P1—C9—C14—C13177.6 (3)P1'—C9'—C14'—C13'178.5 (3)
P1—C15—C16—C17178.3 (3)P1'—C15'—C16'—C17'176.9 (3)
P1—C15—C20—C19178.7 (3)P1'—C15'—C20'—C19'177.1 (3)
P1—C21—C22—C23171.0 (3)P1'—C21'—C22'—C23'175.6 (3)
P1—C21—C26—C25172.1 (3)P1'—C21'—C26'—C25'174.6 (3)
N1—N2—C2—N30.9 (4)N1'—N2'—C2'—N3'0.1 (5)
N2—N1—C1—Rh1178.2 (2)N2'—N1'—C1'—Rh1'179.5 (3)
N2—N1—C1—N30.7 (4)N2'—N1'—C1'—N3'0.6 (4)
N2—N1—C3—C465.3 (4)N2'—N1'—C3'—C4'64.7 (4)
N3—C5—C6—C7169.5 (3)N3'—C5'—C6'—C7'174.0 (3)
C1—N1—N2—C21.0 (4)C1'—N1'—N2'—C2'0.5 (4)
C1—N1—C3—C4112.2 (4)C1'—N1'—C3'—C4'110.4 (4)
C1—N3—C2—N20.6 (5)C1'—N3'—C2'—N2'0.2 (5)
C1—N3—C5—C6115.1 (4)C1'—N3'—C5'—C6'112.4 (4)
C2—N3—C1—Rh1177.2 (3)C2'—N3'—C1'—Rh1'179.6 (3)
C2—N3—C1—N10.1 (4)C2'—N3'—C1'—N1'0.5 (4)
C2—N3—C5—C664.8 (5)C2'—N3'—C5'—C6'65.1 (5)
C3—N1—N2—C2176.8 (3)C3'—N1'—N2'—C2'175.2 (3)
C3—N1—C1—Rh10.6 (5)C3'—N1'—C1'—Rh1'5.3 (5)
C3—N1—C1—N3176.9 (3)C3'—N1'—C1'—N3'174.6 (3)
C5—N3—C1—Rh12.6 (6)C5'—N3'—C1'—Rh1'2.5 (6)
C5—N3—C1—N1179.8 (3)C5'—N3'—C1'—N1'177.3 (3)
C5—N3—C2—N2179.6 (4)C5'—N3'—C2'—N2'177.7 (4)
C5—C6—C7—C8176.9 (4)C5'—C6'—C7'—C8'178.6 (4)
C9—P1—C15—C1650.2 (3)C9'—P1'—C15'—C16'132.8 (4)
C9—P1—C15—C20130.3 (3)C9'—P1'—C15'—C20'50.5 (3)
C9—P1—C21—C22126.3 (3)C9'—P1'—C21'—C22'172.2 (3)
C9—P1—C21—C2663.7 (3)C9'—P1'—C21'—C26'15.1 (3)
C9—C10—C11—C120.3 (6)C9'—C10'—C11'—C12'0.8 (6)
C10—C9—C14—C130.4 (6)C10'—C9'—C14'—C13'0.9 (6)
C10—C11—C12—C130.1 (7)C10'—C11'—C12'—C13'0.1 (6)
C11—C12—C13—C140.2 (7)C11'—C12'—C13'—C14'0.2 (6)
C12—C13—C14—C90.0 (6)C12'—C13'—C14'—C9'0.2 (6)
C14—C9—C10—C110.5 (6)C14'—C9'—C10'—C11'1.2 (6)
C15—P1—C9—C10115.7 (3)C15'—P1'—C9'—C10'47.6 (3)
C15—P1—C9—C1462.2 (3)C15'—P1'—C9'—C14'133.0 (3)
C15—P1—C21—C2220.9 (3)C15'—P1'—C21'—C22'65.6 (3)
C15—P1—C21—C26169.1 (3)C15'—P1'—C21'—C26'121.6 (3)
C15—C16—C17—C180.8 (6)C15'—C16'—C17'—C18'0.3 (7)
C16—C15—C20—C190.8 (6)C16'—C15'—C20'—C19'0.3 (6)
C16—C17—C18—C190.0 (6)C16'—C17'—C18'—C19'0.2 (7)
C17—C18—C19—C200.4 (6)C17'—C18'—C19'—C20'0.2 (7)
C18—C19—C20—C150.0 (6)C18'—C19'—C20'—C15'0.2 (6)
C20—C15—C16—C171.2 (6)C20'—C15'—C16'—C17'0.3 (6)
C21—P1—C9—C107.0 (4)C21'—P1'—C9'—C10'62.6 (3)
C21—P1—C9—C14170.9 (3)C21'—P1'—C9'—C14'116.8 (3)
C21—P1—C15—C1659.1 (3)C21'—P1'—C15'—C16'24.3 (4)
C21—P1—C15—C20120.4 (3)C21'—P1'—C15'—C20'159.0 (3)
C21—C22—C23—C240.0 (6)C21'—C22'—C23'—C24'1.5 (6)
C22—C21—C26—C251.9 (5)C22'—C21'—C26'—C25'1.8 (5)
C22—C23—C24—C250.2 (6)C22'—C23'—C24'—C25'0.4 (6)
C23—C24—C25—C260.6 (6)C23'—C24'—C25'—C26'1.1 (6)
C24—C25—C26—C211.6 (6)C24'—C25'—C26'—C21'0.0 (5)
C26—C21—C22—C231.1 (5)C26'—C21'—C22'—C23'2.6 (5)
C27—C28—C29—C3041.5 (5)C27'—C28'—C29'—C30'93.5 (6)
C28—C27—C34—C3397.1 (5)C28'—C27'—C34'—C33'48.4 (7)
C28—C29—C30—C3133.6 (5)C28'—C29'—C30'—C31'34.1 (7)
C29—C30—C31—Rh19.9 (4)C29'—C30'—C31'—Rh1'38.3 (5)
C29—C30—C31—C3292.8 (5)C29'—C30'—C31'—C32'41.1 (7)
C30—C31—C32—Rh1103.9 (4)C30'—C31'—C32'—Rh1'97.7 (5)
C30—C31—C32—C335.2 (7)C30'—C31'—C32'—C33'5.7 (7)
C31—C32—C33—C3437.3 (6)C31'—C32'—C33'—C34'86.2 (6)
C32—C33—C34—C2739.0 (5)C32'—C33'—C34'—C27'25.1 (7)
C34—C27—C28—Rh1104.2 (4)C34'—C27'—C28'—Rh1'100.0 (4)
C34—C27—C28—C295.0 (6)C34'—C27'—C28'—C29'4.7 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F3i0.952.373.263 (5)157
C2—H2···F1"i0.951.812.722 (13)160
C17—H17···F2"ii0.952.303.229 (17)165
C2—H2···F30.952.193.002 (5)142
C13—H13···F1"iii0.952.363.163 (17)142
Symmetry codes: (i) x1, y, z1; (ii) x, y, z1; (iii) x, y+2, z1/2.
 

References

First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCastaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.  Google Scholar
First citationCazin, C. S. J. (2013). Dalton Trans. 42, 7254.  Web of Science CrossRef Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationDíez-González, S. & Nolan, S. P. (2007). Coord. Chem. Rev. 251, 874–883.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrémont, P. de, Marion, N. & Nolan, S. P. (2009). Coord. Chem. Rev. 253, 862–892.  Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.  Google Scholar
First citationIdrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.  Google Scholar
First citationMaynard, A., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230903.  Google Scholar
First citationNewman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.  Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. 2009, 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationRood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.  Google Scholar
First citationRovis, T. & Nolan, S. (2013). Synlett, 24, 1188–1189.  Web of Science CrossRef CAS Google Scholar
First citationRuff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationRushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146